
Managing XML Versions and Replicas in a P2P Context

Deise de Brum Saccol1
1,2

, Nina Edelweiss
2
, Renata de Matos Galante

2,4
, Carlo Zaniolo

3

2
Instituto de Informática - Universidade Federal do Rio Grande do Sul (UFRGS)

Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil

{deise, nina, galante}@inf.ufrgs.br
3
Computer Science Department – University of California (UCLA)

405 Hilgard Avenue, Los Angeles, CA, United States

zaniolo@cs.ucla.edu

1 This work has been partially supported by CNPq under grant No. 142396/2004-4, Capes under grant No. 1451/06-5, PERXML under grant No.

475.743/2004-0 and DIGITEX - CTInfo under grant No. 550.845/2005-4.

4 This work has been partially supported by CNPq under grant No. 481516/2004-2 (Edital Universal) and Fapergs under grant No. 0412264 (Auxílio

PROAPP).

Abstract

Peer-to-Peer (P2P) systems seek to provide sharing of

computational resources, which may be duplicated or versioned

over several peers. Duplicate resources (i.e. replicas) are the key

to better query performance and availability. On the other hand,

multiple versions can be used to support queries on the lineage

of resources and the evolution of history. However, traditional

P2P systems are not aware of replicas and versions, which cause

complexity at the logical level and inefficiency at the physical

level. To solve these problems, we propose an environment for

detecting, managing and querying replicas and versions of XML

documents in a P2P context. We also show that the proposed

environment can also be used for plagiarism detection, web page

ranking, and software clone identification.

1. Introduction

P2P systems refer to a class of applications that use

distributed resources to perform tasks in a decentralized

context. Each participant acts both as client and server,

providing access to resources through direct and

decentralized communication [1]. Their usability is mainly

dependent on techniques used to find and retrieve results. The

results quality may be measured by metrics such as the result

set size, query satisfaction, and processing time [2].

However, searching for resources in P2P systems must

deal with two important issues: the first is the existence of

replicas and the second is the presence of multiple versions of

a resource. Replicas (i.e. multiple representations) are

important for performance optimization: when the user poses

a query then the results must be returned from peers that best

satisfy performance and fast response time requirements. To

take advantage of resource replication it is necessary to detect

these replicas; otherwise, redundant results at a high

processing cost are returned to the user.

The second problem arises from the evolving behavior of

some resources, which is a fundamental aspect in persistent

information systems. This feature is even more evident in

XML domain, with frequent structure and content changes.

The evolution aspect must be managed to allow historical

analysis for dynamic resources.

The applications of the version concept are many and

diverse, for instance the management of the co-authoring

software, as studied in [3]. However, past approaches focus

on centralized management and truly P2P distributed

management still represents a difficult challenge. In P2P

systems, versioning techniques must consider that versions

and replicas may be spread over several peers. In such

context, detecting duplicates and versions is mainly useful for

query optimization. To address this issue, our paper proposes

DetVX, an environment for the detection, management and

querying of XML replicas and versions.

The main contributions of this paper are:

• A brief environment specification to detect, manage and

query replicas and versions in a P2P environment;

• A replica and linear version detection mechanism based on

hash functions and document similarity;

• A temporal XML model, based on diff algorithms and

timestamps, for representing versioned resources and

supporting basic temporal queries.

The paper is organized as follows: Section 2 presents

related works. Section 3 briefly describes the proposed

environment. Section 4 discusses the replica and version

manager module; a similarity function is presented for

version detection in content and structural evolutions. Query

capabilities are presented in Section 5. Section 6 highlights

other applications that may use our mechanism. Section 7

presents conclusions and future work.

2. Related Work

 There has been some recent works on temporal XML

models [5][6], extensions to its query languages [7], temporal

libraries [8] and version control [4]. However, version control

systems model files as text line sequences, storing the last

version and using reverse editing scripts to retrieve previous

versions [21]. These systems do not preserve the logic

structure of the original file and do not support complex

queries, and thus are inadequate to support XML versions.

