
REAFUM: Representative Approximate Frequent Subgraph Mining

Ruirui Li∗ Wei Wang∗

Abstract

Noisy graph data and pattern variations are two thorny problem-
s faced by mining frequent subgraphs. Traditional exact-matching
based methods, however, only generate patterns that have enough
perfect matches in the graph database. As a result, a pattern may
either remain undetected or be reported as multiple (almost identi-
cal) patterns if it manifests slightly different instances in different
graphs. In this paper, we investigate the problem of approximate
frequent pattern mining, with a focus on finding non-redundant rep-
resentative frequent patterns that summarize the frequent patterns
allowing approximate matches in a graph database. To achieve this
goal, we propose the REAFUM framework which (1) first extracts
a list of diverse representative graphs from the database, which may
contain most approximate frequent patterns exhibited in the entire
graph database; (2) then uses distinct patterns in the representative
graphs as seed patterns to retrieve approximate matches in the entire
graph database; (3) finally employs a consensus refinement model
to derive representative approximate frequent patterns. Through a
comprehensive evaluation of REAFUM on both synthetic and real
datasets, we show that REAFUM is effective and efficient to find
representative approximate frequent patterns and REAFUM is able
to find patterns that much better resemble the ground truth in the
presence of noise and errors, and are less redundant than that from
any exact-matching based methods.

1 Introduction

Mining frequent patterns in a set of graphs has attracted
much research interest due to its wide applications in, for ex-
ample, bioinformatics [13], cheminformatics [7, 24], social
network analysis [17], and hardware design [4, 5]. Given a
set S of labeled graphs, the support of a graph g is the frac-
tion of all graphs in S of which g is a subgraph. Graph g is
frequent iff the support of g meets a certain support thresh-
old. The problem of frequent subgraph mining is to find all
connected subgraphs that are frequent in a graph database.
Most existing frequent subgraphs mining approaches are
based on exact matching [14, 26], which require the topol-
ogy and labels be identical between a subgraph and its in-
stance in another graph. Exact-matching based pattern min-
ing algorithms have serious limitations. First, some impor-
tant subgraph patterns may exhibit some slight differences in
different graphs. For example, a protein may have accumu-
lated a few mutations through evolution which may lead to
small structural variations but do not alter the protein’s func-
tion [1]. Graph mining approaches based on exact matching
will miss these patterns when all the corresponding varia-
tions are below the support threshold. Second, almost all
data contain noise. For example, in image processing, the
two instances of the same object may exhibit slight differ-
ences due to detection errors [1]. These noise and errors in
data may lower the observed frequency of some patterns and
prevent them from being discovered.

Figure 1 shows a small graph database of 6 graphs in
which six subgraph patterns are embedded. Each subgraph

∗Dept of Computer Science, University of California Los Angeles, CA,
USA. {rrli,weiwang}@cs.ucla.edu

�

��� �

�

�� �

���	��
	

�

� �

�

�

� �

�

���	

�

� �

�

���	

�

���	

�

� �

�

�

���	

�

�

�

����� ����
���

�

�

�

� �

���	
�

�

�

�

�

�

�

�

�

�

���	 ���	���	��
	

� ��
�
	 � �	

��
����� ��������

���� �! "���� #������� �����$�� �%&	

�

�

�

�

�
	 � �	

���� �! "���� #������� �����$�� ��&	
� �

�

� �	

'
�

' '

'

' ' '

(" (

(""

((�

((

' ' '

�

� � "

' '
'

"
�

� �

) "))

)

(� �* * *

*

+ , ,

* (
�

�

�

'

'

� �

�
'

(

� �	 � �	

���	

�

�
)

�
,

�

Figure 1: Exact patterns mining

pattern has two or more variations embedded in these graph-
s. Subgraphs within the red dashed box are the maximal
patterns found by exact-matching based pattern mining al-
gorithms with support threshold 50%. It is not surprising to
see that the two patterns p̃1 and p̃2 are substantially different
from the embedded subgraphs. Even if we relax the support
threshold to 33%, as shown in the lower right corner of Fig-
ure 1, all the embedded subgraph patterns are still missing.

This example demonstrates the need to go beyond exact
pattern matching. We need to tolerate certain level of
structural and/or label differences in two graphs, as long
as such differences are within a clearly defined threshold.
Such approximate pattern mining framework is expected
to find patterns that are missed by exact pattern mining
algorithms. The need of approximate matching is also
pronounced in document clustering tasks [12], chemical data
processing [2], and molecule data processing [19].

Approximate-matching based pattern mining is far more
challenging than exact-matching based pattern mining. First,
given a pattern candidate, checking whether one database
graph contains its approximate instances or not is at least
as hard as the subgraph isomorphism challenge, which is a
NP-complete problem [6]. Second, since variations of the
same pattern may likely be approximate matches of each oth-
er, many such variations may exceed the support threshold.
A straightforward model that outputs every pattern whose
approximate matches exceed the support threshold may thus
produce redundant patterns. An effective model that summa-
rizes these redundant patterns is needed. Third, allowing ap-
proximate matches may lead to larger patterns than the exact
match patterns (as demonstrated in Figure 1). Consequently,
the number of non-maximal patterns grows too. This may
lead to longer computation time and larger memory usage.

To address the challenges, we propose a representative
approximate frequent subgraph mining algorithm REAFUM.
Figure 2 shows the framework. In our model, we first select
a list of m diverse graphs sequentially as representative
graphs. To ensure diversity, each time we select a graph
that is most distant from any selected representative graphs
yet most similar to the remaining graphs. Intuitively, each
representative graph corresponds to a ”mode” of a set of
similar graphs in the graph space. For example, given
the graph database D of 6 graphs in Figure 1, to pick 2

