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The goal of genome wide association (GWA) mapping in modern genetics is to identify genes
or narrow regions in the genome that contribute to genetically complex phenotypes such as
morphology or disease. Among the existing methods, tree-basedassociation mapping methods
show obvious advantages over single marker-based and haplotype-based methods because they
incorporate information about the evolutionary history of the genome into the analysis. How-
ever, existing tree-based methods are designed primarily forbinary phenotypes derived from
case/control studies or fail to scale genome-wide.
In this paper, we introduce TreeQA, a quantitative GWA mapping algorithm. TreeQA utilizes
local perfect phylogenies constructed in genomic regions exhibiting no evidence of histori-
cal recombination. By efficient algorithm design and implementation, TreeQA can efficiently
conduct quantitative genom-wide association analysis and is more effective than the previous
methods. We conducted extensive experiments on both simulateddatasets and mouse inbred
lines to demonstrate the efficiency and effectiveness of TreeQA.

1. Introduction

Genome wide association (GWA) mapping locates genes or narrows regions in the
genome that have significant statistical connections to phenotypes of interest. The
discovery of these genes and regions offers the potential toincrease understanding
of biological processes controlling manifestation of phenotypes.

The most frequent genetic variants are single nucleotide polymorphisms
(SNPs), in which a single nucleotide in the genome differs between individuals
within a species. With the development of low-cost genotyping technologies, ex-
tensive SNP data can be cheaply and efficiently produced, which further increases
the computational complexity of GWA mapping. Thus, there isan evident need
for fast and effective GWA mapping methods.

Existing methods of association mapping look for similarities among samples
(chromosomes, haplotypes, etc.) that are correlated with the phenotypes. If strong
associations are present, the variance of the phenotype within groups of similar
samples is substantially smaller than the variance over allsamples.

For example, in single marker-based17,5 and haplotype-based association
mapping10,4,12, samples are grouped according to their genetic variation at a
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single marker or a set of markers. For case/control phenotypes, markers that can
divide samples into (almost) pure classes are reported. Though these methods em-
ploy different strategies for grouping samples, the derived groups are evaluated
without further consideration of the intergroup similarities or alternate groupings.

In observation of this, tree-based association methods14,18,13 utilize phylo-
genies constructed over the samples. The phylogeny tree is arich yet compact
representation of genetic similarities of the samples. It provides sensible group-
ings of samples at multiple resolutions. However, the existing methods either
handle only case/control phenotypes14,18 or do not scale to GWA mapping13.

In this paper, we introduce TreeQA, a tree-based quantitative GWA mapping
algorithm. TreeQA utilizes local perfect phylogeny trees constructed in genomic
regions exhibiting no evidence of historical recombination by the 4-gamete test2.
Given a perfect phylogeny, TreeQA evaluates all implied groupings and finds the
strongest associations to the phenotype. Furthermore, TreeQA can identify and
remove outliers during association analysis.

A brute-force implementation consists of a double loop: forevery phylogeny
tree, and for every grouping represented by the tree, we conduct a separate
ANOVA test to measure its association to the phenotype, and keep track of the best
groupings and trees. This approach is inefficient and prone to multiple test errors1.
Both the number of trees and number of groupings per tree can be very largea.
This large number of possible groupings requires many ANOVAtests, which is
not only expensive computationally, but also gives rise to spurious associationsb.
Thus, permutation tests are necessary to ensure the statistical significance of the
discovered associations, which will further increase the computational burden.

TreeQA exploits the following properties: (1) Groupings generated from the
same tree obey a partial order, thus allowing reuse of intermediate computations;
(2) A grouping may be derived from different trees, but only need to be eval-
uated once; and (3) Different phenotype permutations may share a substantial
number of common computations that need to be computed only once. Thus,
TreeQA employs two prefix-tree structures21 to organize all observed sample
subsets and groupings to facilitate the caching and retrieval of reusable computa-
tions and guide the enumeration and evaluation of groupings. As a result, TreeQA
is able to handle quantitative GWA mapping very efficiently and is more effective
and robust in association mapping than previous methods.