These gaps are addressed in some works, such as [9][10] and

[11][12], respectively.

Previous works focus on version management rather than

version detection (i.e. the creation of a new version from an

old one). However, version detection is essential in our

motivating application, since the anonymity/distributed nature

of P2P environments prevents users from identifying

resources from which the new version or replica is being

created. Moreover, existent replica detection proposals focus

on identifying multiple representations of the same object in

the real world [13], which may have content or structure

differences. However, our work considers a replica as an

identical copy of a XML file.

To address this issue, we propose a detection mechanism

based on file similarity. There is some research on change

detection that can be used as a basis for measuring similarity.

Some approaches use diff algorithms to detect differences

between files [14][15]. Another possibility is to analyze their

ordered tree representations by calculating the edit distance,

i.e. the minimum cost to transform one tree into another tree

using basic operations [16][17].

Diff algorithms can be used to detect differences and, in a

certain way, a similarity value between files. However, diff

results are a delta script with no semantic information

regarding the similarity between documents. Also, the tree

edit distance results do not contain valuable information

related to the similarity level that could be used to detect

resource versions. Our work focuses on this gap and proposes

an environment for detecting and managing replicas and

versions of XML documents in a P2P context.

Many applications may use version detection mechanisms.

For plagiarism detection, comparing file checksums is enough

for detecting exact replicas, but insufficient for partial copies

[22][23]. By considering partial copies as versions, such

plagiarism can be detected. The web page ranking process can

also take advantage of the detection mechanism by ranking

new versions of existent top-ranked pages [25]. At last, the

software clone problem that arises during the development of

systems may have a negative impact on their maintenance

[24]. The proposed mechanism can help to detect such

clones.

3. DetVX Environment

DetVX is an environment for detecting and managing

replicas and versions of XML documents in a P2P context

[26]. DetVX is based on a super peer architecture [19]. Super

peers are responsible for receiving the query and resending it

to aggregated peers and other super peers. Peers must

(re)connect in super peers in order to share their files. Shared

XML files are related to a knowledge domain, used as a peer

grouping criterion in super peers. An ontology is used to

represent the knowledge domain [18]. Super peers are

managed by the administrative super peer, as depicted in

Figure 1.

Fig. 1. DetVX Environment

Files may be duplicated or versioned over the super peer

network. To provide the functionalities for replica and

version detection, this work proposes the following modules.

The peer manager is responsible for (re)connecting peers and

periodically verifying modifications in shared files. The

ontology manager maintains the ontology repository and

associates ontologies to super peers. The replica and version

manager identifies and manages document replica and

versions. The query processor is responsible for verifying the

query domain and rotating queries to peers. Metadata play a

fundamental role and are detailed in Section 3.1. In this

paper, we do not detail the peer and ontology managers. More

details may be found in [26].

3.1 Document and Metadata Representation

The term file refers to a physical representation stored in a

peer; document refers to the representation of an object in the

real world. In other words, one document can be stored as

many files, either because it is replicated or versioned. A file

has a registering and a modification time. The modification

time is considered to define the file order over time. Local

(fileID) and global identifiers (GFID) are used to identify a

file in a peer and in a specific location in the network,

respectively [26]. Documents also have identifiers (docID)

and they are used to identify versions and replicas of the same

object in the real world.

To manage identifiers and other relevant information, the

approach relies on the extensive use of metadata. Metadata

are represented as XML files and classified in two levels, as

shown in Figure 1. In this paper, only super peer metadata are

considered. Super peer metadata basically specify the

available versions and replicas in a specific super peer

(superPeerId), and the corresponding timestamps for each

element (timeStart: TS, timeEnd: TE) that is found in

certain file (fileID) in a peer (peerID), as shown in Listing 1.

