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Abstract 
 

We present a novel application of graph database 

mining to identify tertiary motifs in RNA structures. In 

our method, we abstract an RNA molecule as a labeled 

graph and use a frequent subgraph mining technique 

to derive tertiary motifs. By applying our technique to 

ribosome RNA and transfer RNA, we have identified 

known RNA tertiary motifs such as the ribose zipper 

and U-turn, plus candidates for novel tertiary motifs. 

Finally, we suggest an iterative multiple structure 

alignment algorithm to classify tertiary motifs and 

generate consensus motifs. 

 

1. Introduction 
 

We present a novel application of graph database 
mining in the bioinformatics domain: that of 
identifying tertiary motifs from RNA molecular 
structures. Our goal is automated motif discovery by 
(1) modeling RNA structures as graphs and (2) mining 
a graph database to identify structurally important 
features (tertiary motifs) from RNA.  

RNA plays critical roles in biological systems. 
RNA molecules play critical roles in biological 
systems. Recent research shows that RNA can restore 
and transmit genetic information [1], catalyze chemical 
reactions [2], and regulate gene expressions [3]. For 
example, RNA interference (RNAi) is a widely used 
experimental technique that utilizes short RNA 
sequences to regulate gene expression in eukaryotic 
cells, and RNAi-based drugs have become an 
important target. 

An RNA molecule is a linear polymer of 
nucleotides connected by covalent bonds. Each unit 
has a backbone (phosphate + sugar) with one of the 
four nucleotide bases (A, C, G, and U) attached. Like 
protein, RNA has four levels of structural organization: 

primary, secondary, tertiary, and quaternary. Primary 
structure is the linear sequence of nucleotides, 
Secondary structure is the collection of pairs of bases 
in 3D structure, tertiary structure is the overall shape 
of an RNA molecule, and quaternary structure is the 
organization of two or more RNA molecules. 

An RNA motif is a short fragment of RNA 
(continuous or noncontinuous) that appears repeatedly 
in a variety of RNA molecules and plays an important 
role in biological function [4]. Our algorithms focus on 
the first half of this definition, “appears repeatedly,” 
because that is a property that can be determined 
purely from a set of RNA structures, and because 
natural selection in molecular evolution suggests that 
motifs with an important role are biased to appear. 

Identifying RNA motifs is a step in understanding 
RNA structures and their function. There are three 
types of RNA motif: Sequence motif is a fragment of 
RNA sequence. Secondary motif reflects RNA base 
pairing relations, which form the scaffold of RNA 
structures and serve important biological roles like 
regulating cellular processes. Tertiary motif [5,6,7] 
reflects spatial interactions between nucleotides and is 
related to biological function such as stabilizing 
structure or metal binding. Although tertiary motifs are 
important for RNA folding and function, current RNA 
motif identification algorithms focus on finding 
sequence motifs and secondary motifs, but not tertiary 
motifs. 

We investigate algorithms that represent the 3D 
structure of RNA molecules as a database of graphs, 
discover subgraphs (tertiary motifs) with frequent 
subgraph mining techniques, and build consensus 
motifs (representatives of subgraphs in same groups) 
by geometric algorithms.  

Our graphs include three types of edges: backbone 
edges that encode connectivity along the primary 
sequence of an RNA molecule, base pair edges that 
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encode base pair interaction of nucleotides, and 
contact edges that encode non-local contacts from the 
tertiary structure of the molecule. Thus we capture 
aspects of RNA primary, secondary and tertiary 
structures in the graph. 

We employ a frequent subgraph mining algorithm 
[8] to identify the frequently occurring subgraphs 
(tertiary motifs) in a collection of RNA structure 
graphs. For each group of subgraphs, we derive a 
consensus motif by applying a geometric structure 
alignment algorithm that classifies mirror symmetric 
subgraphs as right or left handed and performs 
multiple structure alignment by iteratively finding local 
optimal solution and converging towards a global 
minimal. With our alignment algorithm, we show that 
the aligned tertiary motifs fit well with a 3D Gaussian 
distribution model.  

