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ABSTRACT: Protein—protein interactions defined by affinity
purification and mass spectrometry (APMS) suffer from high
false discovery rates. Consequently, lists of potential
interactions must be pruned of contaminants before network
construction and interpretation, historically an expensive, time-
intensive, and error-prone task. In recent years, numerous
computational methods were developed to identify genuine
interactions from the hundreds of candidates. Here, com-
parative analysis of three popular algorithms, HGSCore,
CompPASS, and SAINT, revealed complementarity in their
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classification accuracies, which is supported by their divergent scoring strategies. We improved each algorithm by an average area
under a receiver operating characteristics curve increase of 16% by integrating a variety of indirect data known to correlate with
established protein—protein interactions, including mRNA coexpression, gene ontologies, domain—domain binding affinities, and
homologous protein interactions. Each APMS scoring approach was incorporated into a separate logistic regression model along
with the indirect features; the resulting three classifiers demonstrate improved performance on five diverse APMS data sets. To
facilitate APMS data scoring within the scientific community, we created Spotlite, a user-friendly and fast web application. Within
Spotlite, data can be scored with the augmented classifiers, annotated, and visualized (http: //cancer.unc.edu/majorlab/software.
php). The utility of the Spotlite platform to reveal physical, functional, and disease-relevant characteristics within APMS data is
established through a focused analysis of the KEAP1 E3 ubiquitin ligase.

KEYWORDS: affinity purification mass spectrometry, machine learning, bioinformatics, KEAPI, protein—protein interactions

B INTRODUCTION

Mapping the global protein—protein interaction network and
defining its dynamic reorganization during specific cell state
changes will provide an invaluable and transformative knowl-
edgebase for many scientific disciplines. Advancements in two-
hybrid technologies and affinity purification—mass spectrome-
try (APMS) have dramatically increased protein connectivity
information, and therefore a high-coverage proteome-wide
interaction map may be realized in the not-so-distant future.
Specifically, technological and computational advancements in
MS-based proteomics have increased sample throughput,
detection sensitivity, and mass accuracy, all with decreased
instrumentation costs. Consequently, to date ~2400 human
proteins have been analyzed by APMS, as estimated through
BioGRID and data presented herein." Similarly, the generation
of arrayed human clone sets has revealed binary interactions
among approximately 13 000 proteins.” While both approaches
detect direct protein interactions, only APMS can detect
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indirect interactions; although it has a limited ability to
distinguish between the two types.

In general, APMS-based protein interaction experiments are
performed by selectively purifying a specific protein, termed the
bait, along with its associated proteins from a cell or tissue
lysate. MS is then used to identify and more recently quantify
the bait and associated proteins within the affinity purified
protein complex, which is collectively termed the prey. Though
a prey’s presence supports its existence within a complex, high
numbers of nonspecific contaminants, owing largely to
technical artifacts during the biochemical purification, lead to
false protein complex identifications and therefore significantly
hamper data interpretation. As such, numerous computational
methods have been developed to differentiate between genuine
APMS protein complex interactions and false-positive discov-
eries.
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Table 1. Public Dataset Statistics

data set AP/IP method exps baits
Complexome antibody 3268 1082
DUB HA 201 101
AIN HA 127 64
TIP49 FLAG 35 27
HDAC EGFP 30 10

controls distinct interactions mean clustering coefficient”
0 253 598 0.1226
0 36 066 0.1290
0 19676 0.2013
9t 5412 0.3333
7 10175 0.2523

“Computed using a protein—protein interaction network composed of only bait nodes, and the edges between them were derived from BioGRID
using experiments testing direct interactions: reconstituted complex, cocrystal structure, protein-peptide, FRET, and two-hybrid. bMerged from 27

initial control experiments.