<Metadata superPeerId="SP1">

 <document docID=”D1” fileID="F7" HDoc=’’YES”>

 <version versionID="1" peerID="P1" registeringTime="10/10/2005"

 modificationTime="08/08/2004" duplicate="no"
 hashResult="d49622ddab3733549e54749755fd52b5">

 <element name="author" TS="08/08/2004" TE="10/15/2004"/>

 <element name="address" TS="08/08/2004" TE="10/15/2004"/></version>

 <version versionID="2" peerID="P2" registeringTime="11/20/2005"

 modificationTime="10/16/2004" duplicate="yes"
 hashResult="7c00bb062edc60fa548729a3d55c04fd">

 <locationDuplicate>Peer 3</locationDuplicate>…</version>

</Metadata>

Listing 1. Super Peer Metadata

Research Projects Ontology
Metadata

Curriculum
Files

Curriculum
 and Research
Projects Files

Research
Projects Files

Research Projects
Files

Peer Peer 2 Peer 3 Peer 4

 SpPeer 1 SpPeer 2
Curriculum Ontology

Metadata

Ontology Repository
Administrative Super Peer
Metadata

1
2
3
4
5
6
7
8
9
10
11
12

Each element has two timestamps inferred from the

modification time of the file in which the element is

contained. Super peer metadata information is updated

whenever a new file is registered into a peer and is

extensively used during querying process.

4. Replica and Version Manager

This module is responsible for detecting replicas and

versions and representing the history in a new structure,

called H-Doc file.

4.1 Detection Mechanism

To solve the detection problem, a first approach is to look

for replicas and versions in the local peer. If they are not

found, the detection is executed in the next peer of the super

peer network. The detection mechanism is executed whenever

a file is registered or updated in a peer. When a file is

removed, only the metadata need to be updated. A peer

modification checking service is responsible for periodically

watching the peer and notifying its super peer whenever a

change is detected.

The replica detection mechanism aims to verify if a file is

a copy of any other file stored in any peer belonging to the

same super peer network. In our work, a duplicate (or replica)

is defined as an identical copy of a XML file. The replica

detection is done by comparing the file hash result with all

the hash results already stored in its super peer metadata. Two

files f1 and f2 are replicas if:

HashFunction(f1)=HashFunction(f2)

The version detection mechanism aims to verify if a

modified file is a version of any other file stored in any peer

belonging to the same super peer network. Since this work

assumes the linear versioning approach, this activity will

compare the candidate file only with the last file versions

available in the super peer network.

There are two types of evolution that are considered:

� Content: <x>A St, 7</x> <x>B St, 8</x>

� Structure and content: <x>A St, 7</x> <y>B St</y> <z>8</z>

In this proposal, version detection is based on file

similarity. The general idea is that two files with high

similarity are considered two versions of the same document;

two different documents, otherwise.

Let’s first consider the content evolution type.

4.1.1 Content Evolution

Suppose two files, f1 and f2, shown in Listing 2.

Listing 2. XML Files

In order to evaluate the similarity between these files,

some features are observed:

� Diff results: the root element in both files has six child

elements. Using a diff algorithm, the differences between the

files are detected. As Listing 3 shows, the content of the

elements salary and job do not match in the second file. In

other words, 67% of the original elements kept unchanged in

the second file.

The assumption here is the following: the bigger

percentage of matched elements, the bigger chance the files

are versions of the same document.

<delta> <Deleted update="yes" pos="0:0:3:0">3700</Deleted>
 <Deleted update="yes" pos="0:0:2:0">engineer</Deleted>
 <Inserted update="yes" pos="0:0:2:0">manager</Inserted>
 <Inserted update="yes" pos="0:0:3:0">4900</Inserted> </delta>

Listing 3. Diff result2 for files f1 and f2

� Matched and unmatched elements: We consider the term

matched to refer to an element that has the same content in

both files (for example, name); unmatched, otherwise (for

example, salary). Let’s take a look at the unmatched elements

salary and job. Using a (combination of) string similarity

function(s), we calculate a value that demonstrates how

similar the unmatched elements are. The more similar the

respective unmatched elements, the bigger chance the files

are versions of the same document.

