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The goal of genome wide association (GWA) mapping in modernt@gsnie to identify genes
or narrow regions in the genome that contribute to geneficamplex phenotypes such as
morphology or disease. Among the existing methods, tree-tsssetiation mapping methods
show obvious advantages over single marker-based and yya@lbased methods because they
incorporate information about the evolutionary history lté genome into the analysis. How-
ever, existing tree-based methods are designed primarilpifiary phenotypes derived from
case/control studies or fail to scale genome-wide.

In this paper, we introduce TreeQA, a quantitative GWA magpailgorithm. TreeQA utilizes
local perfect phylogenies constructed in genomic regiorfsbéing no evidence of histori-
cal recombination. By efficient algorithm design and impleragah, TreeQA can efficiently
conduct quantitative genom-wide association analysis simdore effective than the previous
methods. We conducted extensive experiments on both simwudatedets and mouse inbred
lines to demonstrate the efficiency and effectiveness ofQkee

1. Introduction

Genome wide association (GWA) mapping locates genes anwamegions in the
genome that have significant statistical connections togtypes of interest. The
discovery of these genes and regions offers the potentiattease understanding
of biological processes controlling manifestation of ptitgpes.

The most frequent genetic variants are single nucleotidgnpmrphisms
(SNPs), in which a single nucleotide in the genome diffettsvben individuals
within a species. With the development of low-cost genatggechnologies, ex-
tensive SNP data can be cheaply and efficiently producedhabither increases
the computational complexity of GWA mapping. Thus, theransevident need
for fast and effective GWA mapping methods.

Existing methods of association mapping look for similagtamong samples
(chromosomes, haplotypes, etc.) that are correlated hétphenotypes. If strong
associations are present, the variance of the phenotypévgtoups of similar
samples is substantially smaller than the variance oveaatiples.

For example, in single marker-basét® and haplotype-based association
mapping %412, samples are grouped according to their genetic variatican a
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single marker or a set of markers. For case/control phergtyparkers that can
divide samples into (almost) pure classes are reportedugththese methods em-
ploy different strategies for grouping samples, the derigeoups are evaluated
without further consideration of the intergroup simile$t or alternate groupings.

In observation of this, tree-based association metHéd%!? utilize phylo-
genies constructed over the samples. The phylogeny treeich get compact
representation of genetic similarities of the samples.ravjges sensible group-
ings of samples at multiple resolutions. However, the exdsmethods either
handle only case/control phenotypés?® or do not scale to GWA mapping.

In this paper, we introduce TreeQA, a tree-based quantt@&@wWA mapping
algorithm. TreeQA utilizes local perfect phylogeny treesstructed in genomic
regions exhibiting no evidence of historical recombinaty the 4-gamete test
Given a perfect phylogeny, TreeQA evaluates all impliecugings and finds the
strongest associations to the phenotype. FurthermoreQRecan identify and
remove outliers during association analysis.

A brute-force implementation consists of a double loop:eeery phylogeny
tree, and for every grouping represented by the tree, we ummnal separate
ANOVA test to measure its association to the phenotype, aed kack of the best
groupings and trees. This approach is inefficient and prmnaitiple test errors
Both the number of trees and number of groupings per tree earety largé.
This large number of possible groupings requires many AN®&4s, which is
not only expensive computationally, but also gives riseplari®us associatiols
Thus, permutation tests are necessary to ensure theisttstnificance of the
discovered associations, which will further increase thmgutational burden.

TreeQA exploits the following properties: (1) Groupingsgeated from the
same tree obey a partial order, thus allowing reuse of irddrate computations;
(2) A grouping may be derived from different trees, but onbed to be eval-
uated once; and (3) Different phenotype permutations mayesh substantial
number of common computations that need to be computed ordg.oThus,
TreeQA employs two prefix-tree structurésto organize all observed sample
subsets and groupings to facilitate the caching and refr@weusable computa-
tions and guide the enumeration and evaluation of groupidgs result, TreeQA
is able to handle quantitative GWA mapping very efficientigléas more effective
and robust in association mapping than previous methods.

