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Abstract 

Motion capture data from human subjects exhibits considerable 
redundancy. In this paper, we propose novel methods for 
exploiting this redundancy. In particular, we set out to find a 
subset of motion-capture markers that are able to provide fast and 
high-quality predictions of the remaining markers. We then 
develop a model that uses this reduced marker set to predict the 
others. We demonstrate that this subset of original markers is 
sufficient to capture subtle variations in human motion.  

We take a data-driven modeling approach to learn piecewise local 
linear models from a marker-based training set. We first divide 
motion sequences into segments of low dimensionality. We then 
retrieve a feature vector from each of the motion segments and 
use these feature vectors as modeling primitives to cluster the 
segments into a hierarchy of local linear models via a divisive 
clustering method. The selection of an appropriate linear model 
for reconstruction of a full-body pose is determined automatically 
via a classifier driven by a reduced marker set. After offline 
training, our method can quickly reconstruct full-body human 
motion using a reduced marker set without storing and searching 
the large database. We also demonstrate our method’s ability to 
generalize over a variety of motions from multiple subjects. 
 
Categories and Subject Descriptors (according to ACM CCS): 
I.3.7 [Computer Graphics]: Three-dimensional Graphics and 
Realism ⎯ Animation; I.2.10 [Vision and Scene Understanding]: 
Motion. 

Keywords: motion capture, piecewise linear modeling, principal 
feature analysis, dimensionality reduction 

1. Introduction 
Motion capture, or mocap, is a prevalent technique for capturing 
and analyzing human articulations. Mocap has been widely used 
to animate computer graphics figures in motion pictures and in 
video games. However, most motion capture systems are 
cumbersome, expensive, intrusive, and time consuming. These 
drawbacks may not only prevent mocap data from being easy to 
use, but they also might make it impractical for other potential 
applications. 

 
Figure 1: Shown above are the principal markers selected from 2 
motion data sets. The principal markers are shown in black and 
the estimated markers are shown in red. 

A common form of motion capture uses optical sensing of 
strategically placed markers. The subject often wears a black 
leotard in order to enhance the marker’s contrast. A mocap system 
uses triangulation from multiple cameras to estimate the 3D 
position of each marker. Most often, the marker positions are 
converted to joint angles for an assumed skeletal model. Usually 
40 to 50 markers are required to capture a motion sequence. More 
accurate motion recovery involves many more markers.  

In this paper, we use a small set of markers, i.e., principle markers 
(Figure 1), but are still able to quickly generate plausible human 
motions on a frame-by-frame basis. This cheaper and faster 
motion capture system would benefit many applications, such as 
computer games and virtual reality environments where it is 
desired to have interactive, intuitive and accurate control of 
characters/avatars. In those applications, measurements from a 
few markers can be effectively used as control signals. Instead of 
wearing a tight Leotard with markers all over his/her body, a user 
may only need to wear normal cloth with only a few markers 
mounted on non-intrusive positions. Less mounting time also 
makes mocap feasible for more applications, since less overhead 
time is spent between users. Fewer marker measurements also 
reduce ambiguities during post-processing of mocap data, and 
thus require less human intervention.  

There is considerable evidence that raw marker data significantly 
over-specifies the actual range of realistic human motions, and 
thus consistently exhibits redundancy and local linearity [Barbic 
et al. 2003, Grochow et al. 2004, Safonova et al. 2004, Chai and 
Hodgins 2005]. Motion data arising from similar motions can 
often be described by the same local linear model, which is valid 
for a limited range of articulation. We propose a data-driven 
approach to extract piecewise local linear models via divisive 
clustering from a motion database. We do not assume any explicit 
model (e.g., skeleton model). Instead, we use an implicit data-
driven model based on dimensionality reduction and feature 
selection methods developed for data mining. Secondly, we 
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choose to carry out the modeling based on motion segments, 
instead of individual poses, i.e. frames. The reason is that a long 
and complex motion sequence can be considered as a 
concatenation from much simpler motion segments that often lie 
on a low dimensional linear space [Safonova et al. 2004; 
Grochow et al. 2004]. Motion segments provide a more 
appropriate resolution in terms of encapsulating the essence of 
human motion while retaining temporal relationship among 
neighboring poses. Finally, our model is very compact and 
completely eliminates the need for a motion database after offline 
training. It is also very fast in estimating motions from a reduced 
marker set. As the experiments show in later section, we can 
reconstruct human motion frame-by-frame at a rate of over 600 
frames per second. Thus, our method shows great promise for use 
in most interactive motion applications.  