� Element change relevance: Another important issue is the

relevance of individual changes. Some domain concepts can

change more frequently than others. Let’s suppose that we

have an address element. Two different addresses can easily

refer to the same person; however, two different birthdates

suggest that we are analyzing two different objects in the real

world. In other words, the change relevance is differently

weighted for different concepts. We assume different

weights, such as high (1), medium (0.5) and low (0). The

average of weighted relevances is used to calculate file

similarity. The smaller change relevance they present, the

bigger chance the files are versions of the same document.

Based on the previous discussions, the similarity function

simC between two files f1 and f2 is defined as:

simC(f1,f2) = (w1*F1 + w2*F2 + w3*F3 + ... + wn*Fn)

Where wn is a factor that weights the importance of a

specific feature Fn. A factor may be positive or negative (if it

influences the similarity growth or reduction, respectively).

Considering wx, wx+1,…wy as positive factors and wz, wz+1,…wq

as negative factors, we assume that wx + wx+1 +...+wy = 1 and

0<= wz + wz+1 +...+wq <= 1.

In our approach, three features are considered to produce

the following content evolution similarity function:

simC(f1,f2) = w1*P + w2*S + w3*R

Where: P is the percentage of matched elements, S is the

mean similarity of the unmatched elements and R is the

average of domain relevances of the unmatched elements

(defined by the system administrator). P and S factors (w1 and

w2, respectively) are positive values (the greater these values,

the more similar the files) and R factor (w3) is a negative value

(the smaller this value, the less relevance the change and the

more similar the files). The factors (w1, w2,..., wn) must be

defined based on the importance of the three features in

2 We are currently using XyDiff implementation [14], but the architecture

allows changing to other diff algorithms.

<employee>
<name>Marcos</name>
<hiringDt>10/10/03</hiringDt>

<job>engineer</job>

<salary>3700</salary>

<address>7 St</address>
<phone>65982541</phone>

</employee>

<employee>
 <name>Marcos</name>
 <hiringDt>10/10/03</hiringDt>

 <job>manager</job>

 <salary>4900</salary>

 <address>7 St</address>
 <phone>65982541</phone>

</employee>

specific applications/domains and recall/precision measures

[30].

The intervals of the defined variables are defined as: {P|P

∈ [0,1]}, {S|S ∈ [0,1]}, {R|R ∈ [0,1]. Analyzing the

minimum e maximum values of P, S and R, and the sum

restrictions for positive and negative factors, we conclude that

the similarity function produces a value simC that ranges

from -1 to 1, i.e. {simC|simC ∈[-1, 1]}.

To calculate P, we use a function calcP that returns the

percentage of matched elements based on the diff result. S is

calculated by using a (combination of) string similarity

function(s) (StrSim()) and it is defined as the average of

unmatched elements (ue) similarity values. The function is

defined in more details as follows:

simC(f1,f2) = w1*calcP(diff(f1,f2)) + w2* StrSim(ue1x,ue2x) - w3* R(uex)

 t t

As depicted in Figure 2(a), the similarity function values

are not uniformly distributed. To uniformly distribute the

values, we sort and map the m similarity function results into

n classes. The mapping, represented in a transformation table,

categorizes m/n members in each class. Since we have 100

different similarity values, this transformation generates

0.01*m members in each class.

Fig. 2. Similarity Function Values (a) and (b)

Figure 2(b) shows the distribution of the mapped uniform

transformation. We generated 1.000.000 values according to

the original similarity function, using 0.5, 0.5 and -0.5 as the

weight values, and grouped them into 100 classes. These

classes were mapped to values ∈ [0,1], in order to uniformly

distribute the function values. To ensure that the mapping is

correct, we generated more 100.000 values and mapped them

to this table.
After producing the similarity values, a threshold is used

to detect versions based on them. The threshold generation is

an ongoing work and it is not detailed in this paper. Further

study is still needed to assess which threshold is better respect

to precision and recall.