2. Related Work

Single-feature association mappih® considers the sample groupings induced
independently by each single marker. Statistical testh asg? and F-tests are
used to measure the association between the phenotypeandreaping. These
methods are computationally efficient, however, they dautitize the additional

aFor example, the number of trees can exceed tens of thousaadshimmosome-wide association
study. And there are up 27”2 groupings that can be generated from a tree eamples.
bWith ¢ error rate, the risk of reporting at least one spurious aaton fromz tests isl — (1 — £).
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information content carried by haplotypes over single raegk

To address this shortcoming, haplotype-based methodshesredeveloped.
HAM 15 considers combinations of three consecutive SNPs alongeheme.
QHPM 8 uses frequent pattern mining methods to find haplotype patie the
data, upon which sample groupings are created and evaludagdliner'© clus-
ters samples using consecutive subsets of markers, andgbess the phenotype’s
association strength.

The utility of local phylogenies in association mapping baen recently ex-
plored in TreeLD'?, Blossoc!?, and TreeDT'®. These methods use trees to rep-
resent sample similarities. Their approach is to exhagigtiexamine all possible
groupings implied by the given phylogenies without expljcéxcluding any out-
liers. Both Blossoc and TreeDT assume simple categori¢a&iyp) phenotypes.
TreeLD handles quantitative phenotypes but is not scataltBNA analysis.

Some other work:"16 uses a global phylogeny structure, e.g., ancestral re-
combination graph, over all markers in association mappkigwever, because
of the high computational cost of global phylogeny congtam; these methods
are not scalable to genome-wide analysis.

3. Preliminaries

We use a binary matri¥{ = S x M to represent a SNP dataset, whére=
{51, 82, ..., $n} is the set of samples, andl = {mj,ma,...,m.} is the SNP
marker set. Each sample is represented by a binary vectehiah '0’ represents
the majority alleles and '1’ represents the minority akkelé/e usef (s;) to denote
the phenotype value of a sampleand F(S’) to denote the phenotype values of
samples in a subsét. An example matrixd containing 10 samples and 10 SNP
markers with phenotype is shown in Fig. 1(a).
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Figure 1. Example: a SNP dataset and a perfect phylogeny tree

Compatible region: A consecutive region of the genome is called a compat-
ible regioniff any pair of markers in that region are compatible by the 4aam
test?. That is, among the 4 possible haplotypes formed by the twixens, at
most three of them occur.

A compatible region is a genomic region exhibiting no eviceenf historical
recombination. In Fig. 1(a), the region from markets to msg is a compatible
region. We us&’,, ,, to denote a compatible region from markets to m,,.

Maximal Compatible region: A compatible region is a maximal compatible
regioniff it can not be extended on either side to include more SNPseandins
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compatible.

Perfect Phylogeny Tree A phylogeny tree for a set of samplesperfect if
the phylogeny avoids homoplasy. Every SNP is introduced imwutation and is
represented by an edge of the tree. Given a genomic regiarfecpphylogeny
existsiff the region is a compatible region.

We useT,, , to denote the perfect phylogeny tree of compatible regign.
Given (4 g in Fig. 1(a), its tre€l} g is shown in Fig. 1(b). All samples are at
the leaf nodes. Samples having identical haplotypes indbi®n share the same
leaf node in the tree, e.gg; andss. Each internal node represents a hypothetical
common ancestor of a subset of samples. Each edge uniquegsponds to a
SNP (or a historical mutation). Interested readers may tefeaper® for inferring
perfect phylogenies from a set of SNPs.