The ultimate goal of our work is to provide fast and plausible 
estimates of a full-body pose based on a small marker set. We 
eventually hope to employ such methods for generating self-
avatars for virtual environments (VEs), where the combined 
encumbrances of both head-mounted display and a full mocap 
setup are impractical. However, it is conceivable that a participant 
might undergo a short mocap session prior to entering a VE. This 
training data would then be used to estimate a plausible avatar 
from a significantly reduced marker set.  An even better approach 
would allow a generic human-motion model to provide the pose 
estimates, perhaps adapting to the specific participant over time. 
In this paper we present our preliminary efforts to test the 
potential of such an approach. 

2. Related Work 
There has been extensive research on reusing motion capture data 
in animations, movies and interactive games. Most of them were 
on synthesizing motions by reordering the motion clips [Kovar et 
al. 2002; Arikan and Forsyth 2002; Lee et al. 2002; Pullen and 
Bregler 2002; Arikan et al. 2003], interpolating between motions 
[Rose et al. 1998; Kovar and Gleicher 2004, Mukai et al. 2005] 
and constructing models from the mocap data [Brand and 
Hertzmman 2000; Li et al. 2002]. On the other hand, Lee et al 
[2002] and recently Chai and Hodgins [2005] investigated the 
possibility of using low dimensional signals captured from human 
motions to control the characters/avatars. We also propose 
extracting a set of the most informative markers and their 
measurements, which can be used to drive an interactive 
application.  
High-quality human motion data are very expensive to create and 
manipulate. A number of researchers have investigated the 
problem of inferring plausible human motion from a reduced 
measurement set. A common approach uses a small set of 
electromagnetic sensors to drive a virtual human model [Badler et 
al. 1993; Semwal et al. 1998; Kovar and Gleicher 2004; Grochow 
et al. 2004]. Recently Chai and Hodgins [2005] proposed a 
method for performance animation from a few marker 
measurements as control signals. Most of these methods typically 
assume prior knowledge of a skeleton model whose parameters, 
such as limb length, needs to be either accurately measured or 
estimated from the joint location [O’Brien et al. 2000]. They also 
rely on inverse kinematics to estimate the skeleton joint-angles 
from the constraints implied by the actual measurements. Various 
optimization and smoothing criteria are introduced to synthesize a 
full-body pose. Moreover, the selection of reduced measurement 

set is often determined by trial and error or intuition. We utilize 
Principal Feature Analysis (PFA) algorithm [Cohen et al. 2002] to 
systematically find a reduced marker set that maintains the most 
information while having less information overlapping among the 
selected markers. We also directly wok with marker data without 
assuming any skeleton model that is required for joint-angle-
based data analysis. It is more natural to perform pose-to-pose 
distance calculations based on Euclidean distance metric for 
marker-based data than for the joint-angle-based data. For 
example, a small change in the angle of a shoulder may alter the 
shape of a pose much more than a similar change in a toe.  As 
shown by Forbes and Fiume [2005], weighted joint-angle based 
representation of motion is more appropriate for measuring the 
similarity of poses. However, it is a nontrivial problem to design 
an appropriate weighting scheme for all joint angles. We apply 
linear regression instead of nonlinear optimization in 
reconstructing full-body poses from a reduced marker set. This 
results in faster reconstruction because the linear regressors are 
trained offline, and the initialization and convergence problems 
with nonlinear optimization may be avoided. 

There is a significant redundancy in motion data due to the spatial 
and temporal coherence in human behaviors. The recent work of 
Safonova et al. [2004] and Grochow et al. [2004] demonstrates 
that specific simple motions can be accurately described via a 
low-dimensional parameterization based on dimensionality 
reduction techniques. Safonova et al. [2004] presented a method 
to synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. Grochow et al. [2004] 
proposed an inverse kinematics approach that applied a global 
nonlinear dimensionality reduction on human motion data using a 
Gaussian Process Latent Variable Model [Lawrence 2004]. Their 
approaches work well with a small homogenous data set. 
However, for a large motion dataset with various types of 
motions, a global modeling approach like theirs might be very 
slow and might not suit the dataset well.  We propose a piecewise 
linear approach to model motions as a hierarchy of local linear 
models and is better suited to describe a large heterogeneous 
motion dataset.  The local linear modeling approach for 
dimensionality reduction was considered by Bregler and 
Omohundro [1995], Hinton et al. [1995] and further developed in 
Chai and Hodgins [2005].  Chai and Hodgins [2005] utilized 
temporal coherence of the control signals to accelerate the nearest 
neighbor search for similar poses and dynamically construct a 
local linear model for the pose to be estimated. In contrast, we 
first segment motion sequence into segments of much simpler 
human behaviors that can be described by local linear models. We 
then identify those local linear models with a clustering method.   