4.1.2 Structure and Content Evolution

Suppose two files, f3 and f4, shown in Listing 4.

Listing 4.XML Files

In order to evaluate the similarity between these files, the

discussions about diff results and element change relevance

in the last sub-section are still valid. Another feature is also

observed:

� Added and removed elements: using a diff algorithm, the

differences between the files are detected. Analyzing the files

and the diff results, we can see that the f4 has added one

element (address) and has removed two elements (job and

hiringDt). Let’s refer added to the elements in the first

situation and deleted to the elements in the second situation.

These concepts are similar to the ideas presented in [29],

which consider plus, minus and common elements for

measuring similarity between a document and a DTD.

We consider the term matched to refer to an element that

has the same structure and content in both files (for example,

name and phone); unmatched, for those elements that the

content has changed (for example, salary). Similar to the

ideas presented for the content evolution, the following

features are considered to produce the structure evolution

similarity function:

simE(f3,f4) = simC(f3,f4) + w4*A + w5*D

Where: simC is the content similarity value, A is the

percentage of added elements and D is the percentage of

deleted elements. A and D factors (w4 and w5, respectively) are

negative values (the smaller these values, the more similar the

files).

The intervals of the defined variables are defined as: {A|A

∈ [0,1], {D|D ∈ [0,1]. Analyzing the minimum e

maximum values of simC, A, D, and the sum restrictions for

positive and negative factors, we conclude that the similarity

function produces a value simE that ∈[-3, 2].

To calculate A, we use a function calcA that returns the

percentage of added elements, based on the diff result. To

calculate D, we use a function calcD that returns the

percentage of removed elements, based on the diff result.

simE(f3,f4) =simC(f3,f4) - w4*calcA(diff(f3,f4)) – w5*calcD(diff(f3,f4))

The similarity values are not uniformly distributed.

Similarly, the process detailed in the previous section is

applied on the results to uniform these values. Also, the

threshold process presented in Section 4.1.1 is still valid.

Whenever a new version or replica is detected, the

timestamps described in the super peer metadata need to be

updated. Metadata updating is described in [26].

4.2 A Consolidated Historical Representation

After detecting the versions, the system stores them in a

new physical file, which contains the entire history of a

document. The document history is named consolidated

historical representation and represented in H-Doc files. H-

Doc files are stored in the respective super peer where the

original versions are registered. Timestamps are responsible

for validating data in specific versions. H-Doc representations

are generated only for frequently accessed and evolved files.

The goal is to provide faster query processing for queries that

ask historical retrieval.

The H-Doc generation process is detailed in [27]. Listing 6

shows the H-Doc file generated for Listing 4. Consider that f3

and f4 have 01/01/2004 and 01/01/2005 as modification

times, respectively.

t

x=1

t

x=1

<employee>
<name>Marcos</name>
<salary>4500</salary>

<address>7 St</address>

<phone>65982541</phone>
</employee>

<employee>
<name>Marcos</name>

<hiringDt>10/10/03</hiringDt>

<job>engineer</job>

<salary>3700</salary>
<phone>65982541</phone>

</employee>

<employee TS=”01/01/2004 TE=NOW”>
 <name TS=”01/01/2004” TE=”NOW”>Marcos</name>
 <hiringDt TS=01/01/2004 TE=”12/31/2004”>10/10/03</hiringDt>
 <job TS=”01/01/2004” TE=”12/31/2004”>engineer</job>
 <salary TS=”01/01/2004” TE=”12/31/2004”>3700</salary>
 <salary TS=”01/01/2005” TE=”NOW”>4500</salary>
 <phone TS=”01/01/2004” TE=”NOW”>65982541</phone>
 <address TS=”01/01/2005” TE=”NOW”>7 St</address>

<employee>

Listing 5. H-Doc File

In DetVX environment, the generation of the H-Doc file is

done by XVersion tool, a currently implementation work [27],

based on diff algorithms and timestamps.