757 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/3

0/
15

 to
 1

28
.9

7.
24

5.
11

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

�-

-

�-

�-

�-

�-

�-

�-

�-
-

�-

-

�-�-

�-

�-

�-�- �-

�-

�- �-

-�-

�-

�- �-

-�-

�-

�- �-

-�-

���	-

�-
-

�-

���	-
�-

�- �-

�-

�-
���	-

�-
-

�-

�-

�-

�-

�-

���	-

-

�-

���	-
�-

�- �-

-

�����-����
���- .�����������/�-������-

.�����������/�-�����-��!����$�- #������-������-

�-

�-
-

�-

�- �-

���	-

�-

�-

�-

�-

�-

�-

�-
-

�-

�-
-

�-

���	- ���	-���	-��
	-

���� �!-#�������-�����$�� �%&0-"��$� �	-

�-

�-

�- �-

�-

($�������-.����� ���-

�-

���� �!-.�����������/�-#�������-

�-

��1�	-

��1�	- ��1�	-��1�	-��1
	-

�- �- �-

+-

)-

�-

)-

,-

*- (- "- �-

,-

(-
���	-��
	- ���	-

'-

'-(-

(-
'-

"-

�-
�-

'- "-

"- '-

�-

*- *-
(-

'-

'-

�-

(-

(-
'- �-

'-

'-
(-

(-

'-

(- '- '-

�-

(-

�-
)- (-*-

,-

-�-
(-*-)-

'-
(-

(-

'-

"- '- '-

�-

(-

-
(-*-

�-
)-

(-
'- �-

'-

�-

�-

�-
)-

���	-�-
,-

�- �-
)-

�-
,-
�-

��1�	-

Figure 2: The pattern mining framework of REAFUM

representative graphs, g4 and g2 are sequentially selected.
g4 is the mode among graphs in {g1, g2, g3, g4, g5, g6} and
g2 is the mode among the remaining graphs that cannot be
well represented by g4.

These representative graphs collectively provide a com-
prehensive yet non-redundant coverage of approximate pat-
terns in the graph database. Each representative graph well
represents a subset of similar graphs and likely contains an
instance of any frequent subgraph pattern in this set of simi-
lar graphs. After representative graph selection, pattern can-
didates are enumerated and examined in each representative
graph in a topological order. Only qualified pattern candi-
dates in the representative graphs will be used to seed the
approximate match exploration in the entire graph database.
Variations of the same patterns will be examined all together
when retrieving approximate matches in the graph database
and will be summarized in the refinement step into one con-
sensus pattern that optimally represents the set of variants.

Here we summarize the major contributions of this
paper:

1. REAFUM extends the previous graph mapping distance
metric to handle graphs with edge labels.

2. REAFUM is the first to allow both structural and label
approximations in mining frequent subgraphs.

3. We propose an efficient algorithm to mine approximate
frequent patterns in a graph database.

4. We present a comprehensive empirical evaluation of
REAFUM with exact pattern mining methods using
both synthetic and real datasets. The results show that
REAFUM is highly effective and efficient in detecting
patterns based on approximate-matching.

2 Related Work

Frequent subgraph mining is an active research topic. In this
section we give a brief account of some representative works
on exact pattern mining (Section 2.1). Since our approach
aims to find approximate patterns, we highlight some
related work on pattern mining approaches which allow
approximate matches (Section 2.2). To distinguish our work
from existing representative pattern mining approaches,
we further discuss some works on pattern summarization
(Section 2.3).

2.1 Exact Pattern Mining Exact pattern mining ap-
proaches strictly require the pattern and its instances be ex-
actly the same in terms of their labels and structures. Most
existing exact pattern mining approaches can be roughly di-
vided into two categories based on their pattern enumeration
orders, namely breadth-first order [15, 21] and depth-first or-
der [14, 23, 26]. For the methods with breadth-first order,

AGM [15] generates pattern candidates by adding nodes to
the patterns. FSG [21] generates pattern candidates by using
edge-growth instead of vertex-growth. For the methods with
depth-first order, gSpan [26] designs a DFS lexicographic or-
der to support the mining algorithm. FFSM [14] develops a
new graph canonical form and completely avoids subgraph
isomorphism testing by maintaining an embedding set for
each frequent subgraph. Gaston [23] adopts a step-wise ap-
proach using a combination of frequent paths, frequent free
trees and cyclic graphs mining to discover all frequent sub-
graphs.

The drawback of these exact pattern mining approaches
is that they will miss some patterns if all variations of the
pattern are below the support threshold. In addition, noise
in the data may also lead the frequency of the pattern lower
than the support threshold.

2.2 Approximate Pattern Mining A few works focus
on mining patterns allowing inexact matches. The APGM
algorithm was proposed in [16] to mine frequent patterns
considering a scenario where noisy data leads to wrong
labels in vertices. To address the problem, APGM requires
a substitution matrix M as an extra input, where the entry
Mij gives the probability of label i being mistaken by label
j. Two graphs are defined as approximately isomorphic if
their similarity (measured by a product of probabilities) is
below a given threshold. VEAM [1] extends APGM to allow
label replacements of both vertexes and edges. Both of
these algorithms only allow label replacements and require
the matching graphs have the same topology. In addition,
they both require a prior knowledge of the substitution
matrix, which is only available in a few applications of
bioinformatics.

RAM [28] finds patterns whose instances are allowed
to have missing edges. More precisely, the graph will be
regarded as an approximate instance of the pattern iff this
graph only misses at most β edges from the pattern, where
β is an input. It does not allow any distortion of the
vertices. It does not find patterns whose instances have label
replacements of vertices or edges either.

2.3 Representative Pattern Mining A few works investi-
gate summarizing frequent subgraphs using a smaller num-
ber of representative patterns (i.e. a subset of all frequent
subgraphs). ORIGAMI [9] and GraphRank [10] mine a set
of frequent subgraph patterns first, and find the representa-
tive patterns by post-processing afterwards. To avoid post-
processing, RING [29] first computes the pattern distribution
by clustering and then mine representative patterns based on
the pattern distribution. To improve efficiency, RP-Leap [22]
attempts to derive a set of representative patterns which can
roughly cover the entire frequent subgraphs.

Different from all above pattern summarization works,

758 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/3

0/
15

 to
 1

28
.9

7.
24

5.
11

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

which generate representative patterns based on exact match-
ing, REAFUM studies pattern mining on the basis of approx-
imate matching essentially. To avoid returning all kinds of
variations of each single pattern, REAFUM selectively picks
one dominant variation of each pattern as the representative.

3 Notations and Problem Statement

Table 1: List of symbols
symbol meaning
D a set of graphs
g an undirected labeled graph in D

Vg/Eg the vertices/edges in g
ΓV /ΓE the set of vertex/edge labels

ed an edit operation
ED(g1, g2) a sequence of ed transforming g1 into g2
λ(gi, gj) the graph edit distance between gi and gj

s a star structure
r the root of a star
L the leaves of a star

Bi(si, sj) the bipartite graph built based on si and sj
T (ri, rj) the edit distance between ri and rj
F (Li, Lj) the edit distance between Li and Lj

λ(si, sj) the star edit distance between si and sj
S(g) the star representation of g

μ(gi, gj) the graph mapping distance between gi and gj
RD a list of representative graphs
m the number of representative graphs
P a set of frequent subgraphs
p a frequent subgraph pattern
ip an instance of the pattern p
Ip the set of pattern p’s instances

supg the support of g
σ the support threshold
β # of ed allowed when matching approximately

Table 1 lists the notations we use in this paper. We now
give the problem statement. In this paper, we consider simple
graphs which do not contain self-loops and multi-edges.