We demonstrate the overall utility of our algorithm 
on transfer RNA (tRNA) and ribosome RNA (rRNA). 
tRNA and rRNA are selected because of their 
abundance in known RNA structures and the extensive 
manual study in the SCOR database [9]. SCOR is a 
comprehensive database for recording RNA secondary 
and tertiary motifs that classifies RNA information into 
structural classification, functional classification, and 
tertiary interaction. By comparing our mined RNA 
tertiary motifs to the collections of motifs in tertiary 
interactions in SCOR, we show that our method can 
find known tertiary motifs, plus novel ones. 
 

2. Related Work 
 

Several RNA motif identification algorithms have 
been developed, with various assumptions. Below, we 
review some major algorithms, classified into four 
groups.  

The first group of motif identification algorithms 
involves manual processing to identify tertiary motifs. 
Klosterman et al. [10] described examples of newly 
found RNA tertiary motifs, including extruded helical 
single strand, internal loop triples, and U-turns in 
internal loops. All these tertiary motifs are observed 
manually, not discovered automatically by tools. 

The second group of motif identification algorithms 
finds sequence motifs only. For example, Morgante et 
al. [11] use a graph representation of sequence and 
find common non-consecutive motifs for two or more 
sequences. Rajasekaran et al. [12] find common 
sequence of length l with Hamming distance of d in t 
sequences of length n. Zhao et al. [13] find the similar 
DNA motifs based on a permuted Markov model. 

The third group of motif identification algorithms 
uses simplified representations of RNA structures to 

find common structural motifs. COMPADRES [14] 
uses P and C4’ atoms to represent a nucleotide, 
reduces RNA 3D structure to a sequence of dihedrals 
by continuous P and C4’ atoms, and clusters the 
dihedrals. Huang et al. [15] cut an RNA sequence into 
6-nt fragments, compare their RMSD values, and 
cluster into a hierarchy structure by the unweighted 
pair group method with arithmetic mean (UPGMA). 
The structural motifs discovered by these two methods 
are fixed to short consecutive sequences since they use 
no knowledge of secondary and tertiary interactions. 

The fourth group of motif identification algorithms 
uses structure alignment to derive tertiary motifs. 
ARTS [16], which stands for alignment of RNA 
tertiary structures, compares two RNA sub-structures 
with sizes from two to thousands of nucleotides. It uses 
a set of base pairs as seed, compares their minimum 
RMSD every two consecutive base pairs, extends to 
the whole structures, and scores the matching. RAG 
[17] represents RNA secondary structure as tree and 
dual-graph motifs, enumerates all possible motifs, and 
clusters based on topological characteristics. These 
methods have difficulty finding tertiary motifs because 
they do not consider tertiary interactions. 

In our previous study, we also applied graph 
modeling and graph mining for analyzing 3D protein 
structures [18]. Adapting the same technique to RNA 
analysis is non-trivial because of the following 
reasons: (1) Modeling RNA structure is different from 
that of protein structure: RNA structures are much 
larger and less stable than protein structures. (2) RNA 
is composed of 4 residues rather than 20 in proteins, 
which means that we have smaller set of node labels in 
RNA graph mining. Our current method is fully 
automated, fast, and works directly on 3D RNA 
structures. 
 