There have been studies on motion segmentation. Among them, 
Rose et al. [1998] segmented a motion sequence into simple 
motion strokes characterized by the abrupt change of velocities 
during transitions in order to retrieve example motions. Then new 
motions can be synthesized by interpolations between example 
motions with radial basis functions in the parameter space.  
Barbic et al. [2003] presented three methods to segment a motion 
sequence into segments of distinct behaviors. In contrast, we not 
only segment motion sequences into short and simple motion 
segments using the probabilistic principal component analysis 
(PCA) approach of Barbic et al. [2003], but also model motion 
segments with local linear models and cluster them by their 
similarities.  In studying similarities among motion sequences, 



Kovar and Gleicher [2004] described a method for automatically 
search for logically similar motion in a motion database by 
finding ``close'' motions and then uses them as intermediaries to 
find more distant motions. We construct a model hierarchy of 
motion segments, with similar motion segments at the same or the 
neighboring leaf nodes.  

In recent years, there have been studies on markerless motion 
capture in computer vision community, although so far the 
proposed methods are still generally slower and less accurate than 
a marker-based approach. Chu et al [2002] proposed using 
nonlinear spherical shells to extract a skeleton model and 
estimating joint angles from volume data of motion sequences. 
They applied a global nonlinear dimensionality reduction 
technique, Isomap [Tenenbaum et al. 2000], for both the removal 
of pose-dependent nonlinearities and extractable skeleton curve 
features for a captured human volume. Their procedure models 
one motion sequence for a specific subject at a time. On the other 
hand, our method can model a heterogeneous motion data 
consisting of various human behaviors from different subjects at 
the same time. Given a new motion sequence, we can quickly use 
an appropriate model to fiducially estimate the full-body poses. 
Agarwal and Triggs [2004] proposed a global nonlinear 
regression method (relevance vector regression) to estimate 3D 
human pose from silhouettes.  In comparison, we first construct a 
hierarchy of local linear models corresponding to low-
dimensional linear spaces, and then apply simple linear regression 
within each of the local linear models. As the size and 
heterogeneity of motion data increases, the piecewise local linear 
modeling approach would be more feasible and efficient than the 
global modeling approach. 

3. Proposed Method 
Our goal is to estimate human motions from a small set of the 
most informative markers, i.e. principal markers. We give a brief 
overview of our method here (Figure 2), with more details 
explained later.  

Principal marker selection. Principal component analysis (PCA) 
[Roweis 1997] is one of the most popular methods for 
dimensionality reduction of a feature set. However, the principle 
components in the lower dimensional space are latent variables. 
We want to choose a subset of the original features, i.e. principle 
markers that contain most of the essential information. We adapt a 
PCA-based Principle Feature Analysis method [Cohen et al. 
2002] to select a principle marker set. 

Piecewise linear modeling. We first apply the Probabilistic PCA 
(PPCA) [Tipping and Bishop, 1999] to divide a motion sequence 
into simple motion subsequences of distinct behaviors and local 
linearity. These subsequences are referred to as motion segments. 
We then characterize each motion segment by a feature vector 
and use them as modeling primitives to construct a hierarchy of 
local linear models via a divisive clustering method. Similar 
motion segments are partitioned into the same cluster leaf that 
corresponds to a particular local linear model. Poses in a leaf 
cluster are used to compute a linear mapping function from a set 
of principal markers to the rest markers.  

Training classifier. In order to use the local linear models and 
the associated mapping functions to estimate full-body poses from 
a principle marker set, we need to identify the most appropriate 

model with the data only on principle markers. A classifier is 
trained for this task. We label the poses with a local linear model 
ID and train a Random Forest classifier [Breiman 2001]. Random 
Forest is a well justified and widely used classification and 
regression method in machine learning. 