DEFINITION 3.1. An undirected labeled graph g is a five
element tuple g = {V,E,ΓV ,ΓE , Hg}, where V is a set of
vertices, E ⊆ V ×V is a set of edges, ΓV is the set of vertex
labels, ΓE is the set of edge labels, and the labeling function
Hg defines the mappings V → ΓV and E → ΓE . We use
the term graph to refer to undirected labeled graph, unless
otherwise specified.

Informally speaking, an edit operation ed on a graph
g is an insertion or deletion of a vertex/edge or relabeling
of a vertex. An edit operation is valid if the resulting graph
remains connected.

DEFINITION 3.2. The graph edit distance between g1 and
g2, denoted as λ(g1, g2), is the minimum number of edit op-
erations that are needed to transform g1 into g2. Formal-
ly, λ(g1, g2) = minED:<ed1,...,edk>∈ED(g1,g2)|ED|, where

ED :< ed1, ..., edk > is an edit operation sequence that
transforms g1 to g2, and ED(g1, g2) denotes the set of all
possible edit operation sequences transforming g1 into g2.

DEFINITION 3.3. A graph g is β isomorphic to another
graph g′ iff their graph edit distance λ(g, g′) is less than or
equal to β.

DEFINITION 3.4. A graph g is β subgraph isomorphic to
another graph g̃, denoted as g ⊆β g̃, iff there exists a

subgraph g′ of g̃ such that g is β isomorphic to g′.

�

�

�� �

�

�

�

� �

�

�

�

�

��

� �

��

�

��1�	 ��1�	��1�	

�
���	 ���	 ���	

��

�

��
	

(

'

'

�(

'

'

�

(

'

'

�

(

' �

(

' �
�

�

�

'

'

"

(" "

�

'

'

"

�

Figure 3: β isomorphism and β subgraph isomorphism

Figure 3 shows examples of β isomorphism and β
subgraph isomorphism. g′4, g′5, and g′6 are subgraphs of g4,
g5, and g6, respectively. Given a subgraph pattern p1 on the
right, the red vertices and edges in g′4, g′5, and g′6 show the
exact matches, while the blue vertices and edges in g′4, g′5,
and g′6 show the mismatches between p1 and g′4, g′5, and
g′6, respectively. We can see that the graph edit distances
λ(p1, g

′
4) = 0, λ(p1, g

′
5) = 2, and λ(p1, g

′
6) = 3. Therefore,

p1 is 3 isomorphic to all three graphs g′4, g′5, and g′6. p1 is 3
subgraph isomorphic to graphs g4, g5, and g6.

DEFINITION 3.5. Given a set of graphs D (referred as a
graph database) and the allowed number of edit operations
β, the support of a graph gi, denoted as supgi , is defined
as the fraction of graphs in D to which gi is β subgraph
isomorphic.

supgi =
|g ∈ D|gi ⊆β g|

|D|

For example, in Figure 2, we have p1 ⊆3 g4, p1 ⊆3
g5, and p1 ⊆3 g6. Thus the support supp1

of p1 is
|{g4,g5,g6}|

|D:{g1,g2,g3,g4,g5,g6}|
= 0.5.

PROBLEM STATEMENT 1. Given a set of graphs D, a sup-
port threshold (0 < σ ≤ 1), and the allowed number of edit
operations β, a subgraph gi is a pattern if it satisfies the fol-
lowing two requirements: (1) It meets the support threshold
σ (i.e. supgi ≥ σ.). (2) There exists at least one graph g,
such that p ⊆ g and g ∈ D.

The approximate frequent subgraph mining problem is
to find all subgraphs in D, whose support is at least σ. We
also refer to these subgraphs as frequent subgraphs.

The first requirement ensures that the subgraph appears
frequently within a certain number of approximations. The
second requirement guarantees that only exhibited variations
are considered for approximate matches. Considering the
above two requirements, supp1

≥ 0.5 and p1 ⊆ g4 Thus, p1
will be output as an approximate frequent pattern, and g′4, g′5,
and g′6 are the instances of p1.

PROBLEM STATEMENT 2. Given an approximate pattern p,
the dominant form of p is defined as the instance of p that

has the smallest average distance1 to other instances in Ip,
where Ip is the set of instances of p. This dominant form of
p will be a representative approximate pattern.

The representative approximate pattern selection
problem is to find the dominant form of the approximate pat-
tern.

1The distance will be defined in Section 4.1.

759 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/3

0/
15

 to
 1

28
.9

7.
24

5.
11

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

4 Proposed Solution

In this section, we present the proposed solution REAFUM
to compute representative approximate patterns from a set
of graphs. REAFUM has three components: representative
graph selection, approximate pattern mining, and representa-
tive approximate pattern refinement. In the first component,
a list of m diverse graphs is selected as the representative
graphs. In the second component, a set of approximate pat-
terns are mined incrementally based on the structure of each
selected representative graph. In the last component, for each
approximate pattern we mined, we compute the consensus
form of its instances in the graph database as the represen-
tative pattern. The three components will be explained in
Section 4.1, Section 4.2 and Section 4.3, respectively.

4.1 Representative Graph Selection In this section, we
illustrate, given a set D of graphs, how to extract a list RD
of m diverse graphs.

There are
(
|D|
m

)
ways of choosing m graphs from the

pool of graphs D. Explicitly examining each of these options
is intractable. Instead, we apply a greedy strategy and
construct the list RD incrementally.

Let RD (which is initially empty) be the list of represen-
tative graphs our algorithm has picked so far. We want to add
more graphs to RD (one graph at a time) until the selection
contains m graphs. At each step, our greedy heuristic picks
the graph g ∈ D −RD that maximizes the score:
(4.1)

Θ(D,RD, g) =
∑

gi∈RD

d(g, gi)

|RD|
−

∑

gj∈D−RD−{g}

d(g, gj)

|D −RD − {g}|

where d(gi, gj) is a graph distance metric between gi
and gj . The distance metric selection will be discussed
afterwards. Algorithm 1 summaries the procedure.

Algorithm 1 Representative Graph Selection

input: m, D
ouput: a list of representative graphs RD =< g1, g2, . . . , gm >
1: X ← D; RD ← ∅;
2: for i ← 1 To m do
3: g ← argmaxg∈X Θ(D,RD, g);

4: RD ← RD+ < g >;
5: X ← X − {g};

6: return RD

Intuitively, before we pick the first representative graph,
the selection RD is empty. The first representative graph
we select will be the one that has the smallest average graph
distance to the other graphs in the database. This graph is
likely to contain many subgraph patterns and these patterns
are more likely to have many approximate matches in the
database. The next representative graph to select will be the
one that has small distances to the remaining graphs, yet is
distinct from the selected representative graph(s). Therefore,
the next representative graph tends to contain many new
patterns.