3. Algorithms 
 

First, we define labeled graphs, which serve as the 
formal base of our graph representation of RNA 
molecules, and the data structure used by the frequent 
subgraph mining algorithm. Second, we discuss 
constructing graph representations for RNA molecules. 
Finally, we introduce the novel structure alignment 
algorithm for building consensus motifs. 
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3.1. Labeled graphs and frequent subgraph 

mining algorithms 
 

A labeled graph G is a quadruple G = (V, E, Σ, λ). V 
is a set of nodes, E ⊆ V×V is a set of undirected edges 
joining distinct nodes, Σ is a set of node labels and 

edge labels, and the labeling function λ defining the 
mappings from nodes and edges to their labels: V ∪ E 
→ Σ. The size of a graph G is the cardinality of its 
node set V.  A graph database GD is simply a group of 
labeled graphs. Figure 1 shows a graph database with 
three labeled graphs. The labels of nodes and edges are 
specified within the nodes and along the edges for each 
graph. 
From graph theory, we formalize the search for tertiary 
motifs as the search for commonly occurring 
subgraphs in a group of graphs. A fundamental part of 
our frequent subgraph mining algorithm is to decide 
whether a subgraph G occurs in another graph Go. To 
make this more precise, we define that a graph G = (V, 
E, Σ, λ) is subgraph isomorphic to Go = (Vo, Eo, Σo, λo) 
if there exists a one-one mapping f : V →  V' such that: 

∀ u ∈ V, λ (u) = λo(f(u)), 
∀ u, v ∈ V, (u, v) ∈ E ⇒ (f(u), f(v)) ∈ Eo, 
∀ (u, v) ∈ E,  λ(u, v) =λo(f(u), f(v)). 
The one-one mapping f is defined as a subgraph 

isomorphism from G to Go. Figure 1 shows a subgraph 
isomorphism f: q1 → p2, q2 → p1, and q3 → p3 from 
graph Q to P, hence we say that graph Q occurs in P 
through the subgraph isomorphism f. Luke et al. [18] 
show an example of using labeled graphs in protein 
structures. 

Given a graph database GD, which contains a set of 
graphs, the support of a subgraph G is the fraction of 
graphs in GD in which G occurs. Given a threshold 0 ≤ 
σ ≤ 1, we define G to be frequent if its support is at 

least σ. The goal of frequent subgraph mining is to 
identify all frequent subgraphs from a graph database 
GD with support threshold σ. Figure 2 shows all six 
frequent connected subgraphs with σ =1 from the three 
graphs of Figure 1. 

We use the Fast Frequent Subgraph Mining 
algorithm (FFSM) (available at 
http://www.cs.unc.edu/~huan/FFSM.html), which is 
competitive or outperforms other state-of-art subgraph 
mining algorithms [8]. 
 
3.2. Graph Modeling of RNA Molecules 
 

In our graph representation, each node represents 
one nucleotide and each edge represents the 
connection for two nucleotides. We generate RNA 
graphs from RNA structures in the following way: 

Totally there are four different nucleotides in RNA 
molecule with the same backbone but different bases – 
A, C, G, and U. In graph representation, each node 
corresponds to a nucleotide and is labeled either with 
purine (A and G) or pyrimidine (C and U). We reduce 
the alphabet to two because these nucleotides do not 
have significant structural differences, and it is 
common that mutated and wild-type RNAs have the 
same motif with different nucleotides [4]. We have 
tried the alphabet of all four symbols, but we find very 
few tertiary motifs. 

We generate three types of edges to represent RNA 
primary, secondary, and tertiary structures in the 
following priority order: 

a backbone edge connects two contiguous 
nucleotides, 

a base pair edge connects two nucleotides recorded 
as a base pair in the NDB [19],  

a contact edge connects spatial neighboring 
nucleotides within 8Å. 

Backbone and base pair edges are labeled by their 
types. For each nucleotide pair, contact edges are 
labeled by discretized distances in the following way: 
Each nucleotide is abstracted as two points, its 
phosphorus atom and the geometric center of its sugar 
ring (since most tertiary interactions involve the 
phosphate and sugar groups. We define the distance 
between two nucleotides as the shortest distance 
between their abstracted points, and discretize this into 
distance bins, as described in section 4.2. 