2. Related Work

Single-feature association mapping17,5 considers the sample groupings induced
independently by each single marker. Statistical tests such asχ2 and F-tests are
used to measure the association between the phenotype and each grouping. These
methods are computationally efficient, however, they do notutilize the additional

aFor example, the number of trees can exceed tens of thousands ina chromosome-wide association
study. And there are up to22n−2 groupings that can be generated from a tree ofn samples.
bWith ε error rate, the risk of reporting at least one spurious association fromx tests is1 − (1 − ε)x.
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information content carried by haplotypes over single markers.
To address this shortcoming, haplotype-based methods havebeen developed.

HAM 15 considers combinations of three consecutive SNPs along thegenome.
QHPM 8 uses frequent pattern mining methods to find haplotype patterns in the
data, upon which sample groupings are created and evaluated. HapMiner10 clus-
ters samples using consecutive subsets of markers, and thenassess the phenotype’s
association strength.

The utility of local phylogenies in association mapping hasbeen recently ex-
plored in TreeLD13, Blossoc14, and TreeDT18. These methods use trees to rep-
resent sample similarities. Their approach is to exhaustively examine all possible
groupings implied by the given phylogenies without explicitly excluding any out-
liers. Both Blossoc and TreeDT assume simple categorical (binary) phenotypes.
TreeLD handles quantitative phenotypes but is not scalableto GWA analysis.

Some other work6,7,16 uses a global phylogeny structure, e.g., ancestral re-
combination graph, over all markers in association mapping. However, because
of the high computational cost of global phylogeny construction, these methods
are not scalable to genome-wide analysis.

3. Preliminaries

We use a binary matrixH = S × M to represent a SNP dataset, whereS =
{s1, s2, ..., sn} is the set of samples, andM = {m1,m2, ...,mz} is the SNP
marker set. Each sample is represented by a binary vector, inwhich ’0’ represents
the majority alleles and ’1’ represents the minority alleles. We usef(si) to denote
the phenotype value of a samplesi andF (S′) to denote the phenotype values of
samples in a subsetS′. An example matrixH containing 10 samples and 10 SNP
markers with phenotype is shown in Fig. 1(a).

(a) SNP data & phenotype (b) Tree T 
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Figure 1. Example: a SNP dataset and a perfect phylogeny tree

Compatible region: A consecutive region of the genome is called a compat-
ible regioniff any pair of markers in that region are compatible by the 4-gamete
test2. That is, among the 4 possible haplotypes formed by the two markers, at
most three of them occur.

A compatible region is a genomic region exhibiting no evidence of historical
recombination. In Fig. 1(a), the region from markersm1 to m8 is a compatible
region. We useCu,v to denote a compatible region from markersmu to mv.

Maximal Compatible region: A compatible region is a maximal compatible
regioniff it can not be extended on either side to include more SNPs and remains
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compatible.
Perfect Phylogeny Tree: A phylogeny tree for a set of samples isperfect if

the phylogeny avoids homoplasy. Every SNP is introduced by amutation and is
represented by an edge of the tree. Given a genomic region, a perfect phylogeny
existsiff the region is a compatible region.

We useTu,v to denote the perfect phylogeny tree of compatible regionCu,v.
Given C1,8 in Fig. 1(a), its treeT1,8 is shown in Fig. 1(b). All samples are at
the leaf nodes. Samples having identical haplotypes in the region share the same
leaf node in the tree, e.g.,s1 ands5. Each internal node represents a hypothetical
common ancestor of a subset of samples. Each edge uniquely corresponds to a
SNP (or a historical mutation). Interested readers may refer to paper3 for inferring
perfect phylogenies from a set of SNPs.

Let E(Tu,v) = {e1, e2, ..., ep} denote the set of edges inTu,v. The removal
of each edge partitions the samples into two subsets denotedby S(0)(ei) and
S(1)(ei). Given a treeTu,v, we can generate2|E(Tu,v)| sample subsets by re-
moving each edge separately. We denote this set of sample subsets byS(E)(Tu,v),
S(E)(Tu,v) = {S(j)(ei)|j = {0, 1}, ei ∈ E(Tu,v)}.