To measure the label and structural differences d(gi, gj)
of graphs gi and gj , a number of graph distance metric-
s have been proposed [3, 8, 25]. Among these, graph
edit distance and graph mapping distance are two widely
used graph distance measures. However, the computation
of graph edit distance is unaffordable since the problem of
computing graph edit distance has been proved to be NP-
hard in [18, 27]. Alternatively, the mapping distance, denot-
ed as μ(gi, gj), not only has an acceptable time complexity

O(max(|Vgi |, |Vgj |)
3), but also can provide tight bounds of

the graph edit distance [27].
In this paper, we adopt the graph mapping distance

proposed in [27]. Unfortunately, the version in [27] does
not support graphs with edge labels. We extend it to allow
graphs with edge labels. In the following paragraphs, we
will briefly explain the extended graph mapping distance. To
compute the graph mapping distance μ(gi, gj) between gi
and gj , we first represent each graph using a multiset of star
structures, respectively. The star structure retains the label
and structural information of the original graph.

DEFINITION 4.1. (Star Structure) A star structure s is an
attributed, single-level, rooted tree which can be represented
by a 3-tuple s = (r, L, l), where r is the root vertex, L is the
set of leaves and l is a labeling function. Edges exist between
r and any vertex in L and no edge exists between vertices in
L.

��

���

���

���

��

' (

(�

' (

�

(
����	����	

��

��

��

���

�

�

��

�

�

�

�

��

� �

�

�
�
�

�
2

��2
��2

��2
��2

�32
�42

�
%2

��2

�52

(
' �

'(

(
' �

(

' (

(�

' '

' �
(

(

Figure 4: Star representation

In a star structure, the root vertex is the center and
vertices in L can be considered as satellites surrounding the
center. For any vertex vi in a graph g, we can generate a
corresponding star structure si in the following way: si =
(vi, Li, l) where Li = {u|(u, vi) ∈ E}. Accordingly,
we can derive n star structures from a graph containing
n vertices. Thus, a graph can be mapped to a multiset
of star structures. This multiset is defined as the star
representation of the graph g, denoted by S(g). Figure 4
shows an example. S(g4) and S(g5) give the star structures
of graphs g4 and g5, respectively.The star structures enable
the edit distance between two star structures be computed
easily in the following way.

DEFINITION 4.2. (Star Edit Distance) Given two star
structures s1 and s2, λ(s1, s2) = T (r1, r2) + F (L1, L2).
T (r1, r2) gives the distance between the two roots, and
F (L1, L2) gives the distance between the two sets of leaves.
Formally,

T (r1, r2) =

{
0 if l(r1) = l(r2),
1 otherwise.

Algorithm 2 gives the details of the computation of

F (L1, L2)
2.

For example, the star edit distance λ(s1, s2) in Figure 5
can be computed in the following way. The two stars

2Due to the space limitation, we do not include the solution to the
bipartite graph maximum matching problem [11]. The time complexity is
O(|V | ∗ |E|), where |V |/|E| is the number of vertices and edges of the
bipartite graph, respectively.

760 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/3

0/
15

 to
 1

28
.9

7.
24

5.
11

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 2 Star Edit Distance
input: two stars s1, s2
ouput: λ(s1, s2)
1: X ← D; RD ← ∅;
2: // Exact matching removal

3: for vi ∈ L1 do
4: for vj ∈ L2 do

5: if l(vi) = l(vj) && l(vi, r1) = l(vj , r2) then

6: remove vi from L1;
7: remove vj from L2;

8: break;
9: // Bipartite graph construction

10: for vi ∈ L1 do
11: for vj ∈ L2 do

12: if l(vi) = l(vj) ‖ l(vi, r1) = l(vj , r2) then

13: EBi ← e(vi,vj);

14: VBi = L1 ∪ L2;
15: // Finding maximum matching

16: MM= maximum matching of Bi;
17: F (L1, L2) = MM + 2 ∗ Max{(|L1| − MM), (|L2| − MM)};

18: λ(s1, s2) = T (r1, r2) + F (L1, L2);

19: return λ(s1, s2)

�

�

� �'

� �
 �

� '' (

�'

�

�
 �

'' (

�
��
	

���	

��1
	

��1�	

�
 �

bipartite graph Bi(�1
0�1�)

Figure 5: Example of computing star edit distance

s1 and s2 have different root labels, so T (r1, r2) = 1.
After removing the exactly matched leaves from s1 and s2
simultaneously, we get s′1 and s′2. Then we start to construct
a bipartite graph Bi(s′1, s

′
2) based on the structures of s′1 and

s′2. We first create five vertices (two from the leaves of s′1
on the top and three from the leaves of s′2 on the bottom).
Knowing that all leaves of s′1 have the same vertex label b
as the label of the second leaf of s′2, we create two edges
connecting both vertices on the top to the second vertex on
the bottom. We also find that the first vertex in s′1 have
the same edge label as the first and third vertices in s′2, we
create two more edges connecting the first vertex on the top
to the first and third vertices on the bottom, respectively.
After the construction of the bipartite graph, we calculate the
maximum matching for it. In this case, one of the optimal
maximum matching answers is shown in red lines, so the
maximum matching for Bi(s′1, s

′
2) is 2 (i.e. MM = 2.).

F (L1, L2) = 2 + 2 ∗max{(2 − 2), (3 − 2)} = 4. Finally,
the star edit distance λ(s1, s2) is computed as T (r1, r2) +
F (L1, L2) = 1 + 4 = 5. Subsequently, we will define
the mapping distance between two graphs based on their star
representations.

DEFINITION 4.3. (Mapping Distance) Given two multisets
of star structures S1 and S2 with the same cardinality, and
assume that B : S1 → S2 is a bijection. The mapping
distance ρ between S1 and S2 is

ρ(S1, S2) = min∀B

∑
si∈S1

λ(si, B(si))

The computation of ρ(S1, S2) is equivalent to solving
the assignment problem. The Hungarian algorithm [20] can
obtain the optimal assignment solution in O(n3) time, where
n is the cardinality of S1 and S2.

Now we formally give the definition of mapping dis-

tance between two graphs as on the distance of their star
representations.

DEFINITION 4.4. (Graph Mapping Distance) The map-
ping distance μ(g1, g2) between g1 and g2 is defined as:

(4.2) μ(g1, g2) = ρ(S(g1), S(g2))

The optimal mapping for computing the mapping dis-
tance between g1 and g2 is to approximate the mapping be-
tween the vertices of g1 and g2 in an optimal assignment.