5. Query Processor

After detecting replicas and versions, temporal queries

may be posed on the original files located in the peers or on

the historical representation stored in the super peers.

5.1 Querying the Original Files

To evaluate which files must be accessed to answer a

query, our approach relies on metadata described in Section

3.1. The query submission works as follows: the user poses a

query in a specific peer (named querying peer). This query

belongs to a specific domain. Looking at the super peer

metadata, it is possible to see how to access the history or

versions of an element or document.

Considering the super peer metadata described in Listing

1, some temporal retrieving examples are described below:

1. Retrieve the version vi of an element ej – for instance, get

the first version (versionID="1", line 3) of the element

author (element name="author", line 6). By searching the

version number represented in metadata, the system can

verify that the first version of the queried element is found

in peer 1 (peerID="P1", line 3) located at super peer 1

(superPeerId="SP1", line 1). Thus, the system must access

this file and return the results.

2. Retrieve the history of an element ej – for instance, get the

history of the element address. To answer this query, the

system searches the metadata, looking for all the versions

(versionID) of the element address (element

name="address"). The last version of this element is

represented by TE=now. Another possibility for this query is

to check if there is a generated H-Doc representation for

this file (attribute HDoc="YES", line 2). In this case, the

system can access this file in the super peer, as described

in the next section.

5.2 Querying the H-Doc File

Consider a document D as a n-tuple D = (root, e1, e2,...,

en) and an element e in this document as a 3-tuple E=(TS, TE,

<content>), where TS and TE denote the timestamps.

Temporal restrictions are applied based on a specific date x or

on an interval x and y (x<y). Some temporal clauses are:

1. Select_Before (E, x): returns the elements e that are valid

in H-Doc file before x (elements whose TS < x);

2. Select_After (E, x): returns the elements e that are valid in

H-Doc file after x (elements whose TE>x);

3. Select_Between (E, x, y): returns the elements e that are

valid in H-Doc file between x and y (elements whose

TS<=y and TE>=x);

4. Select_Now (E): returns the elements e that are valid in H-

Doc file in current time (elements whose TE=now);

The same clauses are defined for retrieving entire

documents, such as Select_Before (D, x), Select_After (D, x)

and others. Query capabilities based on XQuery language [20]

have been implemented in our tool named XVersion. This tool

generates the H-Doc document and allows basic temporal

queries over the historical file. More details about XVersion

may be found in [27].

6. Other Applications

This paper focuses on version and replica detection

problem in P2P systems. Although this is the motivating

scenario for our system and experiments, we expect that our

proposal can be used in other applications, such as:

� Web page ranking: ranking methods usually involve the

location and frequency of keywords in a web page. Search

engines verify if the searched keywords appear close to the

page top (headline or in the first few paragraphs). Frequency

is also considered by analyzing how often keywords appear in

relation to other words in a web page [25]. Another factor

that may be considered for ranking is the incoming link

degree (i.e. the number of links that point out to a page p).

However, new p versions may have a small incoming link

degree, mainly because of the pages that were pointing to p

are not aware of the new version. In such context, version and

replica detection may be useful for ranking new versions even

if they have low incoming degrees.

� Plagiarism detection: Digital files may be easily copied,

either partially or completely. One way to detect plagiarism is

by comparing file checksums, which is simple and suffices

for reliably detecting exact copies. However, detecting partial

copies is more complicated [22]. By using the mechanism

proposed in this paper, similar files are identified. The

threshold definition must be in accordance to such

application. For instance, partial copies must be identified

with a low threshold, whereas complete copies must be

detected with a higher threshold.

� Software clone identification: replicated code can arise

during the development and evolution of software systems

and it has a negative impact on their maintenance. The

detection gets difficult mainly because of small differences,

such as reformatting, code and variable name changes [24].

