
 

Figure 1. Above we illustrate the range of motions typical of a single 
pose cluster, or local linear model. A mean pose, shown as the center 
of each progression and four orthogonal axes of variation specify this 
model. The range of motion along each axis is illustrated in both 
directions from the mean. 
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ABSTRACT 

We demonstrate a data-driven approach for representing, 
compressing, and indexing human-motion databases. Our 
modeling approach is based on piecewise-linear components that 
are determined via a divisive clustering method. Selection of the 
appropriate linear model is determined automatically via a 
classifier using a subspace of the most significant, or principle 
features (markers). We show that, after offline training, our model 
can accurately estimate and classify human motions. We can also 
construct indexing structures for motion sequences according to 
their transition trajectories through these linear components. Our 
method not only provides indices for whole and/or partial motion 
sequences, but also serves as a compressed representation for the 
entire motion database. Our method also tends to be immune to 
temporal variations, and thus avoids the expense of time-warping. 

Categories and Subject Descriptors 
I.2.10 [Vision and Scene Understanding]: Motion; H.3.1 [Content 
Analysis and Indexing]: Indexing Methods. 
Keywords 
Motion capture, piecewise linear modeling, motion compression, 
motion database indexing. 

1. INTRODUCTION 
Motion capture, or mocap, is an important new technique for 
capturing and analyzing human articulations. At present, mocap is 
widely used to animate computer graphics figures in motion 
pictures and video games. Mocap is also used for analyzing and 
perfecting the sequencing mechanics of premiere athletes, as well 
as monitoring the recovery progress of physical therapies. Huge 
collections of mocap data are rapidly coming available and there 
is an immediate need for tools that index, query, compress, 
annotate, and organize these datasets. 

Our approach to this problem is to build an implicit model of 
every distinct body pose seen in a motion database, and to cluster 

these poses into groups that can be effectively interpolated using 
simple linear models. Motion sequences can then be classified and 
indexed by the trajectories that they take through the set of pose 
clusters.  The linear models also significantly reduce the storage 
requirements of the database. 

A common form of motion capture uses optical sensing of 
strategically placed targets, known as markers. These markers are 
placed at specific positions usually at, or near, boney regions. 
Mocap uses triangulation from multiple cameras to estimate the 
3D position of each marker. Raw marker data exhibits 
considerable redundancy that is attributable to a variety of real-
world constraints, including kinematic, dynamic, and 
neurophysical limitations. Our approach exploits this redundancy 
by using simple models to describe groups of similar poses.  

Our modeling approach partitions all pose instances in the 
motion database into a hierarchy of low-dimensional local linear 
models. We represent data sequences by their transitions through 
these local linear models, which we call a cluster transition 
signature. This signature acts as a simplified representation of the 
entire sequence, and it is used for inter-sequence comparisons and 
sequence indexing. The resulting indexing structure also supports 
variable error tolerances in the matching process, which provides 
more flexibility and control. 
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2. PREVIOUS WORK 
Many methods have been applied to human-motion modeling 
[7][6][2][9]. Motion indexing [5] is an important step in creating 
motion databases, supporting queries and other motion database 
manipulations.   

Piecewise linear regression [1][4][8][10] has been used for 
approximating models to within a specified error tolerance using a 
collection of local linear models.  Our modeling approach is of 
this class. 

Principal Feature Analysis (PFA) [3] is a method to select 
the most informative subset of features. In our work, we use PFA 
to identify principal markers, and employ these markers as 
parameters in our model. 

3. PRINCIPAL MARKER SELECTION 
The first step of our model construction process determines the 
subset of database features used to construct the local linear 
model classifier. PFA offers a way to systematically determine a 
subset of features that characterize the remaining features to 
within a specified tolerance [3]. We call this subset the principal 
features.  