Note that the two graphs may have different numbers of
vertices. Assuming |Vi|− |Vj | = k ≥ 0, |S(gi)|− |S(gj)| =
k must hold. In order to make gi and gj have the same
number of vertices, we include k vertices with a special label
ε into gj .

Since we apply the graph mapping distance as the
metric, by substituting Equation 4.2 into Equation 4.1, we
get
(4.3)

Θ(D,RD, g) =
∑

gi∈RD

μ(g, gi)

|RD|
−

∑

gj∈D−RD−{g}

μ(g, gj)

|D −RD − {g}|

Based on Equation 4.3, by incrementally adding graphs
into the representative graph list RD, we will be able to
construct a list of diverse graphs which potentially contain
most approximate patterns. In Section 4.2, we will explain
how to enumerate patterns in each representative graph.

4.2 Pattern Mining In this section, we first introduce the
Apriori property in approximate pattern mining, and then
describe the pattern enumeration strategy.

4.2.1 Apriori Property The Apriori property claims that
if a pattern meets the minimum support threshold, then any
subgraph of it also meets the minimum support threshold.
By our definition of frequent approximate patterns, we have
the following theorem.

THEOREM 4.1. For a frequent approximate graph g, any
subgraph sg of g is also a frequent approximate pattern.

Proof. For any subgraph sg of g, there is a sequence of edit
operations transforming g to sg: a0 = g, a1 = ed1(a0),
a2 = ed2(a1), ..., ak = edk(ak−1), ..., an = edn(an−1) =
sg, where edk(ak−1) is an edit operation of deleting a
vertex/edge from ak−1. (1) By definition, when k = 0, a0 =
g is a frequent approximate pattern3. (2) Suppose that ak is
a frequent approximate pattern, and ak+1 = edk+1(ak). We
want to prove that ak+1 is frequent. For every instance i of
ak, if the vertex/edge (removed in edk+1) is embedded in i
as it is in ak, we define i′ = edk+1(i). Otherwise, i′ = i.
Based on this construction of i′, i′ is also β isomorphic to
ak+1. Thus, sak+1

≥ sak
≥ σ. Therefore, ak+1 is frequent.

(3) By induction, we have an = sg is a frequent approximate
pattern.

Theorem 4.1 guarantees that if a graph g is not frequent,
we do not need to examine any supergraphs of g. This
theorem helps us prune the search space a lot.

4.2.2 Pattern Enumeration In this section, we present
the approximate pattern enumeration strategy.

3We define a0 = ed0(a−1) = g.

761 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/3

0/
15

 to
 1

28
.9

7.
24

5.
11

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 3 Approximate Pattern Mining

input: RD , D, σ, β
ouput: a set of patterns P = {p1, p2, . . . , pi}
1: P ← ∅
2: while RD is not empty do

3: g ← the first graph from the list RD

4: P g ← Pattern Mining (g, P , D, σ, β);

5: P ← P ∪ P g ;
6: RD ← RD− < g >;
7: return P

After constructing the list RD of representative graphs,
we mine a set P of approximate patterns incrementally. The
graphs in RD are ranked according to the order in which
they are selected into RD. Each time we retrieve the first
representative graph g from the list RD, and compute a set
P g of approximate patterns based on g. Then, P g is inserted
into P and g is removed from the representative list. We
repeat this process until all the representative graphs are
enumerated in RD. Algorithm 3 summarizes the procedure.

Algorithm 4 Pattern Mining

input: g, D, σ, β
ouput: a set of patterns P g = {p1, p2, . . . , pi}
1: P g ← ∅;
2: for i ← 1 To |Vg| do

3: supp ← Counting support (p, D, σ, β, Ip, vi)4;

4: if supp ≥ σ then

5: if p is not an instance before then
6: P g ← P g ∪ {p};

7: Pp ← Mining bigger pattern(p, g, D, σ, β);

8: P g ← P g ∪ Pp;
9: remove vi from consideration;

10: return P g

Algorithm 5 Mining Bigger Pattern

input: p, g, D, σ, β
ouput: a set of patterns Pp = {p1, p2, . . . , pi}
1: Pp ← ∅;
2: N ← find-neighbors(p, g);

3: if N is not empty then

4: for j ← 1 To |N | do

5: p′ ← p ⊕ nj ; //nj ∈ N

6: supp′ ← Counting support (p′, D, σ, β, Ip, nj);

7: if supp′ ≥ σ then

8: if p′ is not an instance before then

9: Pp ← Pp ∪ {p′};

10: Pp′ ← Mining bigger pattern(p′, D, σ, β);

11: Pp ← Pp ∪ Pp′ ;
12: return Pp;

In the following, we explain how to mine approximate
patterns for each representative graph. Given a representa-
tive graph g and two parameters σ and β, patterns are enu-
merated in the depth-first fashion. Algorithms 4 and 5 sum-
marize the procedure. We first find frequent approximate
vertices in g. Starting from these frequent vertices as the
first set of patterns, we recursively grow vertices and edges
to explore bigger patterns. If all possible candidate patterns
grown from pattern p have been checked, we backtrack to the
pattern from which p is generated, and grow that pattern by
adding another vertex. After finding all patterns containing
vi, we will ignore vi when examining the remaining patterns.

In Algorithms 4 and 5, if the support supp of the
pattern candidate p meets the threshold σ, we further check

4Since vi here is the first vertex to be added into the pattern candidate, p
is an empty graph, and Ip is also empty instance set.

whether p is an instance of other patterns mined in previous
representative graphs or not. If not, p becomes a new pattern.
Otherwise, p is just a variation of other patterns we mined
before. As a redundant pattern, p will not be added to the
pattern collection.

The function find-neighbors(p, g) in Algorithm 5 returns
a set N of remaining vertices which are directly connected
to the pattern p in g. For each vertex nj in the neighbor set,

we add it to the original pattern p to form a supergraph p′ by
a pattern growing operation ⊕. This supergraph p′ becomes
a pattern candidate. We then check the support supp′ of p′.
If supp′ ≥ σ, p′ will be used to grow patterns. Otherwise,

we stop checking any supergraphs of p′, since based on the
Apriori property presented in Section 4.2.1 we know that
the support of any supergraph of p′ won’t meet the support
threshold either.

A pattern growing operation ⊕ is introduced in Algo-
rithm 5. By p′ ← p⊕ nj , we not only add the vertex nj to p
but also include all the edges that connect nj and any vertex
in p.