Let E(Ty,,) = {e1,e2,...,e,} denote the set of edges T, ,. The removal
of each edge partitions the samples into two subsets demgyteti®) (e;) and
SM(e;). Given a treeT,, ,, we can generat|/E(T, )| sample subsets by re-
moving each edge separately. We denote this set of sampsetstiysS (%) (Tu,v)s
SE) (Tuw) = {S(j)(ei”j ={0,1},e; € E(Tu0)}-

Definition 3.1. A grouping of a sample subsst, G(S’), is formed by a set of
disjoint subsets of’, G(S") = {51, S}, ..., S}, S, € &', 5iNS, =, UL, S =
S’. Given a tre€el, ,,, we say a groupingz(S’) follows T, ,, Iff VS, € G(5’),
St e SENT,.).

For example, grouping+(S’) = {{s1, s5, $2, 83}, {ss, S9, 87, $10} } follows
the tree in Fig. 1(b), while groupinG(S’) = {{s1, s2}, {ss, s4}} does not.

Definition 3.2. Given a sample subsét, G, (S") is called aparent-grouping of
G2(5") (G2(S") called achild-grouping of G (S")) iff VS! € G1(S")

38} € Go(S'),5.t.5] = Sj. OR 3{S] |5} € Go(S'),q=1,..,u},st.5 = S,
q=1

A child-grouping represents a finer partition of its pargriuping on the same
set of samples. For example, groupifis, ss, s2, S3}, {4, S6} } is the parent-
grouping of{{s1, s5}, {s2,s3}, {s4,56}}. We summarize the notations in Table
1.

Association between a Compatible Region and a Phenotype

We use the one-way ANOVA test with permutations to measugeatisociation
between a grouping of samples and a quantitative phenofiqpeccelerate the
execution, we re-derive the formula of the ANOVA test.

Given a grouping=(S’) = {51, ..., 5.}, for everyS; € G(S’), we calculate

SQSH = D fs)? SM(S) = > f(s)) (1)

Sj ES; sjeS;
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Table 1. Summary of Notations

S, s, S, the sample set, a sample, a subset of samples

M, m; the marker set, a marker

H a binary matrix representing the data

Cuw a compatible interval off

F(si) phenotype value of sample

F(S]) the set of phenotype values of the sampleS/in

G (S a grouping of a sample subsets S’

Tuv the perfect phylogeny tree 6f,,

E(Tu,v) the edge set df’, v

S(E) (Tu,») | the set of sample subsets implied in ti&e, (leaf-sets)

SSE; = SQ(S) — SM(S{)*/|Si|, SSB; = SM(S{)*/|Si| )
Combining all subsets together, we haMe\/ = ‘S—l,l Zle SM(S!) and

k

k
1 . o 1 L / . 2
> SSE;, MSB= 7]6_1(25532 18" - MM?)  (3)

MSE = ———
SE =19 =F -
=1

We obtain a base score for groupi6gs’)

’ MSB
Fo(G(S)) = MSE 4)

A higher score indicates a stronger association betweegrthging and the
phenotype. Given the tree and the data in Fig. 1 and the follptwo groupings:
G(S7) = {{s2,53},{84,56},{88, 89} }, G(S5) = {{s2, 53}, {ss, 59} }, the scores
aref o(G(S7)) = 0.44, Fo(G(S%)) = 4.16. Thus, grouping=(S4) has a stronger
association with the phenotype than groupi@; ).

To correct the multiple test errors, we apply a permutatest onG(S’) to
calculate a significance score. To permute the phenotypghanotype values in
F(S") are randomly re-assigned to samplesin Then we calculate an-score
using the permuted phenotype following Egs. 1 to 4.

Assume that we condunoPermrandom permutations in total, for each permu-
tation, we get scorg ;(j = 1...nPerm). Among thenPerm [ -scores, lep be
the number of scores which are greater than or equal to tleedoaser ((G(S")),
i.e.,p=[{F;|F; > Fo(G(5)),j € 1..nPerm}|. Then the significant scoré(
score) ofG(S") is

P(G(S')) = logso ( (5)

A higher P score indicates that the association between groufiftfj) and
the phenotype is more significant.

nPerm)

Definition 3.3. The association between a compatible regioand a pheno-
type: For a compatible regioty, ,,, the highestP score achieved by any group-
ing following T, ,, is regarded as th& score ofC,, ,,. The P score represents the
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association between the compatible region and the pheaotyp
P(Cu,v) = maz{P(G;j(S"))VG;(S") follows Tuw,S C S}. (6)

Problem Definition: Given a SNP data and a quantitative phenotype, calculate
the P-score of every maximal compatible region and report thetrsigmificant
ones.