These algorithms can be broadly categorized based on which
features of the APMS data are included and how the resulting
network is mapped. Methods such as SAI, Hart, Purification
Enrichment scores, and Dice Coefficients use the binary
presence of the protein as evidence for an interaction.””” More
recently, computational approaches employed by SAINT,'>"!
MiST,"? CompPASS,13 and HGSCore'* achieved improved
scoring accuracy by taking advantage of label-free quantification
using spectral counts, a semiquantitative reflection of the
abundance of a protein after purification. Additionally, SAINT-
MS1 is an extension of SAINT that uses label-free MSI
intensities for quantification, which is better suited for low
abundant interactors."> Furthermore, these algorithms can also
be categorized by whether they use a spoke or matrix model to
represent protein connectivity. The spoke model represents
only bait—prey interactions, while the matrix model, used by
the Hart and HGSCore methods, additionally represents all
prey—prey interactions, which results in a quadratic number of
candidate interactions per experiment instead of linear, and
therefore contains an order of magnitude more interactions to
test. Though the matrix model has the potential to detect more
true complex comemberships, it not only has to determine
whether either prey proteins are contaminants, but also
whether pairs of prey are in the same or distinct complexes
with the bait, which leads to more false positives. Each method
has its merits and has been successfully applied in APMS
experiments; however, their widespread utilization has been
limited.

In addition to using features from APMS experiments to
predict the validity of putative protein—protein interactions,
success in the de novo prediction of protein interactions has
been achieved through the analysis of indirect data.'®™"
Specifically, mRNA coexpression has been shown to positively
correlate with cocomplexed proteins, and Gene Ontology’s
(GO) biological process and cellular component annotations
have proven to be useful for interaction prediction by utilizing
semantic similarity.”*">* Both coexpression and GO coanno-
tation are commonly used metrics to evaluate the quality of
predicted interactions. Sequence and structural homology at the
domain and whole-protein levels have established themselves as
powerful predictors as well**** Though individually useful,
integration of these indirect sources using machine learning
techniques, such as support vector machines,” Random
Forests,26 naive Bayes,27 and logistic regression,28 has further
increased prediction accuracy. APMS data have also been used
as a discriminative feature, once as a binary value representing
an interaction’s presence, which is far less powerful than the
sophisticated APMS scoring methods now available,'” and once
using a novel method that lacked rigorous comparison to other
methods.”
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Among the label free methods, only SAINT’s software is
available for public use. It can be executed as a standalone
program or through two separate web applications, Prohits™®
and the CRAPome.*' CompPASS provides a public web
interface to search its data, but there is no option to employ the
algorithm on private data sets. Aside from APMS scoring
methods, numerous web applications are available for de novo
protein—protein interaction prediction.*”** These methods do
not incorporate new APMS data and therefore provide an
insufficient resource for researchers wishing to integrate their
own experiments into the predictions.

Given the independent successes of using direct and indirect
data to predict protein—protein interactions, we enhanced
HGSCore, CompPASS, and SAINT by incorporating a variety
of indirect data using logistic regression classification models to
identify genuine interactions from human APMS experiments.
To foster its use within the proteomic community, we
developed Spotlite, a web application for executing both the
enhanced and original APMS scoring methods on novel data
sets. In addition to providing an integrated scoring tool, the
resulting protein interactions are annotated for function, model
organism phenotype, and human disease relevance.