Motion reconstruction. Given a new motion sequence with only 
measurements from the principal markers, we associate each 
frame with the most appropriate local linear model using the 
Random Forest classifier and then use the associated mapping 
function to reconstruct full marker positions of the poses from the 
principal marker set. We smooth out possible discontinuities due 
to piecewise linear modeling by using a mixture of linear models 
for the poses at the transition between two linear models. 

 
Figure 2: Human motion estimation process. 

3.1 Principal Marker Selection 
Throughout the paper, we treat each pose of motion data as a data 
point represented by a 3m-dimensional column vector, y∈R3m, 
containing 3D marker positions of m markers. Thus a motion data 
set with N pose instances can be represented by a 3m×N data 
matrix Y=[y1, y2, …, yN], where yi is a column vectors of marker 
positions (i=1,…, N). For convenience, each of the 3D marker 
positions is referred to as a feature and then each pose can be 
considered as a high-dimensional data point with 3m features.  

 
Figure 3: Percentage of variance explained by the principal 
components of a motion data set composed of 12670 frames with 
40 markers (120 features). Fewer than 20 principal components 
are needed to reconstruct the original feature set to with 99% 
accuracy. 
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Motion data has significant redundancy, which can be 
demonstrated with PCA. Figure 3 shows the cumulative variance 
explained by the principal components for a data set comprised of 
a variety of human behaviors, including walking, running, 
bending, and washing. The first 10 principal components cover 
95% of the variability, implying that a data set like this, with 40 
markers (120 features), has only slightly more than 10 degrees of 
freedom. For selection of principle markers, an approach like PFA 
[Cohen et al. 2002] is very appealing, since it has comparable 
performance to PCA but selects a set of original features with a 
more intuitive interpretation than the principle components 
derived in PCA. PFA treats each feature as an individual measure, 
even though the three features of each marker are always 
measured together. So we design an algorithm based on PFA, but 
which selects a minimal set of principal markers instead of 
principal features in PFA. 

3.1.1 Selection of principal markers  
The basic idea of PFA is to exploit the structure of the principal 
components from PCA, and choose the principal features, which 
retain the essential information, in the sense of both maximizing 
variability of the features in the lower dimensional space and 
minimizing the reconstruction error. We first use PFA to partition 
all the features into clusters. Then we impose some criteria to 
weight the importance of each marker and select a minimal set of 
the most important markers satisfying a cover of all clusters of 
features. The steps of principal marker selection can be 
summarized as follows: 

1. Run PCA on the covariance matrix of data Y. 
2. Construct a 3m × q matrix Aq by selecting the q 

dominant eigenvectors that are sufficient to satisfy a 
desired reconstruction error tolerance. The rows of Aq 
form the weight vectors, i.e. V1, …, V3m, Vi∈Rq 

(i=1:3m), which are the projections of feature variables 
on the q leading principle components. 

3. Take element-wise absolute value of Vi to obtain 
absolute weight vectors |Vi|∈Rq and use K-means 
clustering algorithm to partition the 3m absolute weight 
vectors to K clusters with K slightly greater than q. 

4. Weight markers according to their importance. Remove 
the least important markers as long as every cluster is 
still covered by at least one marker after the removing. 

A key rationale behind the feature clustering method is the 
realization that the rows of the matrix Aq can be used to 
effectively characterize the relationships between the features. In 
other words, if two features are highly correlated, they will have 
similar absolute value weight vectors. 

We use the number of unique clusters containing a marker feature 
to define the importance of a marker. That is to say, a marker that 
appears in more distinct clusters is considered to be more 
important. To break ties between markers, we prefer those whose 
sum of the square distances from the marker’s features to their 
cluster mean is minimal. Markers are sorted in the order of least 
importance. We continue removing the least important markers as 
long as every cluster is still covered. This process is repeated until 
no more markers can be eliminated.  

3.1.2 Stability of Principal Marker Selection 
K-means clustering is an iterative algorithm whose result depends 
on the choice of initial cluster means. However, it is our 

experience that the resulting clusters and the set of principal 
markers are surprisingly consistent and insensitive to the initial 
settings. In Figure 4 we illustrate a frequency histogram of the 
selected principal markers from 1000 runs of our principal marker 
selection algorithm on a motion data composed of 40 markers and 
12,670 frames. All seven principle markers are consistently 
selected in more than 94% of all runs. 