Existent detection mechanisms usually rely on the use of a

parser, but this approach is dependent on the programming

language syntax. The classical plain-text representation of

code is convenient for programmers but requires parsing to

uncover the deep structure of the program. Representing code

in a structured format, as XML documents [28], permits easy

specification of numerous software-engineering analyses by

leveraging on the abundance of XML tools and techniques. In

this context, the proposed mechanism may be used for

software clone detection.

7. Concluding Remarks

This paper focused on detection and management of XML

replicas and versions in P2P contexts. The relevance of such

problem is quite evident in many scenarios, such as

plagiarism detection, web page ranking, software clone

identification, assuring link permanence in Web documents,

and enhancing search in P2P systems. To increase efficiency

and effectiveness in such systems, this paper briefly described

the proposed architecture and functionalities of the DetVX

environment.

We have proposed a simple structure for representing

metadata which can be used for managing and querying the

available files. A document similarity function used as the

basic idea in the detection mechanism was also described.

The proposal requires no intervention by the user. The user is

only requested to update the document and register the file;

the system detects prior versions or duplicates, generates

identifiers and manages all the related metadata.

The current state of the project is as follows. We have

already implemented XVersion, a tool for representing and

querying document history. Basic retrieval capabilities have

been implemented, allowing simple temporal queries over the

historical representation. As future work, we are going to

incorporate the detection mechanism in DetVX environment.

The completion of the detection mechanism will allow us to

measure improvements on selected testbeds, including JXTA

[31]. Results will be presented in the conference.

References

1. Aberer, K. and Hauswirth, M.. An Overview on Peer-to-Peer

Information Systems. Workshop on Distributed Data and Structures,

Paris, France, 2002.

2. Yang, B. and Garcia-Molina, H.. Efficient Search in Peer-to-Peer

Networks. In: Proceeding of the Intl. Conf. on Distributed Computing

Systems, Vienna, Austria, 2002.

3. Westfechtel, B., Munch, B. P., and Conradi, R. A Layered

Architecture for Uniform Version Management. IEEE Trans. Software

Eng., 27(12):1111–1133, 2001.

4. Chien, S-Y., Tsotras, V. J., Zaniolo, C. (2001). XML Document

Versioning. SIGMOD Records, Vol. 30 Number 3, Sept.

5. Su, H., Kramer, D., Chen, L., Claypool, K. T., Rundensteinrer, E. A..

XEM: Managing the Evolution of XML Documents. Proc. of 11th Intl.

Work. on Res. Issues in Data Engineering, Heidelberg, 2001.

6. Grandi, F. and Mandreoli, F.. The Valid Web: an XML/XSL

Infrastructure for Temporal Management of Web Documents. Proc. of

Advances in Information Systems, 2000.

7. Gao, D. and Snodgrass, R.T.. Temporal Slicing in the Evaluation of

XML Queries. Proc. of Very Large Database Systems, 2004.

8. Wang, F. and Zaniolo, C.. Representing and Querying the Evolution of

Databases and their Schemas in XML. In Workshop on Web

Engineering, SEKE, San Francisco, USA, 2003.

9. Chien, S.; Tsotras, V.; Zaniolo, C. and Zhang, D.. Storing and

Querying Multiversion XML Documents using Durable Node

Numbers. Proc. of the 2nd Intl. Conf. on Web Information Systems

Engineering, 1, 232-241, vol.1, 2001.

10. Grandi, F., Mandreoli, F., Tiberio, P.. Temporal Modeling and

Management of Normative Documents in XML Format. Data &

 Knowledge Engineering, v. 54, n. 3, p. 327-354, Sept., 2005.

11. Vagena, Z. and Tsotras, V.. Path-Expression Queries over

Multiversion XML Documents. Proc. of Intl. Workshop on the Web

and Databases, 49-54, 2003.

12. Wang, F. and Zaniolo, C.. An XML-Based Approach to Publishing

and Querying the History of Databases. World Wide Web: Internet and

Web Information Systems, 2005.

13. Weis, M. and Naumann, F.. Detecting Duplicates in Complex XML

Data. Proc. of the 22nd Intl. Conf. on Data Engineering, 2006.