B EXPERIMENTAL PROCEDURES

Data Collection

To develop a classification strategy capable of efficiently
segregating false-positive protein interactions from true
interactions within APMS-derived data, we collected five
publically available and well-diversified APMS data sets
(Table 1). These data were received directly from the authors
or from their respective publications, whose sequencing
parameters and filtering criteria are described in their methods.
The data contained spectral counts, baits, and preys for each
experiment. For the purposes of establishing a classifier, we
defined known protein—protein interactions as those deposited
in iRefWeb®* (http: //wodaklab.org/iRefWeb/, release 4.1),
physical interactions from BioGRID (http:/ /thebiogrid.org/,
release 3.2.105), and the HI-2012 Human Interactome project’s
two-hybrid data from the Center for Cancer Systems Biology at
the Dana-Farber Cancer Institute.” Protein sequences and
cross-database accession mappings were downloaded from
IPI3® (http:/ /www.ebi.ac.uk/IPI/, final releases) and UniProt/
SwissProt>® (http://www.uniprot.org/, release 09/2013).
Protein domains were determined with PfamScan®” (http://
pfam.xfam.org/, release 26.0) with an e-value threshold of 0.05.
Entrez gene identifications, official symbols, aliases, and gene
types were extracted from the National Center for Biotechnol-
ogy Information (NCBI) Gene file transfer protocol (FTP)
site, http://www.ncbinlm.nih.gov/gene (gene history.gz and
gene_info.gz; downloaded October S, 2013). Gene homologue
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data was downloaded from the NCBI Homologene (http://
www.ncbi.nlm.nih.gov/homologene, Build 66). Pearson corre-
lation coefficients for coexpression data were downloaded from
COXPRESdb®®  (http://coxpresdb.jp/) for Homo sapiens
(version c4.1), Mus musculus (version c3.1), Caenorhabditis
elegans (version c2.0), Gallus gallus (version c2.0), Macaca
mulatta (version c1.0), Rattus norvegicus (version c3.0), and
Danio rerio (version c2.0). Ontology hierarchies and
annotations were downloaded on October 5, 2013. GO
supplied the biological process and cellular component
ontology hierarchies, and the annotations were downloaded
from the NCBI Gene FTP site.”” The Mammalian Phenotype
Ontology (relevant organism: Mus musculus) hierarchy and
annotations were downloaded from Mouse Genome Infor-
matics** (http:/ /www.informatics.jax.org/). The Human Phe-
notype Ontology’s hierarchy and annotations were downloaded
from www.human-phenotype-ontology.org.*' The Disease
Ontology annotations were taken from its associated
publication’s supplemental data (http://projects.
bioinformatics.northwestern.edu/do_rif/) and the hierarchy
from the Open Biological and Biomedical Ontologies

Foundry* (http://obofoundry.org/).
Feature Calculation

For classification, all putative APMS-derived protein—protein
interactions were characterized by one APMS scoring method
feature and several indirect features. The APMS feature is the
negative natural log p-value of either the HGSCore,
CompPASS WD-score, or SAINT probability. The HGSCore
is capable of testing matrix model interactions; however, for
implementation within Spotlite, we restricted it to spoke model
interactions for consistency with the other methods and
computational efficiency. SAINT scores were computed using
the spectral count version of SAINTexpress,"" version 3.1. We
modified this version to output the full precision of probability
calculations, as opposed to the default two digits. Only the
TIP49 and HDAC data sets were applicable, since the
SAINTexpress model requires control experiments. The
number of virtual controls and replicates were set to the
number of controls and maximum number of replicates for each
data set. For CompPASS, in cases where both proteins of a
candidate interaction were tested as baits, the smaller p-value
was chosen.

The p-values for APMS scores in each data set were
computed by generating simulated data sets via permutation of
spectral counts and protein identifications (Algorithm 1), which
is similar to a previously described approach.' First, each prey
protein was represented by its total spectral count (TSC) in the
original data set excluding instances where it was the bait.
Simulated experiments were generated by randomly sampling
without replacement from this weighted set of prey until each
experiment contained the average number of proteins per
experiment of the original data set. Sampling without
replacement then continued until each experiment had a TSC
equal to the average experiment TSC (excluding the bait) of
the original data set. Finally, experiments were randomly
sampled and given one bait spectral count at a time until the
TSC of all baits in the simulated data set equaled that of the
original. Replicate and control experiments went through an
identical process, except controls were not given bait spectral
counts. For the HGSCore, the simulated data sets were
generated until the number of simulated interactions was 200
times the number of unique interactions in the original data set;

5946

however, for CompPASS and SAINT, since the distribution of
scores depends on the number of replicates for a particular bait
(Figure S1, Supporting Information), the simulations were
continued until the number of simulated interactions for each
replicate number was equal to 200 times the number of total
unique interactions in the original data set. Sorting interactions
based on these conditional p-values had a slight increase in
classification accuracy compared to raw scores on data sets with
a variable number of replicates (Figure S2, Supporting
Information).