Algorithm 6 Counting support

input: p′, D, σ, β, Ip, nj

ouput: the support s of the pattern candidate p′

1: s ← 0;
2: for each gi ∈ D do
3: for each ip in gi do

4: //nj is the vertex added when extending p to p′

5: for each v in S(nj) do

6: //S(nj) is the set of vertices to check

7: îp′←ip ⊕i v;

8: if the edit distance λ(p′, îp′) ≤ β then

9: if îp′ is the first instance of p′ in gi then

10: s ← s + 1;

11: Ip′ ← Ip′ ∪ {îp′};

12: return s;

To count the support of a pattern candidate p′, we
check all the instances Ip of the pattern p from which p′ is
generated. Only graphs that contain an instance ip of the

pattern p may further contain an approximate match for p′.
In Algorithm 6, an instance growing operation ⊕i is in-

troduced. Given the newly added vertex nj in g, a map-
ping vertex vmapping(nj) is first located in gi. The job of

locating vmapping(nj) has been done when we compute the

graph mapping distance between g and gi in the represen-
tative graph selection component. So it does not incur any
additional computation. After locating the mapping vertex
vmapping(nj) and adding it to one instance ip, the edge be-

tween vmapping(nj) and vmapping(v) is added into ip if there

is a corresponding edge between nj and v in p′, where v is a

vertex in p′ and vmapping(v) is the mapping vertex of v in gi.

In this way, a potential instance îp′ of pattern candidate p′ is
constructed. Since we know the vertex mapping between the

pattern candidate p′ and its potential instance îp′ , their graph

edit distance λ(p′, îp′) can be easily computed by scanning

each graph once. The time complexity is O(|Vp′ |+ |Ep′ |).
Note that when mapping vertices between two graphs gi

and gj , the Hungarian algorithm only returns one optimal
bijection between Vgi and Vgj . This may lead to two
potential issues in the pattern mining process. (1) For a
graph gi, it is possible that there are several stars which
are identical in their star representations. For example, let

762 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/3

0/
15

 to
 1

28
.9

7.
24

5.
11

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

s(vm) = s(vn). Based on the bijection, the vertex vm in
gi will have only one mapping vertex vmapping(vm) in gj .

This is not desirable since we can exchange the mapping
vertices of vm and vn and get another optimal bijection.
(2) To achieve the optimal alignment, two vertices which
are directly connected in gi may be mapped to two vertices
which are far away from each other in gj . To address the
above two problems, for each vertex vm in gi, instead of
deriving only one mapping vertex, we will find a set S(vm)
of similar vertices in gj according to their star structures.
(vmapping(vm) by Hungarian algorithm is also included in

S(vm).) The vertices in S(vm) become the potential vertices
to check when extending the instances.

4.3 Consensus refinement In this section, we explain
how we do the consensus refinement to achieve the dominant
form of the approximate patterns mined in Section 4.2.

Given each pattern p and all its instances Ip, the dom-
inant form of p is defined as the instance of p that has the
smallest average mapping distance to other instances in Ip.
This dominant form of p will be a representative approximate
pattern. Algorithm 7 summarizes the procedure.

Algorithm 7 Representative pattern consensus refinement

input: a set of patterns P
ouput: a set of refined representative patterns Prefine

1: Prefine ← ∅;

2: for p in P do

3: i ← 1
|Ip|−1

mini∈Ip

∑
ip∈Ip,i �=ip

μ(ip, i);

4: Prefine ← Prefine ∪ {i};

5: return Prefine

�!! ��� ��������� $� ����$�� ��� ������� ��

�

���	���	��
	

��
� �

�

'

'

�
"

�
"

'

#������ ��

�

�

'

'

�

�

'

'

�
((

���	

������� �������� ��
!�

�
 % �3

�� 3 �%

�
 ����

�� � %�

Figure 6: Consensus refinement example

Consider the approximate pattern p3 shown in the pat-
tern mining component of Figure 2 as an example. Figure 6
shows all of its instances and the graph mapping distances
between each pair of instances. From the graph mapping
distance table, we know that i3 achieves the smallest average
graph mapping distances among all three instances. There-
fore, the dominant form of p3 is i3, and p3 is replaced by the
representative pattern i3 as shown in the consensus refine-
ment component of Figure 2.

5 Experiments

In this section we present the experimental results for e-
valuating our proposed method. We first briefly describe
the datasets used in Section 5.1. In Section 5.2, we give a
comprehensive analysis of REAFUM in terms of the effec-
tiveness, sensitivity and scalability using synthetic dataset-
s. Then in Section 5.3 we compare the result of REAFUM
with that of an exact subgraph mining algorithm, Gaston,
on a chemical compound dataset. REAFUM is written in
Java and Gaston was downloaded from the Gaston project
website. All experiments were done on a Coretm i7-3770
CPU@3.40GHz PC.

5.1 Data Sets In this section, we describe the synthetic
dataset and chemical compound dataset used in the experi-
ments.

Synthetic Dataset. We built a data generator that takes
six parameters as inputs to control the graph database:

1. the number of graphs in the database , denoted as |D|.

2. the average size (i.e. the number of vertices) of the

database graph, denoted as |g|.

3. the number of patterns embedded in the database, de-
noted as |Prefine|.

4. the average size (i.e. the number of vertices) of the

pattern, denoted as (|p|).

5. the support for the pattern, denoted as sup.

6. the number of edit operations allowed when matching
approximately, denoted as β.

Table 2: Default parameter setting

Settings |D| |g| |Prefine| |p| sup β |RD|
setting 1 300 100 30 10 0.1 3 30

Based on the above input parameters, patterns are ran-
domly generated and embedded in the graph database. The
default parameter setting is shown in Table 2. Under this de-
fault setting, the database contains 300 graphs; the size of
the database graph is 100 on average; 30 patterns are em-
bedded approximately 30 (0.1×300) times each; the pattern
and its approximate matches may have up to 3 edit opera-
tions; and we select 30 graphs as representative graphs. In
our experiments, when we vary one parameter, the remain-
ing parameters are set at their default values. All the results
reported below are average of 5 runs.

Chemical Compound Dataset. The chemical com-

pound dataset5 is widely used in pattern mining algorithms
[14, 21, 23, 26]. The dataset contains 340 chemical com-
pounds, 24 different atoms, 66 atom types, and 4 type-
s of bounds. The 340 chemical compounds form a graph
database of 340 graphs. Atoms are modeled by vertices and
the type of atoms forms the vertex labels. Vertices are then
connected by edges to model the bound relationship. The
graph database contains 27 vertices and 27 edges per graph
on average. The largest one contains 214 edges and 214 ver-
tices. The goal is to find the approximate frequent chemical
compound substructures.