A body pose is specified by a set of marker positions, each 
with three spatial coordinates (x, y, z).  In our case, the set is 
composed of 41 markers representing each pose. A motion 
sequence is a time-series of such poses. We normalize each pose 
by translating a common marker to the origin, and rotate the 
model so that each pose has its left-to-right and head-to-toe 
orientations along specific axes. We treat each normalized pose as 
a single high dimension vector. In this first stage, we identify a 
subset of markers that best explain the variability seen in the 
database. We have adapted PFA to select this principal marker set 
as follows: We treat motion-capture data as an f-by-N matrix, D, 
where f is the number of features (markers times 3) and N is the 
number of poses. Let WAD q=~  represent an approximation of D 
where Aq is the matrix of the first q principal components deduced 
from Principal Component Analysis (PCA), and W is the weight 
matrix of the data points in the principal component space. Let Vi 
∈ Rq, i=1:f  be the rows of Aq.. If two features i and j are highly 
correlated, they will have similar absolute weights, i.e. |Vi | ≈ |Vj |.  

We first select a sufficiently small set of leading 
eigenvectors sufficient to satisfy a desired reconstruction error 
tolerance. Next, K-means clustering is performed on the set of 
absolute-weight vectors with K slightly greater than the number of 
the leading eigenvectors. Finally, we apply a heuristic to weight 
the importance of the three features from each marker and select a 
minimal set of the most important markers satisfying a cover of 
all clusters generated in the K-means clustering step described 
above.   

4. PIECEWISE-LINEAR MODELING 
We next construct a piecewise-linear model using a divisive 
clustering approach that, at each level, attempts to obtain a best-fit 
linear model of a user-specified dimension, d, and error tolerance, 
ε. This best-fit model is constructed via successive applications of 
PCA. If, at any level in the hierarchy, the variance of all data 
points in a cluster can be explained by a d-dimensional linear 
model to within ε, the cluster is considered a leaf in the modeling 
hierarchy and a local-linear mapping function is computed for the 
cluster. Otherwise, the cluster is split into two children clusters by 
performing a K-means clustering, with K = 2, based on the subset 

of principal features found in Section 3. The centroids found 
during this process are saved for later use as a decision tree 
classifier that maps input poses to their appropriate local linear 
model. We adopt a fuzzy partitioning scheme that distributes data 
points near the decision boundary to both child clusters, thus 
improving the reconstruction continuity at cluster transitions. This 
is particularly important for human motion modeling because we 
are very sensitive to these discontinuities, which are seen as 
jerkiness. The splitting process continues until all clusters satisfy 
the desired dimensionality constraint and error tolerance. Given a 
feature vector of principal markers s, a classifier is used to find 
the appropriate cluster. Then the vector of the non-principal 
marker features S is estimated by a linear-mapping function  

S = T s                         (1) 
where T is a least-squares mapping function computed using the 
training set.  

5. APPLICATIONS 
Our model is useful for many human motion related modeling and 
searching applications. In the following subsections, we will 
describe its utility in motion compression, estimating human 
motion from a reduced marker set, and motion database indexing. 

5.1 Motion Compression 
Our piecewise-linear modeling approach provides a compact 
model of the entire database accurate to within a defined error 
tolerance. Given N poses, each with f features, we construct a 
model with k-dimensional piecewise-linear components. The 
original data points in each cluster are accurately represented by 
the cluster mean from one of C clusters, and the projection of 
each pose onto its most significant k eigenvectors. The resulting 
size of the entire reduced dataset would be Cfk + Nk, which 
represents a considerable compression of the original database 
size, Nf. Typical values for C, f, k, and N, are 8,000, 62, 4, and 
2.5M respectively.  

5.2 Estimating Human Motions from a 
Reduced Marker Set 
Motions that were not a part of the training set can also be 
estimated with our modeling approach. Moreover, we require 
only a reduced marker set, the principal markers, to estimate the 
unseen pose. Given a configuration of principal markers, we first 
find the most appropriate locally linear model, i.e. cluster, using 
the decision tree constructed during the model’s construction. We 
estimate the remaining markers using the linear mapping function 
(Equation 1) associated with the cluster. 