Stability of Principal Marker Selection

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Marker

Fr
eq

ue
nc

y

 
Figure 4: Frequency histogram of selected principle markers from 
1000 runs. 

3.2 Piecewise linear modeling 
We propose a piecewise linear modeling approach to partitioning 
motion data into a collection of local linear models using motion 
segments as the modeling primitives. By keeping poses within 
one motion segment in one local linear model, we retain the 
temporal relationship among adjacent homogenous poses. 
Otherwise, poses from different behaviors could be clustered 
together, while temporally adjacent frames are clustered into 
different clusters, resulting in poor clustering and unnecessary 
model transitions that may cause jerkiness during the motion 
reconstruction phase. 

3.2.1 Local linearity of human motions 
Motion capture data exhibits a great deal of local linearity. 
Motion data of a specific behavior lies in a low-dimensional 
linear space. For example, motion poses of walking sequences 
comfortably fall into a two-dimensional linear space with over 
90% of the variance covered by the two leading principal 
components.  As Figure 5 shows, the dimension remains at two 
when we combine all the walking sequences, although the 
variance covered by the first two principal components dips a 
little bit due to stylish differences among sequences. This 
observation supports our hypothesis that human motion capture 
data lie in a piecewise local linear space, with motions of the 
same behavior or similar behavior (e.g., slow running and fast 
running) sharing the same local linear space. 

3.2.2 Motion segmentation and characterization 
Segmenting motions into simple and distinct behaviors may 
considerably facilitate the identification of local linear models. 
We choose the probabilistic PCA (PPCA) approach to 
segmentation [Barbic et al. 2004] since it was demonstrated to 
work fast and well with motion data and is easy to implement. 
PPCA treats motion data as an ordered sequence of poses (data 
points) and segments the motion where there is a local change in 
the distribution of the poses. In practice, a multivariate Gaussian 
distribution is assumed for a distinct behavior’s poses, and PPCA 



is used to estimate their distribution. Motion segments from the 
same behaviors should have data rising from similar Gaussian 
distributions and sharing the same low dimensional space.  
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Figure 5: Percentages of variances explained by the principal 
components for different walking sequences. The curve in black 
with dots is for all the walking sequences combined, the rest 
curves with circles are for individual walking sequences of 
different styles. 

Segmentation technique can divide complex sequences into 
simple distinct behaviors but provide no information on which 
segments are more similar to each other. We present here a 
divisive clustering method to identify and group segments that 
can be represented in the same low dimensional space, or in other 
words, by the same local linear model. Covariance matrix Σ and 
mean vector µ can uniquely determine a Gaussian distribution, we 
therefore form a feature vector, f = [wvT, (1-w)µT]T, to 
characterize each of the motion segments, where v is a column 
vector consisting of the scaled variances and covariances. These 
values are retrieved by concatenating the elements in the upper 
triangle and the main diagonal of Σ, and w is a weighting factor to 
balance the importance between the covariance matrix and the 
mean vector. If poses are data points in d-dimensional space, Σ is 
a d×d matrix and µ is a d×1 vector, then we have a d(d+3)/2-
dimensional feature vector associated with the segment. This 
feature vector space has very high dimensionality with very 
sparse data points, with each segment considered as a data point, 
so we use PCA to reduce the dimensionality of the feature 
vectors. Our empirical results show that typically fewer than 40 
principal components are needed to cover the 95% of the 
variance. Also, the difference in distribution between the 
segments is mainly due to the covariance matrix. Mean vector has 
very little impact. 

3.2.3 Local linear models and mapping functions 
We construct a hierarchy of local linear models by performing a 
divisive K-means clustering on feature vectors of segments with 
the Euclidean norm as a distance metric. If, at any level in the 
hierarchy, the distance between each feature vector and the cluster 
mean is within the established tolerance, the cluster is considered 
a leaf in the modeling hierarchy and a local-linear mapping 
function is computed for the cluster. Otherwise, the cluster is split 
into two child clusters, using a K-Means splitting algorithm with 