Algorithm 1: Pseudo code for permuting an
APMS dataset
input : mean_prey_per_exp,
mean T SC _per_exp, bait TSC,
prey2T'SC' a vector of length p,
exp2bait a vector of length e
output: e X p matrix representing spectral
counts of a permuted dataset.

permuted_dataset = new e X p matrix;
// Ensure each prey has at least one
experiment
for prey = 1 to p do
exp = random integer from 1 to e;
permuted_dataset[exp, prey] = 1;
prey2T'SClprey] -= 1;

// Fill each experiment with prey

for exp = 1 to e do

for i = 1 to mean_prey_per_exp do
prey = sample without replacement from
prey2TSC, excluding prey already in
experiment exp;

permuted_dataset[exp, prey] = 1;

// Fill each experiment with spectral
counts
for exp = 1 to e do
for i = 1 to mean T'SC _per_exp do

prey = sample without replacement from
prey2TSC, including only prey already in
experiment exp;
permuted_dataset[exp, prey] += 1;

// Distribute bait spectral counts

for i = 1 to bait_ TSC do

exp = random integer from 1 to e, excluding

experiments that were controls;

bait = exp2bait(exp);
permuted_dataset[exp, bait] += 1;

Sampling without replacement decrements prey27'SC to a
minimum of 1 to ensure sampling is never performed on an
empty set

In addition to these direct APMS-dependent features,
indirect characteristics of a putative protein—protein interaction
were also included. The correlation between mRNA expression
patterns of two genes was quantified using the Pearson
correlation coefficient (PCC). In total, seven coexpression
features,one for each species discussed in data collection, were
added to the classification model. The human feature is the
PCC for the pair of human genes to be classified. There often
exist multiple homologues of a gene within a different species;
therefore, the coexpression features for genes i and j, in
nonhuman species k, were defined as the maximum PCC

among the set of homologue pairs for that species, Hy:
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Coex; = max(PCC,,,); m, n € Hy,

A separate feature was used for each of the five ontologies:
biological process, cellular component, mouse mutant
phenotype, human mutant phenotype, and human disease.
Semantic similarity scores were utilized to determine how
similar two genes’ sets of annotations were to each other. We
computed semantic similarity scores using the SimGIC method
with downward random walks.*** Genes with zero annota-
tions were assigned the root annotation for the corresponding
ontology.

We used the maximum likelihood estimation®® method to
calculate the probability of each potential domain—domain
interaction. This required all interactions for Homo sapiens
determined via an experimental method testing for direct
interactions: two-hybrid, FRET, cocrystal structure, protein—
peptide, and reconstituted complex. During cross-validation,
interactions present in the APMS data sets were excluded to
avoid training a feature on data we would later test against. A
single protein sequence was used for each gene, with preference
given to the longest UniProt/SwissProt sequence, followed by
the longest International Protein Index (IPI) sequence. A false
positive rate of 0.00063 and a false negative rate of 0.7 were
used, which are required parameters, and were calculated in the
same manner as previously described,”® and assumed 130 000
total direct protein—protein interactions in the human
interactome as was previously estimated.** The feature score
was the probability of a protein pair interacting and is equal to
the probability of at least one of their domains interacting.
Computations were performed using the method’s original
software.

The final feature used was based on database interactions
among the homologues of the two proteins in question. It is
more likely that a pair of proteins will physically interact if their
homologues interact; however the extent to which these
homologue interactions predict the human interactions
depends on a number of factors such as the evolutionary
distance of the homologue and the reliability of experimental
systems used to determine the interaction. A naive Bayes model
was trained to determine the probability of a human database
interaction given the presence or absence of homologue
interactions using specific experimental systems. Specifically, we
calculated

p(CIE, .., Fy) o« p(C) x ] p(HIC)

c {1 : co-complexed protein pair}

0: otherwise

1: co-complexed homolog pair using

E = experimental system i

0: otherwise

The model probabilities were estimated from all human protein
pairs except during cross-validation, where the test interactions
were excluded from training this feature. The prior probability,
P(C), is equal to the percentage of all possible protein pairs that
are annotated to be cocomplexed interactions. Though ideally
this would be replaced with an estimation of the true
percentage, the predicted number of cocomplexed interactions,
unlike the predicted number of direct interactions, is an open
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problem. Fortunately, the true probability of an interaction
given homologous interactions is not necessary for our machine
learning classifier but is rather a proportional likelihood relative
to other proteins. The model did not include evolutionary
distance because of very small samples for many combinations
of species and experimental systems.