Definition 3.1. A grouping of a sample subsetS′, G(S′), is formed by a set of
disjoint subsets ofS′, G(S′) = {S′

1, S
′
2, ..., S

′
k}, S

′
i ⊂ S′, S′

i∩S′
j = ∅,

⋃k

i=1 S′
i =

S′. Given a treeTu,v, we say a groupingG(S′) follows Tu,v iff ∀S′
i ∈ G(S′),

S′
i ∈ S(E)(Tu,v).

For example, groupingG(S′) = {{s1, s5, s2, s3}, {s8, s9, s7, s10}} follows
the tree in Fig. 1(b), while groupingG(S′) = {{s1, s2}, {s8, s4}} does not.

Definition 3.2. Given a sample subsetS′, G1(S
′) is called aparent-grouping of

G2(S
′) (G2(S

′) called achild-grouping of G1(S
′)) iff ∀S′

i ∈ G1(S
′)

∃S′
j ∈ G2(S

′), s.t.S′
i = S′

j . OR ∃{S′
jq
|S′

jq
∈ G2(S

′), q = 1, ..., u}, s.t.S′
i =

u⋃

q=1

S′
jq

A child-grouping represents a finer partition of its parent-grouping on the same
set of samples. For example, grouping{{s1, s5, s2, s3}, {s4, s6}} is the parent-
grouping of{{s1, s5}, {s2, s3}, {s4, s6}}. We summarize the notations in Table
1.

Association between a Compatible Region and a Phenotype

We use the one-way ANOVA test with permutations to measure the association
between a grouping of samples and a quantitative phenotype.To accelerate the
execution, we re-derive the formula of the ANOVA test.

Given a groupingG(S′) = {S′
1, ..., S

′
k}, for everyS′

i ∈ G(S′), we calculate

SQ(S′
i) =

X
sj∈S′

i

f(sj)
2, SM(S′

i) =
X

sj∈S′

i

f(sj) (1)
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Table 1. Summary of Notations

S, si, S′
i the sample set, a sample, a subset of samples

M , mi the marker set, a marker
H a binary matrix representing the data
Cu,v a compatible interval ofH
f(si) phenotype value of samplesi

F (S′
i) the set of phenotype values of the samples inS′

i

Gi(S
′) a grouping of a sample subsets S’

Tu,v the perfect phylogeny tree ofCu,v

E(Tu,v) the edge set ofTu,v

S(E)(Tu,v) the set of sample subsets implied in treeTu,v (leaf-sets)

SSEi = SQ(S′
i) − SM(S′

i)
2/|S′

i|, SSBi = SM(S′
i)

2/|S′
i| (2)

Combining all subsets together, we haveMM = 1
|S′|

∑k

i=1 SM(S′
i) and

MSE =
1

|S′| − k

kX
i=1

SSEi, MSB =
1

k − 1
(

kX
i=1

SSBi − |S′| · MM2) (3)

We obtain a base score for groupingG(S′)

̥0(G(S′)) =
MSB

MSE
(4)

A higher score indicates a stronger association between thegrouping and the
phenotype. Given the tree and the data in Fig. 1 and the following two groupings:
G(S′

1) = {{s2, s3}, {s4, s6}, {s8, s9}}, G(S′
2) = {{s2, s3}, {s8, s9}}, the scores

are̥0(G(S′
1)) = 0.44, ̥0(G(S′

2)) = 4.16. Thus, groupingG(S′
2) has a stronger

association with the phenotype than groupingG(S′
1).

To correct the multiple test errors, we apply a permutation test onG(S′) to
calculate a significance score. To permute the phenotype, the phenotype values in
F (S′) are randomly re-assigned to samples inS′. Then we calculate an̥ -score
using the permuted phenotype following Eqs. 1 to 4.

Assume that we conductnPerm random permutations in total, for each permu-
tation, we get score̥ j(j = 1...nPerm). Among thenPerm ̥-scores, letp be
the number of scores which are greater than or equal to the base score̥ 0(G(S′)),
i.e.,p = |{̥j |̥j ≥ ̥0(G(S′)), j ∈ 1...nPerm}|. Then the significant score (P

score) ofG(S′) is

P (G(S′)) = log10

�
nPerm

p

�
(5)

A higherP score indicates that the association between groupingG(S′) and
the phenotype is more significant.