We create one graph for each RNA structure, 
collect all the graphs into a graph database, and use the 
FFSM algorithm [8] to mine frequent subgraphs. 
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Figure 2. All frequent connected subgraphs from G 
in Figure 1 with support threshold σσσσ = 100% 
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3.3. Constructing consensus motifs with 

Computational Geometry 
 

The graph representation in Section 3.2 abstracts 
away some of the precise geometry of motifs. After 
obtaining frequent subgraphs, we construct the 
corresponding tertiary motifs by the atom coordinates 
in 3D structure, and develop a novel multiple structure 
alignment algorithm that classifies mirror symmetric 
motifs as right or left handed and finds the optimal 
alignment by minimizing the sum of root mean squared 
distance (RMSD), which is widely used in measuring 
structure similarities in bioinformatics. 

Given n motifs, G1, G2, …, Gn, each with m points 
in correspondence, e.g. pi1, pi2, …, pim for motif Gi, we 

define the average motif G  with points 
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the total number of motif pairs and m is the number of 
points in each motif. Since n and m are fixed, we can 
look for rigid transformations that minimize the 
summation. Wang and Snoeyink [20] observe that the 
sum of all squared pairwise distances between n motifs 
equals n times the sum of squared distances to the 
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To minimize RMSD, we translate and rotate/reflect 
motifs in 3D space to minimize the target function 
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where Ri is a 3×3 rotation/reflection matrix and Ti as a 
3×1 translation vector for motif Gi. Matrix Ri can be 
either a rotation (determinant = 1) or reflection 
(determinant = –1). After minimization, we classify all 
motifs into two handedness groups depending on 
whether reflection matrix gives better RMSD. The 
following algorithm iteratively aligns all motifs Gi for 

(1 ≤ i ≤ n) to G , classifies mirror symmetric motifs, 

and updates the coordinates of G  to minimize RMSD. 
Algorithm: to classify and align motifs, perform the 

following steps: 
1. Move the centroids of all Gi for (1 ≤ i ≤ n) to the 

origin. 

2. Calculate the average motif G  and 
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3. Align Gi for (1 ≤ i ≤ n) to G  by the optimal 
rotation or reflection matrix Ri, calculated by using 
the singular value decomposition (SVD) to 
determine the maximum eigenvalue of the 
covariance matrix N. 

4. Calculate ∑∑
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kiki

new ppRSD
1 1

2
. 

5. If SD – SDnew > ε (1.0×10–5 in tests), update pik = 
Ripik and SD = SDnew, calculate the average motif 

G , and go to step 3; otherwise, go to step 6. 
6. Set Ri = the product of all the rotation or reflection 

matrices for G, and classify Gi as right or left 
handed by the determinants of Ri (either 1 or –1). 

This algorithm extends the algorithm presented by 
Wang and Snoeyink [20], which finds optimal 
alignment in nearly linear time but does not classify 
the motifs into right and left handed. 

In each iteration, steps 1-5 need O(nm) each and 
step 6 needs O(n). The proof of convergence in Wang 
and Snoeyink [20] also applies to this algorithm. In our 
experiments reported below, the number of iterations is 
small and the values reached are stable. 
 

4. Experiments 
 
4.1. Data sets 
 

A list of selected tRNAs and rRNAs used in this 
paper is shown in Table 1. In total we have 20 tRNAs, 
3 5s rRNAs, 2 16s rRNAs, and 4 23s rRNAs. There 
are many examples of same RNA from same species 
binding to different proteins in NDB [19]. We 
manually cleansed the data set with the following 
criteria to remove redundant ones: 

A. From NDB with cutoff date December 22nd, 2005, 
we choose RNA with more than 90% nucleotides 
present. 

B. For duplicated structures (from same species with 
same function), we keep the most recent one. If the 
time is the same, we keep the one with highest 
resolution. 

C. For two structures with more than 70% of sequence 
similarity, we keep the more recent one. If the time 
is the same, we keep the one with higher resolution. 

We keep wild-type RNA and remove mutated RNA 
and synthesized RNA. 