4. TreeQA Algorithm

TreeQA takes two major steps: 1) identify maximal compatitdgions in the
genome and construct the perfect phylogenies of the regircompute the as-
sociation between each compatible region and the phenotype

4.1. Maximal Compatible Region and Phylogeny Construction

TreeQA scans the markers in a left to right order. In orderrid the maximal
compatible regions, it continuously extends the curregibreby adding the next
marker until the new marker is incompatible with some maskarthe region.
And it maximizes the overlap between two consecutive regjiédrssume that the
current compatible region &, ,,, and markefn,, . is incompatible with markers
My sy, U < 41 < ... < i < v, then TreeQA starts the next compatible
region at markern;, +;. For each maximal compatible region, TreeQA utilizes
the inferring algorithn® to construct the local perfect phylogeny.

4.2. Association Computing

In the second step, TreeQA takes as input a quantitativeqiyyesm and a set of lo-
cal perfect phylogenies. It considers all possible groggfiollowing the phyloge-
nies and systematically explores the search space of thesgings in a carefully
designed order such that intermediate computations caraemally reused.

According to Definition 3.1, any grouping of a sample sub#eat follows a
treeT,, , can be created from non-overlapping subsets{{fl (7,,.,). By utilizing
the lexicographical ordérof subsets inS(E)(TM), TreeQA can enumerate and
evaluate all combinations of non-overlapping subsetssyatically.

TreeQA enumerates all groupings via a depth-first recurgikacedure.
TreeQA extends the current grouping by including a new sarspbset which
does not overlap with any subsets in the current grouping.aslsociation of each
new grouping to the phenotype via a permutation test is coedpT heP score of
the corresponding maximal compatible region is updatedraangly. The enu-
meration continues recursively for each newly extendedgra.

Consider the tree in Figure 1. There are 14 sample subséiéEi)r(TLg).
Assume that the subsets have the following order,

¢Considering groupings of a sample subset allows TreeQA ttuézcpotential outliers from the
ANOVA test.
dAny other ways of defining a total order of the subsets wolsd afork.
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se1 = {s1,85},se2 = S — seq, ses = {s2,s3},5e4 = S — ses, se5 = {54, 56}
seg = S — ses, ser = {sg, 89}, seg =S — sey, seg = {s7,510}, se10 = S — seg
se11 = {s1,85,52,53},5e12 = S —se11, se13 = {ss, 59, 57,510}, s€14 = S — s€13

TreeQA first generates a grouping containiag only. Among the remaining
sample subsetd,ses, ses, ses, ser, seg, se1a, se13+ do not overlap withse;. In
the next step, a groupin@se;, seo} is formed by addingse, into the current
grouping and itsP score is calculatedP(C g) is updated accordingly. Since
all other sample subsets overlap witly or sex. Thus, no new grouping can be
extended from{seq, ses}. Then, TreeQA examines the next grouping extended
from {se; }, {se1, se3}, and all groupings extended from it. After examining all
groupings containinge;, TreeQA will start from the groupingses } and extend
it recursively to generate all groupings containiig but notse;. This process
continues until all distinct groupings are enumerated.

4.3. Effective Permutation

We found that more thaf0% of the execution time of TreeQA is spent in per-
mutation tests. Given a groupin@(S’), a permutation test is conducted in two
steps: 1) randomly re-assigning the phenotype valudd(##f) to samples in5’;

2) calculating the correspondirigscore by Eq. 4.