Definition 3.3. The association between a compatible regionand a pheno-
type: For a compatible regionCu,v, the highestP score achieved by any group-
ing following Tu,v is regarded as theP score ofCu,v. TheP score represents the
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association between the compatible region and the phenotype,

P (Cu,v) = max{P (Gj(S
′))|∀Gj(S

′) follows Tu,v, S′ ⊆ S}. (6)

Problem Definition: Given a SNP data and a quantitative phenotype, calculate
theP -score of every maximal compatible region and report the most significant
ones.

4. TreeQA Algorithm

TreeQA takes two major steps: 1) identify maximal compatible regions in the
genome and construct the perfect phylogenies of the regions; 2) compute the as-
sociation between each compatible region and the phenotype.

4.1. Maximal Compatible Region and Phylogeny Construction

TreeQA scans the markers in a left to right order. In order to find the maximal
compatible regions, it continuously extends the current region by adding the next
marker until the new marker is incompatible with some markers in the region.
And it maximizes the overlap between two consecutive regions. Assume that the
current compatible region isCu,v, and markermv+1 is incompatible with markers
mi1 , ...,mik

, u ≤ i1 < ... < ik ≤ v, then TreeQA starts the next compatible
region at markermik+1. For each maximal compatible region, TreeQA utilizes
the inferring algorithm3 to construct the local perfect phylogeny.

4.2. Association Computing

In the second step, TreeQA takes as input a quantitative phenotype and a set of lo-
cal perfect phylogenies. It considers all possible groupings following the phyloge-
nies and systematically explores the search space of these groupings in a carefully
designed order such that intermediate computations can be maximally reused.

According to Definition 3.1, any grouping of a sample subsetc that follows a
treeTu,v can be created from non-overlapping subsets inS(E)(Tu,v). By utilizing
the lexicographical orderd of subsets inS(E)(Tu,v), TreeQA can enumerate and
evaluate all combinations of non-overlapping subsets systematically.

TreeQA enumerates all groupings via a depth-first recursiveprocedure.
TreeQA extends the current grouping by including a new sample subset which
does not overlap with any subsets in the current grouping. The association of each
new grouping to the phenotype via a permutation test is computed. TheP score of
the corresponding maximal compatible region is updated accordingly. The enu-
meration continues recursively for each newly extended grouping.

Consider the tree in Figure 1. There are 14 sample subsets inS(E)(T1,8).
Assume that the subsets have the following order,

cConsidering groupings of a sample subset allows TreeQA to exclude potential outliers from the
ANOVA test.
dAny other ways of defining a total order of the subsets would also work.
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se1 = {s1, s5}, se2 = S − se1, se3 = {s2, s3}, se4 = S − se3, se5 = {s4, s6}

se6 = S − se5, se7 = {s8, s9}, se8 = S − se7, se9 = {s7, s10}, se10 = S − se9

se11 = {s1, s5, s2, s3}, se12 = S− se11, se13 = {s8, s9, s7, s10}, se14 = S− se13

TreeQA first generates a grouping containingse1 only. Among the remaining
sample subsets,{se2, se3, se5, se7, se9, se12, se13} do not overlap withse1. In
the next step, a grouping{se1, se2} is formed by addingse2 into the current
grouping and itsP score is calculated.P (C1,8) is updated accordingly. Since
all other sample subsets overlap withse1 or se2. Thus, no new grouping can be
extended from{se1, se2}. Then, TreeQA examines the next grouping extended
from {se1}, {se1, se3}, and all groupings extended from it. After examining all
groupings containingse1, TreeQA will start from the grouping{se2} and extend
it recursively to generate all groupings containingse2 but notse1. This process
continues until all distinct groupings are enumerated.