5.3 Motion Database Indexing 
Our model also provides effective indexing of a motion database. 
Different motion sequences typically reside in distinct subsets of 
the clusters and transit among those clusters with distinctive 
trajectories. We treat the cluster transition trajectory of each 
motion as its signature and use it for indexing and searching the 
motion database. We represent the cluster transition trajectory of 
a motion sequence by the IDs of the clusters that it transits 
through. 

Given a list of pose-cluster indices for a motion sequence, 
we first divide the index list into a number of segments, with each 
segment sharing the same cluster index. We then collapse runs of 



 

Figure 2. The gold figure represents actual pose data. The cyan 
figure shows our model’s pose estimate based on the principal 
markers, which are shown as white disks. The green disk indicates the 
origin marker. An RMS error meter for the entire marker set appears 
above with a full-scale value of 50mm/marker. The black tick marks 
denote cluster transitions. 

the same cluster to form the cluster transition signature for all 
motion sequences in the database. 

In order to query the motion database for the k-nearest 
subsequences resembling a specified query motion sequence, we 
first compute the query sequence’s cluster transition signature and 
search for exact and approximate string matches between cluster 
transition signatures. 

6. DEMONSTRATION 
We demonstrate the utility of our modeling approach for motion 
compression, modeling unseen motions, and motion database 
indexing. The motion data used in our experiments comes from 
Carnegie Mellon University’s Graphics Lab motion-capture 
database available at http://mocap.cs.cmu.edu.  

Four data sets are used in the demonstration. The first two 
are of single-subjects undergoing varied complex motions. The 
third set is composed of multiple subjects all engaged in various 
walking motions. The first single-subject data set is composed of 
eight motion sequences— including walking, punching, running, 
bending, washing, and three sword-play sequences. The second 
single-subject dataset has 57 motion sequences with many lower-
body movements, such as walking, running, and jumping. The 
multi-subject data set has 57 different, and widely varying, 
walking sequences from 7 different subjects. We use all three data 
set to build a model for demonstrating motion compression and 
motion database indexing. However, in demonstrating motion 
estimation, we used 80% of data for training and held out the 
remaining 20% of the data for testing. The fourth data set includes 
all the data from CMU’s Graphics Lab motion-capture database, 
with totally over 2.5M frames from 1,600 motion sequences. This 
dataset is used for motion database indexing demonstration. 

After training, each frame is compressed by retaining only 
the projections of each pose onto the eigenvectors of their 
assigned clusters. These can be used to recover an approximation 
to any pose in the original database, and, the reconstruction error 
is to within the preset error tolerance used when specifying the 
model. Our demonstration shows that the recovered motions from 
the compressed data alongside the original motions.  

When given new motion sequences, not used in the training 
set, we are able to estimate accurate full-body poses using only 

the set of principal markers. We demonstrate our model’s ability 
to synthesize these new motions by displaying estimated motions 
alongside the original sequences. Figure 2 shows a snapshot from 
our motion viewer estimating an unseen sequence.  The 
reconstructed motion is both metrically and visually accurate.   

To demonstrate motion indexing, we use queries composed 
of motion subsequences not in the database. Our demonstration 
shows the query motion sequences alongside with the k most 
similar motion sequences returned. The response time of the 
query is interactive and the results are accurate, thus illustrating 
that our model is an effective index of the motion database.  

7. CONCLUSIONS 
We have presented a piecewise-linear modeling approach to 
human motion data parameterized by a subset of principal 
markers. Our method depends on a database of motion capture 
data, from which it automatically determines a set of principal 
markers, and then constructs a hierarchical model. The processes 
of model construction and data query are efficient and scale well 
with data size and dimensionality. We have demonstrated our 
model’s ability to predict the complete configuration of a human 
model based on a subset of motion capture information as well as 
compressing and indexing motion databases.  
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