Given a subsef’, both steps tak€®(|S’|) time. TreeQA exploits maximal
reusability of intermediate computation shared by pertariathrough the fol-
lowing two optimizations:

1) inTreee Common computation units shared by permutation tests of
parent/child-groupings in a tree.

2) amgTree: Common computation units shared by permutation tests on
groupings following multiple trees.

We use two global prefix-tree structurgs Treegrouping aNdTreesypset 10
organize groupings and sample subsets examined thus factely to enable
effective permutation tests.

4.3.1. inTree: Effective permutation tests within a tree

A pair of parent/child-groupings always involve the sameasesamples. Lefs’
denote a set of samples. For the permutation tests of thatfariéd groupings of
S’, instead of re-assigning the phenotype valueE (§’) independently for each
grouping, they can share the same set of random permutatidnss’).

For example, given the example in Fig. 1 and a pair of parbifdic
groupings, G1(S") = {{s1,ss,52,83},{5s,89,57,810}} and Ga(S’) =
{{817 85}, {82, 83}7 {88, S9, S7, 81(]}}, their F o scores a.re:F()(Gl(S’)) = 9.79
andf o(G2(S")) = 4.32. Assume that after a random permutation, the new phe-
notype values for the samples arg(s;) = 85, f(s2) = 79, f(s3) = 109,
f(85) = 61, f(87) = 86, f(Sg) = 97, f(Sg) = T8, f(le) = b4. Us-
ing this new assignment, we can calculate the wegcores for both groupings:
F(G1(57)) = 0.12andF (G2(S")) = 0.7. By reusing the phenotype permutation
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betweenG, (S’) andG4(S”), we saveD(].S’|) runtime in each permutation.

A child-grouping represents a finer partition of sample stdb# its parent-
grouping. We say a grouping is at the finest level if it doeshate any child-
groupings. We use a global prefix-trd&-ceg,ouping 10 index all groupings
and maintain the parent/child relationship through aawiilinks (from a child-
grouping to its parent-groupings). For each permutatiothefphenotype, the
scores of a finest grouping and all of its parent-groupingscafculated together.
We examine the finest grouping immediately followed by thaneixation of its
parent groupings for maximum computation reuse. If a fine#t-grouping has
n parent-groupings, we sa¥&(n|S’|) time in each permutation.

4.3.2. amgTree: Effective permutation among trees

The same grouping occurs repeatedly in different trees. Myereeed to compute
its P score at its first occurrence. We UBeee ,ouping 10 Store and retrieve the
score of all examined groupings. If the grouping formed bg€lA can be found
in Treegrouping, itS P score is directly used. Otherwise, f&sscore is calculated
and stored i'reegrouping-

4.4. Reuse of | ntermediate Computation of Statistical Tests

For any sample subsst, SQ(S’) andSM (S’) calculated using the original phe-
notype values (with no permutation) may be reused in anygingLcontainings’
and all its parent-groupings. We denote themSy,(S’) and.SMy(S”) respec-
tively in the following discussion.

We employ a global prefix-tréBree,pse: t0 keep track of all sample subsets
in any groupings examined thus far. Three values are stdréldedeaf node
corresponding to the subsgt (subset ID,SQo(S"), SMy(S")).

For example, given the 10 samples and their phenotype vallkég. 1(a), we
calculate the base scafg) of groupingG1(S’) = {{s1, s5}, {s2, s3}, {s7, $10}}-

5Qo(51,) = 19106, SQo(S1,) = 16805, SQo(S1,) = 9000.

SMo(S1,) =194, SMo(S7,) = 183, SMy(S7,) = 132.

Fo(G1(S7)) = 547.17/212.17 = 2.58.