4.3. Effective Permutation

We found that more than90% of the execution time of TreeQA is spent in per-
mutation tests. Given a groupingG(S′), a permutation test is conducted in two
steps: 1) randomly re-assigning the phenotype values inF (S′) to samples inS′;
2) calculating the corresponding̥score by Eq. 4.

Given a subsetS′, both steps takeO(|S′|) time. TreeQA exploits maximal
reusability of intermediate computation shared by permutation through the fol-
lowing two optimizations:

1) inTree: Common computation units shared by permutation tests of
parent/child-groupings in a tree.

2) amgTree: Common computation units shared by permutation tests on
groupings following multiple trees.

We use two global prefix-tree structures21, Treegrouping andTreesubset to
organize groupings and sample subsets examined thus far respectively to enable
effective permutation tests.

4.3.1. inTree: Effective permutation tests within a tree

A pair of parent/child-groupings always involve the same set of samples. LetS′

denote a set of samples. For the permutation tests of the parent/child groupings of
S′, instead of re-assigning the phenotype values inF (S′) independently for each
grouping, they can share the same set of random permutationsof F (S′).

For example, given the example in Fig. 1 and a pair of parent/child-
groupings, G1(S

′) = {{s1, s5, s2, s3}, {s8, s9, s7, s10}} and G2(S
′) =

{{s1, s5}, {s2, s3}, {s8, s9, s7, s10}}, their ̥0 scores are:̥ 0(G1(S
′)) = 9.79

and̥0(G2(S
′)) = 4.32. Assume that after a random permutation, the new phe-

notype values for the samples are:f(s1) = 85, f(s2) = 79, f(s3) = 109,
f(s5) = 61, f(s7) = 86, f(s8) = 97, f(s9) = 78, f(s10) = 54. Us-
ing this new assignment, we can calculate the new̥ scores for both groupings:
̥(G1(S

′)) = 0.12 and̥(G2(S
′)) = 0.7. By reusing the phenotype permutation
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betweenG1(S
′) andG2(S

′), we saveO(|S′|) runtime in each permutation.
A child-grouping represents a finer partition of sample subsets in its parent-

grouping. We say a grouping is at the finest level if it does nothave any child-
groupings. We use a global prefix-treeTreegrouping to index all groupings
and maintain the parent/child relationship through auxiliary links (from a child-
grouping to its parent-groupings). For each permutation ofthe phenotype, the̥
scores of a finest grouping and all of its parent-groupings are calculated together.
We examine the finest grouping immediately followed by the examination of its
parent groupings for maximum computation reuse. If a finest child-grouping has
n parent-groupings, we saveO(n|S′|) time in each permutation.

4.3.2. amgTree: Effective permutation among trees

The same grouping occurs repeatedly in different trees. We only need to compute
its P score at its first occurrence. We useTreegrouping to store and retrieve theP
score of all examined groupings. If the grouping formed by TreeQA can be found
in Treegrouping, its P score is directly used. Otherwise, itsP score is calculated
and stored inTreegrouping.

4.4. Reuse of Intermediate Computation of Statistical Tests

For any sample subsetS′, SQ(S′) andSM(S′) calculated using the original phe-
notype values (with no permutation) may be reused in any grouping containingS′

and all its parent-groupings. We denote them bySQ0(S
′) andSM0(S

′) respec-
tively in the following discussion.

We employ a global prefix-treeTreesubset to keep track of all sample subsets
in any groupings examined thus far. Three values are stored at the leaf node
corresponding to the subsetS′: (subset ID,SQ0(S

′), SM0(S
′)).

For example, given the 10 samples and their phenotype valuesin Fig. 1(a), we
calculate the base score̥0 of groupingG1(S

′) = {{s1, s5}, {s2, s3}, {s7, s10}}.

SQ0(S
′
11

) = 19106, SQ0(S
′
12

) = 16805, SQ0(S
′
13

) = 9000.

SM0(S
′
11

) = 194, SM0(S
′
12

) = 183, SM0(S
′
13

) = 132.

̥0(G1(S
′)) = 547.17/212.17 = 2.58.