The tRNAs and rRNAs in Table 1 are the only 
available RNA molecules in NDB. Each RNA 
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molecule is represented by a four-letter string, known 
as the protein databank identifiers (PDB ID). The fact 
that we have relatively few structures of rRNAs, some 
of which are large (especially the 23s rRNA), is a 
potential problem. FFSM determines frequent 
subgraphs by the number of graphs (structures) that 
have a subgraph, rather than the number of times a 
subgraph is found. This makes sense for identifying 
common structures in large families of related 
molecules, but we plan in future work to try to modify 
FFSM to count frequency by number of subgraphs for 
RNA. 

Table 1. List of selected tRNAs and rRNAs 

Type Pdb Name 

tRNA 
1ehz, 1yfg, 1fir, 1qf6, 1qu2, 1eiy, 1f7u, 1il2, 
1h4s, 2fmt, 1ivs, 1n78, 1j1u, 1j2b, 1u0b, 
1wz2, 1zjw, 1h3e, 2csx, 1ser 

5s: 
1nkw (chain 9), 1s72 (chain 9), 1yl3 
(chain B) 

16s
: 

1fjg, 1pns 
rRN
A 

23s
: 

1nkw (chain 0), 1pnu (chain 0), 1s72 
(chain 0), 1yl3 (chain A) 

 
4.2. Identifying tertiary motifs 
 

We identify motifs for tRNAs and rRNAs (5s, 16s 
and 23s) in two separate groups. For each group, we 
generate three different graphs using different bin sizes 
for contact edges (3, 4, or 5Å), with cutoff distance 
8Å. This cutoff distance is large enough to capture the 
edges of most known tertiary motifs; we have tried 
larger cutoff distances but found too many contact 
edges, causing “noisy” occurrences of motifs. Lists of 
all the mined motifs can be found at 
http://www.cs.unc.edu/~xwang/RNAGraph/.  

Most of the mined motifs contain 4 nucleotides. 
RNA molecules are quite flexible and large frequent 
motifs are less likely to be found in the same topology. 
In trying larger cutoff distance (e.g. 18Å) for rRNAs, 
we find the largest mined motifs contain 8 nucleotides. 

We compare our results to SCOR [9], which is a 
comprehensive database of RNA motifs identified by 
manual. As mentioned in section 3.2, our focus is to 
identify motifs that are involved in backbone 
interactions within a single chain, which fall into the 
tertiary motifs category in SCOR. Because we use the 
phosphorus, which is between two nucleotides, as one 
of our two points representing a nucleotide, we allow a 
shift of one nucleotide when comparing mined motifs 
to those of SCOR. 

Note that all the motifs discussed in this paper 
involve backbone interactions only. We do not 
consider the backbone-base interactions. The contact 
distances are longer in the backbone-base interactions 
than the backbone-backbone interactions, and the 
number of contact edges and the noise in the data 
(motifs without biological meaning) significantly 
increase. 

For rRNA, we choose a support threshold σ of 70% 
– that is, motifs must occur in 7 of the 9 graphs in the 
family to be considered frequent. The threshold is high 
because the 16s and 23s rRNAs are large and have 
many motifs. For example, for bin sizes of 3, 4, and 
5Å we find 75, 260 and 152 distinct subgraphs in the 
23s rRNA 1s72, respectively. 

The ribose zipper is a tertiary motif formed by 
hydrogen bonds among the 2’–OH groups of sugars at 
two anti-parallel backbone strands. We identify 37 of 
the 43 ribose zippers recorded in SCOR (86%) for 23s 
rRNA 1s72. The number of found ribose zippers using 
different bin sizes is shown in Table 2. Note that all 37 
identified ribose zippers are found with bin size 4Å, 
which occupies 14% of 260 total distinct subgraphs. 

Table 2. Ribose zippers found in 23s rRNA 1s72 

Bin size 3Å 4Å 5Å 

Number of identified ribose zippers 12 37 8 

Total found distinct subgraphs 75 260 152 

There are five subcategories of ribose zippers 
(canonical, single, reverse single, naked and Cis) in 
1s72 and we identify instances of each of them. Figure 
3 shows a canonical ribose zipper (nucleotides 1078-
1079 and 2077-2078, 23s rRNA 1s72). 