5.2 Performance on Synthetic Dataset In this section,
we investigate the effectiveness, sensitivity, and scalability
performances of REAFUM based on the synthetic dataset.
Since there is no golden standard in approximate pattern
mining, the patterns embedded in the synthetic dataset will
be used as the ground truth.

Effectiveness : We compare the the representative ap-
proximate patterns mined by REAFUM with the embedded
patterns with the default parameter setting. We run the de-
fault setting. For each mined pattern, we find its most simi-
lar seed pattern. Then their graph edit distance is computed.
The average graph edit distance is 0.3. Given that the av-
erage pattern size is 10, this small edit distance is expected

5The dataset is available at http://www.liacs.nl/ snijssen/gaston/

763 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/3

0/
15

 to
 1

28
.9

7.
24

5.
11

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

because each instance we embedded in the graphs may have
edit distance of up to 3 from the seed pattern. In our experi-
ments, 90% of the time the consensus pattern is identical to
the seed pattern, and 10% of the time the consensus pattern
is a variation of the seed pattern.

Sensitivity : To evaluate REAFUM’s sensitivity to the
edit operations allowed, β is set to 5 different values (β =
1, 2, 3, 4, 5). Figure 7 shows that REAFUM finds all thirty
embedded patterns, while Gaston fails to find any of them.
This demonstrates that REAFUM is robust to the change in
parameter β and pattern mining algorithms based on exact
matching can not handle approximate patterns.

We also test REAFUM’s sensitivity to the number of
representative graphs selected in RD. |RD| is set to different
values (RD = 1, 2, 3, 4, 5, 6, 10, 20, 30). Figure 8 shows that
when we only select three representative graphs, we find 21
of the 30 embedded patterns. All embedded patterns are dis-
covered when we have 5 or more representative graphs. This
shows that the greedy algorithm applied in the representative
graph selection component is able to find a small number of
diverse graphs as representative graphs which well cover the
space of frequent subgraphs.

1 2 3 4 5
0

10

20

30

40

Errors allowed

N
um

be
r

of
 p

at
te

rn
s

REAFUM
Gaston

Figure 7: Sensitivity to β on
synthetic data

0 10 20 30
5

10

15

20

25

30

35

Number of representative graphs |R
D
|

N
um

be
r

of
 p

at
te

rn
s

Figure 8: Sensitivity to |RD|
on synthetic data

Scalability : In this part, we will test the REAFUM’s
scalability to the number of graphs in the database, the size
of the database graphs, the size of embedded patterns, the
number of embedded patterns, sequentially.

• To test the scalability performance to the number of
graphs in the database, |D| is set to different values |D|
= 150, 200, 250, 300, 350.

• To test the scalability performance to the size of the

database graphs, |g| is set to different values |g| = 50,
75, 100, 125, 150.

• To test the scalability performance to the size of embed-

ded patterns, |p| is set to different values |p| = 5, 10, 15,
20, 25.

• To test the scalability performance to the number of
embedded patterns, |Prefine| is set to different values

|Prefine| = 10, 20, 30, 40.

We divide the running time of REAFUM into two parts,
representative selection time and patterning mining time.
Representative selection time is the time needed to select the
representative graphs, and patterning mining time is the time
needed to find patterns from the those selected representative
graphs. Figures 9, 10, 11, 12 show the running time as a
function of varying one parameter. We can observe that the
execution time of pattern mining scales linearly with respect
to the number of graphs, graph size, number of embedded
patterns, and pattern size. However, the representative
selection is still improvable, because the running time can be

150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Ru
nn

in
g

tim
e

(m
in

s)

Number of database graphs |D|
150 200 250 300 350

5

10

15

20

25

30

35

40
Pattern mining
Representative selection

Figure 9: Scalability to
database size on synthetic da-
ta

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Ru
nn

in
g

tim
e

(m
in

s)

50 60 70 80 90 100
0

20

40

The size of graphs |g|

Representative selection
Pattern mining

Figure 10: Scalability to
graph size on synthetic data

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Ru
nn

in
g

tim
e

(m
in

s)

5 10 15 20 25
25

25.5

26

26.5

27

27.5

The size of pattern |p|

Representative selection
Pattern mining

Figure 11: Scalability to pat-
tern size on synthetic data

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Ru
nn

in
g

tim
e

(m
in

s)

Number of patterns |P
refine

|
5 10 15 20

26.1

26.2

26.3
Pattern mining
Representative selection

Figure 12: Scalability to
number of patterns on syn-
thetic data

dramatically reduced, since both the pairwise graph mapping
distance and the pairwise star mapping distance can be
calculated in parallel. We leave this for feature work.

5.3 Performance on Chemical Dataset In this section we
evaluate the performance of REAFUM on the real dataset.
We compare REAFUM with Gaston, which is a pattern
mining algorithm based on exact matching. We examine
the number of patterns and the size of patterns mined by
REAFUM and Gaston, respectively.

The support threshold σ ranges from 30% to 70%.
For REAFUM, the number of edit operations allowed for
approximate match, β, is set to 3, and the number of
representative graphs is set to 34 (10%|D|). Only patterns
of size 4 or larger are included in the comparisons.

0.2 0.4 0.6 0.8
0

2

4

6

8

Support threshold

A
ve

ra
ge

 s
iz

e
of

 p
at

te
rn

s

Gaston
REAFUM

Figure 13: Average size of
patterns on chemical data

0.2 0.4 0.6 0.8
10

-2

10
0

10
2

10
4

Suport threshold

N
um

be
r

of
 p

at
te

rn
s

(s
iz

e>
3)

Gaston
REAFUM

Figure 14: Number of pat-
terns on chemical data

Figure 13 shows that the patterns reported by REAFUM
are larger than that by Gaston on average. Figure 14 suggests
that REAFUM is able to find more patterns than Gaston
with the same support threshold. When σ = 70%, there
is no frequent pattern based on exact matching. However,
REAFUM can still find 12 approximate patterns. This is
because each approximate pattern discovered by REAFUM
may summarize similar patterns found by Gaston or may
represent the consensus of patterns that are small variations
of each other but missed by Gaston.