TheSQ0 andSM0 values of the three subsets are then stored inTreesubset.
Given a parent-grouping ofG1(S

′), G2(S
′) = {{s1, s5, s2, s3}, {s7, s10}}, we

can retrieve the values ofSQ0 andSM0 and use them to calculate̥0(G2(S
′)),

SQ0(S
′
21

) = SQ0(S
′
11

) + SQ0(S
′
12

) = 35911, SQ0(S
′
22

) = SQ0(S
′
13

).

SM0(S
′
21

) = SM0(S
′
11

) + SM0(S
′
12

) = 377, SM0(S
′
22

) = SM0(S
′
13

).

̥0(G2(S
′)) = 1064.08/166.69 = 6.38.

The reuse ofSQ0(S
′) and SM0(S

′) between parent/child groupings may
work in conjunction with theinTree effective permutation. Besides,SQ0(S

′)
andSM0(S

′) can also be reused by any groupings that contain the subsetS′.
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5. Results

We compare TreeQA with the following algorithms: 1)SMA, our implementation
of the Single Marker Association algorithm17,5; 2) HAM , our implementation of
the Haplotype Association Mapping algorithm15 that slides a 3-SNP window
through the genome; 3)HapMiner 10, downloaded from the websitee; and 4)
TreeLD 13, downloaded from the websitef . Both SMA andHAM use the one-
way ANOVA test for fair comparison.

QHPM 8 is not used for comparison because it is not scalable to largedata
sets. Blossoc14 and TreeDT18 are not used because they require categorical phe-
notypes.

5.1. Experiments on Simulated Data

We use Coasim11 to simulate 1000 sequences with scaled recombination rate
ρ = 400 that corresponds roughly to 10 cM. 10,000 SNP markers are placed
uniformly at random over the sequences.

SNP markers on the sequences are randomly selected as causative loci with
one, two and three causative mutations. The first SNP is always selected randomly
from all SNPs. In the cases of two and three mutations, the second and third
causative SNPs are selected from compatible SNPs that are located less than 10
SNPs away from the first SNP. Phenotype values are sampled from four Gaussian
distributions: N1(140, 35), N2(90, 35), N3(50, 40), andN4(10, 35). The one-
mutation case usesN1 and N3. The two-mutation case usesN1, N2 and N3.
The three-mutation case uses all four Gaussian distributions. After assigning the
phenotype values, all causative SNPs are removed from the data and we randomly
select 100 sequences for our experiments.

SMA, HAM and HapMiner output the top one scoring locus as a point estima-
tion of the causative locus, while TreeQA outputs the top onecompatible region.
We compare the effectiveness of the algorithms by measuringthe distance (in cM)
from the top one scoring locus or the center of the top one region to the causative
SNP (or the average distance to every causative SNP). We callthe distance the
Prediction error .

Since HapMiner can not finish processing 10,000 SNP markers in a reason-
able time, we only use the first 1,000 markers of each sequencewhen applying
HapMiner on the simulated data.

The comparison of SMA, HAM, HapMiner and TreeQA is shown in Figure 2.
The x-axis represents the prediction error (distance) to the causative locus and the
y-axis represents the percentage of causative loci which are found in distance less
thanx. In all three cases, the estimated loci by TreeQA are closer to the causative
loci than those by SMA, HAM and HapMiner.

The TreeLD algorithm uses local phylogenies and analyzes quantitative phe-
notypes. However, TreeLD can only process a very small amount of data in rea-

ehttp://vorlon.case.edu/ jxl175/HapMiner.html
fhttp://pritch.bsd.uchicago.edu/treeld.html
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Figure 2. Comparison of SMA, HAM, HapMiner and TreeQA on the simulated data
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Figure 3. Comparison of TreeLD and TreeQA on the simulated data

sonable time. Therefore, we select 36 samples and 20 SNP markers from the
simulated data for performance comparison. A one-mutationcausative locus is
selected from the 20 SNPs. For TreeQA, instead of generatingmaximal com-
patible regions as discussed in Sec. 4, a compatible region is generated around
each SNP and contains up to five SNPs. TreeLD takes about two hours to analyze
this small data while TreeQA finishes in seconds. Figure 3 plots the results from
TreeLD and TreeQA. The x-axis represents the simulated positions in the genome
and the y-axis represents the scores of the SNPs. The vertical line demonstrates
the causative locus. TreeQA detects a peak near the causative locus while TreeLD
identifies two spurious peaks.