The SQo and.SM, values of the three subsets are then storebriee, et .
Given a parent-grouping afy (S"), G2(S’) = {{s1, s5, 2,83}, {87,810} }, we
can retrieve the values 6fQQ, andS M, and use them to calculate,(G2(S")),

5Qo(S53,) = SQo(S1,) + SQo(S1,) = 35911, 5Q0(S3,) = SQo(S1,)-

SMo(S5,) = SMo(S1,) + SMo(S1,) = 377, 5Mo(S3,) = SMo(S1,)-

F0(G2(S")) = 1064.08/166.69 = 6.38.

The reuse 0ofSQy(S’) and SMy(S’) between parent/child groupings may

work in conjunction with theinTree effective permutation. Beside$,Q(S’)
andSM,(S’) can also be reused by any groupings that contain the sghset
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5. Results

We compare TreeQA with the following algorithms: SMA, our implementation
of the Single Marker Association algoritht®; 2) HAM , our implementation of
the Haplotype Association Mapping algorithin that slides a 3-SNP window
through the genome; FapMiner 9, downloaded from the websfteand 4)
TreeLD '3, downloaded from the websiteBoth SMA andHAM use the one-
way ANOVA test for fair comparison.

QHPM 8 is not used for comparison because it is not scalable to ldagg
sets. Blossod¢ and TreeDT'® are not used because they require categorical phe-
notypes.

5.1. Experiments on Simulated Data

We use Coasimt! to simulate 1000 sequences with scaled recombination rate
p = 400 that corresponds roughly to 10 cM. 10,000 SNP markers amegla
uniformly at random over the sequences.

SNP markers on the sequences are randomly selected asilsgEtwith
one, two and three causative mutations. The first SNP is alaalgcted randomly
from all SNPs. In the cases of two and three mutations, thenskand third
causative SNPs are selected from compatible SNPs thatcatetbless than 10
SNPs away from the first SNP. Phenotype values are sampledféiar Gaussian
distributions: N7 (140, 35), N2(90,35), N3(50,40), and N4(10,35). The one-
mutation case used; and N3. The two-mutation case usé$;, N, and Vs.
The three-mutation case uses all four Gaussian distrisitiéfter assigning the
phenotype values, all causative SNPs are removed from theadd we randomly
select 100 sequences for our experiments.

SMA, HAM and HapMiner output the top one scoring locus as apestima-
tion of the causative locus, while TreeQA outputs the top aomapatible region.
We compare the effectiveness of the algorithms by measthadistance (in cM)
from the top one scoring locus or the center of the top onere the causative
SNP (or the average distance to every causative SNP). We¢heatlistance the
Prediction error .

Since HapMiner can not finish processing 10,000 SNP markeasreason-
able time, we only use the first 1,000 markers of each sequehea applying
HapMiner on the simulated data.

The comparison of SMA, HAM, HapMiner and TreeQA is shown igl¥e 2.
The x-axis represents the prediction error (distance)da@#usative locus and the
y-axis represents the percentage of causative loci whfoaind in distance less
thanz. In all three cases, the estimated loci by TreeQA are clastret causative
loci than those by SMA, HAM and HapMiner.

The TreeLD algorithm uses local phylogenies and analyzastitative phe-
notypes. However, TreeLD can only process a very small ainoiugtata in rea-

¢http://vorlon.case.edu/ jxI175/HapMiner.html
fhttp://pritch.bsd.uchicago.edu/treeld.html
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Figure 2. Comparison of SMA, HAM, HapMiner and TreeQA on thadated data
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Figure 3. Comparison of TreeLD and TreeQA on the simulated data

sonable time. Therefore, we select 36 samples and 20 SNReradrbm the
simulated data for performance comparison. A one-mutatarsative locus is
selected from the 20 SNPs. For TreeQA, instead of generatigmmgmal com-
patible regions as discussed in Sec. 4, a compatible regigenerated around
each SNP and contains up to five SNPs. TreelLD takes about tws temanalyze
this small data while TreeQA finishes in seconds. Figure Bsyilwe results from
TreeLD and TreeQA. The x-axis represents the simulatediposiin the genome
and the y-axis represents the scores of the SNPs. The Vdiricalemonstrates
the causative locus. TreeQA detects a peak near the caikativs while TreeLD
identifies two spurious peaks.