K set to 2. This splitting process continues until all clusters satisfy 
the distance tolerance.  
After clustering is finished, each feature vector is uniquely 
partitioned into a leaf cluster, represented by a local linear model. 
Next, for each motion segment represented by a feature vector, all 
of its frames are labeled with the ID of the corresponding local 
linear model, i.e. cluster, where the feature vector is partitioned. 
For each local linear model, we compute a least squares mapping 
function to estimate measurements of the non-principal markers 
from a principal marker set. Assuming k out of m markers 
constitute a principal marker set, we represent a pose as a vector 
y=[xT, zT]T, where y∈R3m, x∈R3k represents the 3D positions of 
principle markers, and z∈R3(m-k)  represents the 3D positions of the 
rest markers. Then the least squares mapping matrix B can be 
computed for a cluster of n poses as  

B = ZXT(XXT)-1, 

where X=[x1, x2, ..., xn] is a 3k×n matrix and  Z=[z1, z2, ..., zn] is a 
3(m-k)×n matrix.  

3.3 Random Forrest classifier 
In order to use the local linear models and the associated mapping 
functions to estimate full-body poses from a principle marker set, 
a Random Forest [Breiman, 2001] classifier is trained to identify 
the most appropriate model with the data only on principle 
markers. In our classifier training process, for each frame labeled 
with its model ID, we use its principal marker values as input 
variables for Random Forest. Random Forest (RF) is a powerful 
classification tool that displayed outstanding performance in 
regard to classification error. RF grows and combines decision 
trees into predictive models. The overall prediction is determined 
by voting over all the trees in the forest and choosing the class 
with the most votes. Since the trees are generated randomly and 
independently, there is no risk of overfitting for large numbers of 
trees. As our experiment shows, RF performs well with a high 
degree of accuracy and is robust to the size and heterogeneity of 
the motion data. This, in turn, indicates that our piecewise linear 
modeling approach to label identification and selection method of 
principle markers is sufficient and effective to characterize 
motion data.  

3.4 Motion reconstruction  
3.4.1 Estimation of poses 
Once we learn piecewise linear models and train Random Forest 
classifier with a training set, we are ready for estimation of poses 
from a principle marker set. Given measurements on principle 
marker set, denoted by vector x, we use an RF classifier to 
identify the most appropriate local linear model and the associated 
least-squares mapping function. We then estimate the 3D 
positions of the remaining markers, z, as z = B x, where B is a 
mapping matrix. 

3.4.2 Estimating poses in Transition with Mixture of 
Local Linear Models  
An inherent shortcoming with piecewise linear modeling 
approach is the temporal discontinuity at the transitions between 
models, manifested as visible jerkiness in the reconstructed 
motion. We suspect that a change of bias in the reconstruction 
errors may be one of the leading causes to temporal discontinuity.  



For example, if the reconstruction errors of consecutive frames 
are all biased towards the same direction, the motion may still 
appear smooth, although its root mean square (RMS) error may be 
a bit higher. On the other hand, if the biases are towards different 
directions, it may cause more severe jerkiness even if the RMS 
error is moderate.  The bias tends to vary between models. 
Therefore, discontinuities (jerkiness) are frequently visible at the 
transitions between models.  
We provide a simple metric to evaluate the jerkiness for each 
marker reconstruction. For a given marker, let pt and p’t be the 
true and predicted positions at time t; and pt-1 and p’t-1 be the 
positions at time t-1. Then we compute the true and predicted 
velocities ν and ν’ as follows: 

ν = pt – pt-1 
ν’= p’t – p’t-1. 

We then take the Euclidean norm of their vector difference (e.g. 
errors) as our jerkiness metric γ. i.e.  

γ = || ν – ν’ ||. 

When the errors are biased in similar directions, ν and ν’ tend to 
be close to each other, leading to small values of γ. On the other 
hand, differences in the biases ν and ν’ lead to larger values of γ. 
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Figure 6: The probability distribution histogram of the velocity 
errors for reconstructed motions from a motion data set. 