5.2. Experiments on Mouse Genotype Data

We used a set of mouse genotypes that combines experimental and imputed datag
20 from the Jackson Laboratory, consisting of 74 samples. The dataset con-
tains over 7 million SNP markers distributed over all 20 chromosomes. We re-
moved wild derived mouse inbred strains since they are quantitatively and qual-
itatively different than other laboratory inbred strains and we only used in our
experiments the remaining 55 samples that have a share set ofcommon ancestral
relationships19.

We used high density lipoprotein cholesterol (HDL-C) levels in blood as the
test phenotype, downloaded from the Mouse Phenome Databaseh. Several HDL-
C datasets are available, each of which was collected under different conditions,

ghttp://cgd.jax.org/ImputedSNPData/imputedSNPs.htm
hhttp://phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=meas/catlister/req=Cblood+lipids
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and are thus treated as separate phenotypes. Some candidategenes that may play
a role in regulating HDL-C levels are reported in9.

We apply SMA, HAM and TreeQA on the data and examine how close they
can identify the top peak near the locus of those candidate genes.

SMA
 HAM
 TreeQA

(base) (base) (base)

Figure 4. Compare SMA, HAM and TreeQA on the mouse genotype data

TreeQA detects top peaks near the locations for over 10 of thecandidate
genes9, includingPpara, Abcb4 andRxrb. The top peaks reported by SMA and
HAM are often far from the locations of these genes. Due to space limitation, we
only show the results for one of them,Abcb4, in Figure 4.

129S1/SvImJ(63.8)


BTBRT<+>tf/J(72.9)

C58/J(65.4)


LP/J(50.2)

MA/MyJ(75.8)

NZB/BlNJ(100)


NZW/LacJ(90.9)

RF/J(77.6)

KK/HLJ(89.3)

A/J(45.3), AKR/J(44.9), BALB/cByJ(56.8), C3H/HeJ(75.8), C57BL/10J(44.6),

C57BL/6J(49.7), C57BLKS/J(36.7), C57BR/cdJ(67.8), CL/J(39.5), CBA/J(49.4),

DBA/1J(39.6), DBA/2J(43.3), I/LnJ(42.4), NON/LtJ(72.2), PL/J(51.7), RIIIS/

J(40.2), SEA/GnJ(52), SJL/J(40.6), SWR/J(46.8)

FVB/NJ(94.7)

NOD/LtJ(54.6)


BUB/BnJ(63.4)


SM/J(48)

Figure 5. The perfect phylogeny at the peak point found by TreeQA in Figure 4

The perfect phylogeny corresponding to the peak point (compatible region
from 8799298 to 8801558 (base)) found by TreeQA is plotted inFig. 5. The
phenotype values of the samples are in parentheses. Sampleswith unknown phe-
notype values are omitted from the tree. The subtree on the right contains samples
having high phenotype values while the subtree at the bottomcontains samples
having low values. Other subtrees are considered as outliers and are excluded
from the grouping. SMA and HAM fail to identify the locus because they only
examine sample groupings that can be generated from single SNPs or 3-SNP win-
dows, which are a small subset of the groupings examined by TreeQA.

TreeQA takes about 10 minutes to analyze each chromosome which contains
around 40000 SNPs on average. SMA and HAM take slightly less time than
TreeQA. Both HapMiner and TreeLD are unable to finish in reasonable time.

6. Conclusion

In this paper, we present a tree-based quantitative GWA mapping algorithm,
TreeQA. TreeQA utilizes local perfect phylogenies in detecting associations. Per-
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fect phylogenies provide sensible groupings of samples at multiple resolutions.
TreeQA explores the space of all possible groupings impliedby the perfect phy-
logenies in a carefully designed order so that intermediatecomputations can be
maximally reused. Our experimental results on both simulated and real data show
that TreeQA can efficiently conduct quantitative GWA analysis and is more effec-
tive than the previous methods.
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