14. Cobena, G., Abiteboul, S. and Marian, A.. Detecting Changes in

XML Documents. Proc. of 18th Intl. Conf. on Data Engineering, 41-

52, 2002.

15. Wang, Y., DeWitt, D. J., Cai, J. (2003). X-Diff: An Effective Change

Detection Algorithm for XML Documents. Intl. Conf. on Data

Engineering, 519-530.

16. Chawathe, S.S.. Comparing Hierarchical Data in External Memory.

Proc. of the 25th Intl. Conf. on Very Large Data Bases, Morgan

Kaufmann Publishers Inc., 90-101, 1999.

17. Wan, X. and Yang, J.. Using Proportional Transportation Similarity

with Learned Element Semantics for XML Document Clustering.

WWW '06: Proc. of the 15th Intl. Conf. on World Wide Web, ACM

Press , 961-962, 2006.

18. Peres, A., Lopes, M., Corcho, O.. Ontological Engineering: with

Examples from the Areas of knowledge Management, e-Commerce

and Semantic Web. Springer, 1st edition, 2004.

19. Schollmeier, R.. A Definition of Peer-to-Peer Networking for the

Classification of Peer-to-Peer Architetures and Applications. Proc. of

the 1st Intl. Conference on Peer-to-Peer Computing, 27-29, Linköping,

Sweden. IEEE Computer Society 2001.

20. XQuery 1.0: An XML Query Language. W3C Proposed

Recommendation. Available at: http://www.w3.org/TR/xquery.

21. CVS: Concurrent Versions System. Available at:

http://www.nongnu.org/cvs.

22. Schleimer, S., Wilkerson, D., Aiken, A.. Winnowing: Local

Algorithms for Document Fingerprinting. Proc. of the ACM SIGMOD

Intl. Conf. on Management of Data, San Diego, California, p. 76-85,

2003.

23. Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.. Shared

information and program plagiarism detection. IEEE Transactions on

Information Theory, v. 50, n. 7, p-1545-1551, 2004.

24. Ducasse, S., Niertrasz, O., Rieger, M.. On the effectiveness of clone

detection by string matching. Journal of Software Maintenance and

Evolution: Research and Practice, v. 18, n. 1, p. 37-58, 2006.

25. Baeza-Yates, R., Castillo, C.. Relating Web Characteristics with

Link based Web Page Ranking. Proc. of the 8th Intl. Symposium on

String Processing and Information Retrieval, 2001.

26. Saccol, D.B., Edelweiss, N., Galante, R.M.. Detecting, Managing

and Querying Replicas and Versions in a Peer-to-Peer Environment.

In: 1st IEEE TCSC Doctoral Symposium, in conjunction with the 7th

IEEE Intl. Symposium on Cluster Computing and the Grid, Rio de

Janeiro, 2007 (to appear).

27. Saccol, D. B.; Giacomel, F. S.; Galante, R. M.; Edelweiss, Nina..

Grouping and Querying XML Document Versions in a Peer-to-Peer

Environemnt (in Portuguese). In: Actas do XATA-XML: Aplicações e

Tecnologias Associadas, Lisboa, 2007.

28. Badros, G. J.. JavaML: A Markup Language for Java Source Code.

In Proc. of the 9th Intl. Conf. on the World Wide Web, Amsterdam,

2000.

29. Bertino, E., Guerrini G., Mesiti, M.. A Matching Algorithm for

Measuring the Structural Similarity between an XML Document and a

DTD and its Applications. Information Systems, v. 29, n. 1, Special

issue on web data integration, p. 23-46, 2004.

30. Baeza-Yates, R.A., Ribeiro-Neto, B.. A. Modern Information

Retrieval. ACM Press / Addison-Wesley, 1999.

31. Gong, L.. JXTA: A Network Programming Environment. IEEE

 Internet Computing, 5(3):88–95, May/June 2001.