 
Figure 3. Canonical ribose zipper (nucleotides 

1078-1079 and 2077-2078, 23s rRNA 1s72). Yellow 
ball is phosphorus, red ball is oxygen, and blue 

line is hydrogen bond. 
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Figure 4. U turn motifs form by 5 continuous 
nucleotides (nucleotides 394-398, 23s rRNA 
1s72), found by bin size = 4Å. Yellow ball is 

phosphorus and red ball is oxygen 

 
Figure 5. Tertiary interaction formed by a 

hydrogen bond (blue line) between two sugars 
and a hydrogen bond (blue line) between sugar 
and phosphorus (nucleotides 66-67 and 107-108, 

23s rRNA 1s72), found by bin size = 3Å. 

 
We have also identified motifs classified as 

secondary motifs in SCOR. For example, Figure 4 
shows a U-turn motif formed by five contiguous 
nucleotides (394-398); our method identifies four of 
them (nucleotides 394-395 and 397-398, 23s rRNA 
1s72). 

By carefully checking the mined motifs that do not 
match any existing motifs in SCOR, we find some 
interesting structures that could be good candidates for 
tertiary motifs. For example, Figure 5 shows a tertiary 
motif with one hydrogen bond between two sugars and 
another hydrogen bond between sugar and phosphorus 
(nucleotides 66-67 and 107-108, 23s rRNA 1s72). 

For tRNA, we choose a support threshold σ of 20%, 
that is, motifs must occur in 4 of the 20 graphs in the 
family to be considered frequent. The threshold is 
much lower because tRNA is quite flexible and is 
much smaller than the large rRNA. We find several 
good candidates for tertiary motifs, which are available 
at http://www.cs.unc.edu/~xwang/RNAGraph/. 

For the 20 tRNAs we choose, SCOR records only 5 
tertiary motifs in 3 tRNA: 1ehz, 1yfg and 1fir. All the 
tertiary motifs are large (the smallest having 7 
nucleotides), and no two tertiary motifs share the same 
topology. So for tRNA, we cannot compare our mined 
tRNA motifs with SCOR, because the support 
threshold of tertiary motifs of tRNAs in SCOR is too 
low (σ < 5%). 
 
 
 
 
 
 

 
4.3. Consensus motifs 
 

We apply the multiple structure alignment 
algorithm to classify the structures of found tertiary 
motifs and generate consensus motifs. The alignment 
is done on a laptop with Pentium M 1.8GHz CPU and 
784M memory. Table 3 shows the performance of 
aligning 12 motif groups by bin size = 4Å. The 
running time is collected by 1,000 tests on each motif 
group. We can see that when we classify mirror 
symmetric motifs, the RMSD is significantly 
decreased, along with the number of iterations and 
running time. 

All the motif groups contain mirror symmetric 
motifs and we achieve better alignment when we use 
our algorithm to classify and separate motifs by 
handedness, as shown in Figure 6. As we have 
verified, the handedness has no relation with the 
functions of motifs and the type of motifs. For 
example, all five types of ribose zippers can occur in 
both right and left handedness. But it is an interesting 
problem whether all the tertiary motifs are independent 
of handedness. 
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Table 3. Performance for 12 mined motifs by bin size = 4Å 