5.2. Experiments on Mouse Genotype Data

We used a set of mouse genotypes that combines experimadtahputed data
20 from the Jackson Laboratory, consisting of 74 samples. Tataset con-
tains over 7 million SNP markers distributed over all 20 chosomes. We re-
moved wild derived mouse inbred strains since they are gatwnely and qual-
itatively different than other laboratory inbred strainsgdave only used in our
experiments the remaining 55 samples that have a share sgthofion ancestral
relationship$’.

We used high density lipoprotein cholesterol (HDL-C) levigl blood as the
test phenotype, downloaded from the Mouse Phenome Datab@eeeral HDL-
C datasets are available, each of which was collected unffierecit conditions,

ghttp://cgd.jax.org/ImputedSNPData/imputedSNPs.htm
hhitp:/iphenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=roatister/req=Cblood-+lipids
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and are thus treated as separate phenotypes. Some candidasethat may play
arole in regulating HDL-C levels are reported’in

We apply SMA, HAM and TreeQA on the data and examine how clbsg t
can identify the top peak near the locus of those candidategye

5 10
Position x10 (base) Position x10° (base) Position x10(base)

Gene: Abch4 on chromosome 5. Genome Coordinates: 8893717-8959226 (base)
Phenotype: Paigen 2, baseline of HDL cholesterol (female)

Figure 4. Compare SMA, HAM and TreeQA on the mouse genotype data

TreeQA detects top peaks near the locations for over 10 otcémelidate
gene$, including Ppara, Abcb4 andRxrb. The top peaks reported by SMA and
HAM are often far from the locations of these genes. Due tesfianitation, we
only show the results for one of thedhcb4, in Figure 4.

FVB/NJ (94.7) KK/HLJ (89.3)
NOD/LtJ (54.6) ‘
BUB/BnJ (63.4)
SM/J(48)
A/J(45.3), AKR/J(44.9), BALB/cByJ(56.8), C3H/HeJ(75.8), C57BL/10J(44.6),
C57BL/6J(49.7), C57BLKS/J(36.7), C57BR/cdJ(67.8), CL/J(39.5), CBA/J(49.4),
DBA/1J(39.6), DBA/2J(43.3), I/LnJ(42.4), NON/LtJ(72.2), PL/J(51.7), RIIIS/
J(40.2), SEA/GnJ(52), SJL/J(40.6), SWR/J(46.8)

Figure 5. The perfect phylogeny at the peak point found be@r in Figure 4

The perfect phylogeny corresponding to the peak point (cdible region
from 8799298 to 8801558 (base)) found by TreeQA is plotte&igq 5. The
phenotype values of the samples are in parentheses. Samiplasmknown phe-
notype values are omitted from the tree. The subtree onghécontains samples
having high phenotype values while the subtree at the bottomtains samples
having low values. Other subtrees are considered as @utied are excluded
from the grouping. SMA and HAM fail to identify the locus bersz they only
examine sample groupings that can be generated from sihte 8r 3-SNP win-
dows, which are a small subset of the groupings examined dgQJA.

TreeQA takes about 10 minutes to analyze each chromosonuoh wbintains
around 40000 SNPs on average. SMA and HAM take slightly lese than
TreeQA. Both HapMiner and TreeLD are unable to finish in reabte time.

6. Conclusion

In this paper, we present a tree-based quantitative GWA mgpglgorithm,
TreeQA. TreeQA utilizes local perfect phylogenies in détecassociations. Per-
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fect phylogenies provide sensible groupings of samplesudtipte resolutions.
TreeQA explores the space of all possible groupings imfiethe perfect phy-
logenies in a carefully designed order so that intermediateputations can be
maximally reused. Our experimental results on both sinedland real data show
that TreeQA can efficiently conduct quantitative GWA aniysd is more effec-
tive than the previous methods.
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