764 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/3

0/
15

 to
 1

28
.9

7.
24

5.
11

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

%%

%

%%

 %

%%

% %

%%

 %

� � � �
% � � � �

% � %

��
	 ���	 ���	 ��1
	

Figure 15: Pattern summa-
rization example

% % % % %

% % % % %

% % % %

� � � �

� � � �

� � �

%

%

��
	

���	 ��1
	

Figure 16: Pattern rescued
example

Figure 15 shows an example that a REAFUM pattern
may summarize several similar patterns found frequent by
exact matching algorithms. When σ = 60%, Gaston reports
three similar patterns p1, p2, and p3, while REAFUM only
reports p′1 and regards p1 and p3 as p′1’s instances. Figure 16
shows an example that REAFUM may rescue pattern varia-
tions found infrequent by exact matching algorithms. When
σ = 60%, Gaston finds two similar patterns p1 and p2, and
all of their supergraphs are infrequent. REAFUM identifies
a larger subgraph pattern p′1 as an approximate pattern. From
these observations, we expect that REAFUM discovers more
and larger patterns than Gaston, which is demonstrated in
Figure 14 and Figure 13, respectively.

6 Conclusion

In this paper we investigate the problem of representative ap-
proximate pattern mining. We discuss the limitations of ex-
isting pattern mining methods based on exact matching and
propose an approximate subgraph mining algorithm REA-
FUM. REAFUM constructs a list of representative graphs,
from which frequent representative subgraphs are enumer-
ated allowing approximate matches, and consensus pattern-
s are derived. Through a comprehensive experiment, we
demonstrate the superior performance of REAFUM.

7 Acknowledgement

This work was partially supported by NSF IIS-1162369.
We would like to thank the anonymous reviewers for their
insightful comments.

References

[1] Niusvel Acosta-Mendoza, Andrés Gago Alonso, and José E.
Medina-Pagola. Frequent approximate subgraphs as features
for graph-based image classification. Knowl.-Based Syst.,
27:381–392, 2012.

[2] Christian Borgelt and Michael R. Berthold. Mining molecular
fragments: Finding relevant substructures of molecules. In
ICDM, pages 51–58, 2002.

[3] Horst Bunke and Kim Shearer. A graph distance metric based
on the maximal common subgraph. Pattern Recognition
Letters, 19(3-4):255–259, 1998.

[4] Jason Cong, Hui Huang, and Wei Jiang. A generalized
control-flow-aware pattern recognition algorithm for behav-
ioral synthesis. In DATE, pages 1255–1260, 2010.

[5] Jason Cong and Wei Jiang. Pattern-based behavior synthesis
for fpga resource reduction. In FPGA, pages 107–116, 2008.

[6] Stephen A. Cook. The complexity of theorem-proving proce-
dures. In Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio,
USA, pages 151–158, 1971.

[7] Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and
George Karypis. Frequent substructure-based approaches for
classifying chemical compounds. IEEE Trans. Knowl. Data
Eng., 17(8):1036–1050, 2005.

[8] Mirtha-Lina Fernández and Gabriel Valiente. A graph dis-
tance metric combining maximum common subgraph and

minimum common supergraph. Pattern Recognition Letter-
s, 22(6/7):753–758, 2001.

[9] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, Jérémy
Besson, and Mohammed Javeed Zaki. ORIGAMI: mining
representative orthogonal graph patterns. In Proceedings
of the 7th IEEE International Conference on Data Mining
(ICDM 2007), October 28-31, 2007, Omaha, Nebraska, USA,
pages 153–162, 2007.

[10] Huahai He and Ambuj K. Singh. Graphrank: Statistical mod-
eling and mining of significant subgraphs in the feature s-
pace. In Proceedings of the 6th IEEE International Confer-
ence on Data Mining (ICDM 2006), 18-22 December 2006,
Hong Kong, China, pages 885–890, 2006.

[11] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM J. Com-
put., 2(4):225–231, 1973.

[12] M. Shahriar Hossain and Rafal A. Angryk. Gdclust: A graph-
based document clustering technique. In ICDM Workshops,
pages 417–422, 2007.

[13] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xi-
anghong Jasmine Zhou. Mining coherent dense subgraph-
s across massive biological networks for functional discov-
ery. In ISMB (Supplement of Bioinformatics), pages 213–221,
2005.

[14] Jun Huan, Wei Wang, and Jan Prins. Efficient mining of
frequent subgraphs in the presence of isomorphism. In
ICDM, pages 549–552, 2003.

[15] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An
apriori-based algorithm for mining frequent substructures
from graph data. In PKDD, pages 13–23, 2000.

[16] Yi Jia, Jintao Zhang, and Jun Huan. An efficient graph-
mining method for complicated and noisy data with real-
world applications. Knowl. Inf. Syst., 28(2):423–447, 2011.

[17] Chuntao Jiang, Frans Coenen, and Michele Zito. Finding
frequent subgraphs in longitudinal social network data using
a weighted graph mining approach. In ADMA (1), pages 405–
416, 2010.

[18] Derek Justice and Alfred O. Hero. A binary linear program-
ming formulation of the graph edit distance. IEEE Trans. Pat-
tern Anal. Mach. Intell., 28(8):1200–1214, 2006.

[19] Mehmet Koyutürk, Ananth Grama, and Wojciech Sz-
pankowski. An efficient algorithm for detecting frequent sub-
graphs in biological networks. In ISMB/ECCB (Supplement
of Bioinformatics), pages 200–207, 2004.

[20] Harold W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2:83–97,
1955.

[21] Michihiro Kuramochi and George Karypis. Frequent sub-
graph discovery. In ICDM, pages 313–320, 2001.

[22] Jianzhong Li, Yong Liu, and Hong Gao. Efficient algorithms
for summarizing graph patterns. IEEE Trans. Knowl. Data
Eng., 23(9):1388–1405, 2011.

[23] Siegfried Nijssen and Joost N. Kok. A quickstart in frequent
structure mining can make a difference. In KDD, pages 647–
652, 2004.

[24] Luc De Raedt and Stefan Kramer. The levelwise version
space algorithm and its application to molecular fragment
finding. In IJCAI, pages 853–862, 2001.

[25] John W. Raymond, Eleanor J. Gardiner, and Peter Willett.
Rascal: Calculation of graph similarity using maximum com-
mon edge subgraphs. Comput. J., 45(6):631–644, 2002.

[26] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure
pattern mining. In ICDM, pages 721–724, 2002.

[27] Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua
Feng, and Lizhu Zhou. Comparing stars: On approximating
graph edit distance. PVLDB, 2(1):25–36, 2009.

[28] Shijie Zhang and Jiong Yang. Ram: Randomized approxi-
mate graph mining. In SSDBM, pages 187–203, 2008.

[29] Shijie Zhang, Jiong Yang, and Shirong Li. RING: an inte-
grated method for frequent representative subgraph mining.
In ICDM 2009, The Ninth IEEE International Conference
on Data Mining, Miami, Florida, USA, 6-9 December 2009,
pages 1082–1087, 2009.

765 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/3

0/
15

 to
 1

28
.9

7.
24

5.
11

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