We verified the validity of this jerkiness metric experimentally on 
motion reconstruction using our method from a motion data set. 
In Figure 6, we plot a histogram of γ for all markers, where 
transition and non-transition frames are shown in different colors. 
The histogram shows that non-transition frames tend to be non-
jerky, or smooth. However, nearly all jerky frames occur at 
transitions between clusters.  
A typical solution is to incorporate a factor that evaluates the 
continuity of the pose relative to the previous poses into the 
optimization phase (Chai and Hodgins 2005; Grochow et al. 
2004). We perform a fuzzy regression for the poses at the 
transitions of local linear models to smooth out the jerkiness.  
Instead of using only the local linear model where the pose is 
classified to reconstruct the full-body pose, we use a mixture of 
models associated with the current pose and some poses prior to 
it. This approach shares the spirit of fuzzy/soft classification and 
addresses the fact that transitional poses tend to be competed by 
different local linear models. Let xt be a pose vector containing 
the 3D positions of principle markers at time t, we estimate the 
positions of the rest of the markers, zt, as 

zt = Σi wi Bi  xt, 

where wi = ri / (h+1) is a weight for the ith model, ri is the number 
of poses classified to the ith model among the prior h poses and 
current pose, and Bi is the mapping matrix for the ith model. 
Basically, we want to put more weights on the model that is 
favored by more of the h poses prior to the current pose. In our 
experiments, h=10-30 works very well. 

4. Experiments  
4.1 Design 
We evaluated our modeling approach using Carnegie Mellon 
University’s Graphics Lab Motion capture database available at 
http://mocap.cs.cmu.edu.  We used the motion data on a marker 
set with 41 markers. Typical motion data is captured in an 
absolute world coordinate frame. Our model, however, describes 
relative motion in a model-rooted frame. Therefore, a 
normalization step is required. To normalize data, we choose the 
marker located at the C7 vertebrae as the origin.  The z-axis 
coincides with the z-axis of the original world coordinate frame.  
We compute a vector from the left shoulder marker to the right 
shoulder marker. We then project it to the horizontal plane and 
use the projected vector as the x-axis. The cross product between 
z and x axes produces the y-axis. There is no further 
normalization on the skeleton, such as normalization on the bone 
length. 

To obtain a reasonable representation of motion data space, we 
prepared a large and heterogeneous human motion database 
including various motions from multiple subjects. We divided the 
motion sequences into a training set and a testing set, with the 
training set having similar sequences to the sequences in the 
testing set. We used the training set to learn piecewise linear 
models and extract a set of principle markers. Full-body poses 
were then reconstructed for the testing sequences based on the 
principle marker set and compared with the actual full marker 
measurements. We also estimated full-body poses by nearest 
neighbor search using the measurements from principal markers 
and compared the performance of our method to the nearest 
neighbor search.  

4.2 Results 
Our training set consists of 132 sequences with total 151,882 
frames collected from 21 subjects. The training sequences contain 
a variety of motions, such as walking, running/jogging, golfing, 
soccer kicking, Salsa dancing, jumping, cartwheeling, climbing 
steps, etc. Even for the same category of motions, sequences of 
different styles from different subjects are included. The testing 
set contains 28 sequences with 19,553 frames from 18 subjects. 
Among them, there are 9 walking sequences, 6 running, 5 golfing, 
2 cartwheeling, 2 Salsa dancing, 1 walking on uneven terrain, 1 
running jump, 1 soccer kick,  and 1 climbing three steps. Four 
testing sequences, namely, 1 walking, 1 soccer kicking, 1 running 
and 1 golfing are from 4 new subjects who never performed any 
motion that is used in the training set. 

In selecting a set of principle markers from the training set, we 
computed PCA to cover 95% of the total variance. Then we used 
our principal marker selection method to select a set of six 
principal markers, placed at left forehead (LFHD), right elbow 
(RELB), left arm (LARM), right leg (RLEG), left toe (LTOE) and 
right toe (RTOE). The training set sequences were segmented into     

http://mocap.cs.cmu.edu/
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                           (a) Soccer Kicking                                (b) Running                                                       (c) Salsa Dancing 
Figure 7: Comparison of our method to Nearest Neighbors method in estimating three motion sequences. The top row compares the 
reconstruction RMS error (mm/marker). The second row compares the jerkiness (i.e., velocity error γ as previously defined). 

271 segments with length varying from 128 to 3,670 frames 
(mean: 560; standard deviation: 425; median: 440). The 
dimensionality of motion segments could be as low as 2 for 
walking motion or as high as 14 for Salsa dancing. Hierarchical 
clustering of segments according to their feature vectors yielded 
65 clusters, i.e., 65 local linear models. Principle marker positions 
were used to classify the frames into the local linear models via 
Random Forest. The classification error rate was 0.29%. 