Motif # of subgraphs Motif Motifs with reflection Right handed Left handed 
ID all, 1s72, zipper RMSD RMSD, iterations, time(s) # RMSD # RMSD 
1 160,     19,     0 4.11 3.52,    6,   0.095 ± 0.005 81 3.44 79 3.47 
2 202,     45,     7 3.93 3.53,    8,   0.158 ± 0.004 106 3.38 96 3.44 
3 38,       8,     0 4.40 3.64,    4,   0.016 ± 0.005 20 3.56 18 3.72 
4 10,       1,     0 3.54 3.35,    5,   0.005 ± 0.005 6 2.95 4 2.78 
5 79,     21,     0 4.50 3.91,    5,   0.039 ± 0.003 41 3.74 38 3.93 
6 53,     10,     0 3.81 3.60,    8,   0.041 ± 0.003 28 3.49 25 3.59 
7 27,       7,     0 3.73 3.36,    7,   0.018 ± 0.004 15 3.29 12 3.04 
8 396,   116,     5 4.32 3.80,    7,   0.288 ± 0.013 219 3.76 177 3.79 
9 28,       7,     0 4.40 3.94,    4,   0.011 ± 0.004 15 3.83 13 3.92 
10 16,       5,     0 3.94 3.85,    9,   0.014 ± 0.005 10 3.88 6 3.50 
11 353,     76,   11 3.89 3.76,  16,   0.950 ± 0.576 192 3.54 161 3.72 
12 361,     86,   24 4.05 3.56,    8,   0.382 ± 0.230 218 3.51 143 3.54 

  
6a. Aligning right hand occurrences of motif #12 6b. Aligning left hand occurrences of motif #12 

  
6c. Consensus motif for right handed 

occurrences 
6d. Consensus motif for left handed 

occurrences 

Figure 6. Example of aligning instances of motif #12. Two points in each of the four nucleotides are 
colored as yellow, red, green and blue. Blue line is backbone edges and black line is contact edges. 

 
4.4. Statistical analysis of consensus motifs 
 

Deriving the statistical description of the aligned 
motifs is an intriguing question that has significant 
theoretical and practical implications. We test the null 
hypothesis that the distances of n atoms at a fixed 

position k to the average kp  are consistent with the 

distances from a 3D Gaussian distribution. The 
Gaussian is most used distribution function due to the 
central limit theorem of statistics, and previous studies 
hint that Gaussian is the best model to describe the 
aligned structures [21]. We adopt the Quantile-

Quantile Plot (QQ plot) procedure [22] to test the 
fitness of our  
 
 
 
data to the 3D Gaussian model. Figure 7a shows QQ 
plot for phosphorus of first node in motif #12. The y-
axis is the distance from each motif to the average for a 
fixed position and the x-axis is the quantile data from 
3D Gaussian. The correlation coefficient R2 = 0.993, 
which suggests that the data fits a 3D Gaussian model 
reasonably well. We carried out the same experiments 
for all the positions and the collected histogram of the 
correlation coefficient R2 is shown in figure 7b. We 
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identify that more than 88% of the positions we check 
have R2 > 0.9. 

 
7a. QQ plot for phosphorus of first node in motif 

#12 

 
7b. Histogram of R2 for all aligned positions 

Figure 7. 3D Gaussian distribution analysis of the 
distances from each point to average motif 

 

5. Conclusion and future work 
 

We present an automated method of mining graph 
database to identify tertiary motifs in RNA structures. 
In our method, we defined a graph representation of 
RNA molecules and applied frequent subgraph mining 
algorithm for mining tertiary motifs. In post-processing 
of the tertiary motifs, we develop a multiple structure 
alignment algorithm for classifying mirror symmetric 
motifs and finding consensus motifs, and show that the 
aligned motifs follow 3D Gaussian distribution model. 
Our results show that the automated method can 
discover tertiary motifs in RNA molecules, despite 
limitations on the number of available RNA structures, 
and the fact that we included RNA only, but not the 
proteins that rRNA, in particular, interacts with.  

Our plans for future work include extending FFSM 
to count frequency by subgraphs, considering RNA + 
protein, and finding fingerprint (i.e. distinct motif) 
candidates for RNA families. We also plan to 
investigate evolutionary relations among the tRNAs. 
Statistical analysis of the aligned RNA subgraphs is 
intriguing and we plan to investigate how Gaussian 

distribution model may help cluster RNA tertiary 
motifs. 
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