The reconstructed motions were visually plausible for all the 
testing sequences, with part of the results shown in the 
accompanying video. There was no visible jerkiness at the 
transitional poses. Our method performed reasonably well for the 
motions acted out by new subjects who were not in the database. 
We compared our method to nearest neighbors search method 
with respect to root mean squared (RMS) reconstruction errors 
and jerkiness. In general, our method created much more accurate 
results with less jerky estimation of motion. The average RMS 
error and velocity error over all the testing sequences are 45 
mm/marker and 20 with our method, the corresponding errors 
with the nearest neighbor search are 56 mm/marker and 76 
respectively. Figure 7 showed frame-by-frame RMS error and 
jerkiness for three testing sequences. The RMS error curve was 
much smoother using our method than nearest neighbor search. In 
other words, the nearest neighbor search method had a lot of 
spikes in the reconstruction error curve, which could indicate 
severe jerkiness, confirmed by its frame-by-frame jerkiness curve. 
In fact, our method reduced the jerkiness by 80% in most of the 
sequences. Visual inspection of the reconstruction results also 
confirmed our conclusion.  

We also demonstrated in our experiments that the motion 
reconstruction was very fast. With the Random Forest classifier, 
the classification time was 0.00012 sec/frame; while the linear 
pose reconstruction time was 0.0014 sec/frame. This brings the 
total time needed for estimating a pose from a set of principal 
markers to 0.0015 sec/frame, or over 600 frames per second.  We 
ran our experiments in Matlab V7 on a Dell Inspiron Laptop, with 

1.4GHz CPU and 512M physical memory. A more powerful 
computer and more efficient code implementation may push the 
performance higher.   

 
Figure 8: Shown above is a snapshot from our motion model 
viewer. The golden model on the left represents the actual pose 
data. The cyan model on the right shows an estimate of this pose 
based on the principal markers, which are depicted as white disks. 
The green disk indicates the origin marker. An RMS error meter 
for the entire marker set appears above the models with a full-
scale value of 200 mm/marker. For more visualizations of our 
modeling results please view the accompanying video. 

5. Discussion and Future Work 
We presented a piecewise linear modeling approach to human 
motion data that are parameterized by a set of principal markers. 
We learned local linear models and principle markers from a 
training set of data samples. The motion reconstruction process is 
efficient with no need to search in a database. The experimental 
results demonstrated that our method can quickly generate 
plausible human motions on a frame-by-frame basis and scales 
well with size and heterogeneity of motions. Thus, we believe it is 
possible to use a few markers as control signals for interactive 
computer applications.   



We identify a low-dimensional and local linear space at the 
motion segment level instead of the frame level. Motion segments 
offer a more appropriate resolution for motion data modeling. It 
retains temporal relationship to some extent by grouping 
temporally adjacent yet spatially homogenous frames together 
into one local linear model. Fewer local linear models are needed 
when modeling with motion segments than with frames, resulting 
in a more compact model hierarchy. It also improves the 
reconstruction quality by reducing unnecessary model transitions, 
a primary source of temporal discontinuity, i.e. jerkiness.   

Our choice to model human motions in the marker space pushes 
motion data processing a step closer to raw data measurements, 
eliminating skeleton estimation, skeleton calibration and potential 
information loss during the conversion of marker measurements 
to joint angles. On the other hand, there may be a normalization 
issue with the use of marker data due to size differences among 
subjects. Nevertheless, our experiments showed that the 
performance of the proposed method was not sensitive to the 
normal variation in subjects’ sizes. In the experiments, equivalent 
motions from different subjects tend to lie in the same local linear 
space, so the corresponding mapping function is actually 
computed based on data from different subjects. Calibration of 
subjects of different sizes does not appear to be essential with our 
marker-based approach. However, more experiments are needed 
in this regard. 

We presented an algorithm for selection of a principle marker set. 
People may also want to follow their intuition or experience to 
select the principle markers, for example, on the extremities. It is 
of interest to compare the results obtained from automatically 
selected markers with those from the manually selected markers. 
Missing markers are often encountered in mocap data. It is 
desirable to use a training set with complete and precise marker 
measurements to learn a reliable model. However, in 
reconstruction of a new motion sequence, our method potentially 
allows for missing principle markers because Random Forest has 
efficient imputing method to replace missing values. It is worth 
conducting experiments to see to what extent the missing markers 
are allowed to retain an acceptable motion reconstruction.  
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