Missing Data Imputation

Coexpression features are subject to missing values due to lack
of microarray probes and unknown homologues among the
various species. Since the chosen species’ coexpression patterns
are strongly correlated,®® missing values for a specific gene pair
were imputed from its available coexpression values. Specifi-
cally, a linear regression model was calculated using each
species’ coexpression values as the response variable and every
combination of remaining species’ coexpression values as
explanatory variables. With seven species, this corresponded
to 5040 models. When imputing a missing value, the model
with the best R value using available data was applied. If no
coexpression values were available for a gene pair, then
preimputed feature averages were used.

Training Set Construction

To segregate false-positive protein interactions from true
interactions, we trained and tested a two-layer classifier using
a supervised learning approach on a subset of the human
interactome and five APMS data sets. The first layer was a
model for non-APMS features and was trained on a data set
comprising all database interactions as the positive class, while
the negative class was a sampled subset of all unknown
interactions equally 20 times the size of the positive set. The
negative set is commonly constructed in this manner because a
very small percentage of all possible protein pairs are believed
to physically interact; therefore, a random sample of all
unknown interactions is expected to have few false
negatives.'¥'*?**? Interactions present in any of the APMS
data sets were excluded. The second layer was trained on the
probability output of the first layer and the APMS scores of five
published human APMS data sets. Each data set was scored
with the three APMS scoring approaches, except for SAINT,
which was only used on the data sets with controls, TIP49, and
HDAC, which resulted in five training data sets for each
HGSCore and CompPASS and two for SAINT. When used for
training the model, each APMS data set was appended with all
unobserved known and unknown interactions with its
corresponding baits and given an APMS score of zero.
Conversely, when used for testing, only observed interactions
were included. Database interactions in the APMS data sets
represented by a single publication employing either
CompPASS, HGSCore, or SAINT were treated as unknown,
as this would create a bias toward one of the methods.

Model Training and Evaluation

We approached the probabilistic scoring of APMS protein—
protein interactions as a binary classification problem in which
the two classes are (1) pairs of proteins that directly or
indirectly form a complex together (positive class), and (2)
pairs of proteins that are never members of the same complex
(negative class). To enhance each of the popular APMS scoring
methods, HGSCore, CompPASS, and SAINT, a separate model
was trained for each of the three using that particular method as
one of the features for the second layer of the classification
model. For the first layer, three classification algorithms were
evaluated, Random Forest, logistic regression, and support
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vector machine (SVM). For the second layer, logistic regression
was used to combine the predictions of the first layer and one
of the APMS scores. For cross-validation, the model of the first
layer was trained, then each APMS data set was tested with the
second layer classifier trained on the remaining data sets that
used the same APMS scoring approach. Some overlap was
present among data sets; therefore, interactions present in the
data set being tested were removed from the training set to
avoid the mistake of testing on trained data. The metric for
success was the area under the partial receiver operating
characteristic (ROC) curve (AUC) up to a false positive rate of
10%, as this region encapsulates the likely interval in which a
5% false discovery rate (FDR) threshold would lie. For SVM
and logistic regression, each feature was centered and
standardized by subtracting the feature mean and dividing by
the feature standard deviation of all possible protein—protein
interactions. For Random Forests, which are unable to
extrapolate beyond the range of their training data, features
were scaled to have the same range between each data set.
SVMs were trained using either a linear or Gaussian kernel with
no feature interactions. A grid-based search determined optimal
cost parameters. Logistic regression was also performed without
feature interactions. The Random Forest classifier was trained
with 300 decision trees and splitting from a subset of four
randomly selected features at each node. Ultimately, a linear
kernel SVM and logistic regression were the best performing
algorithms for the first layer model on these data, and logistic
regression was chosen for its faster calculation speed. Features
deemed insignificant by logistic regression were removed from
the model and comprised the semantic similarity scores for
human disease, human mutant phenotype, and mouse mutant
phenotype. Many true interactions exist in our set of negative
APMS interactions, which resulted in a diminished estimate of
true interaction prevalence and therefore an inaccurate estimate
of the logistic regression’s intercept parameter, ). To correct
for this, the second layer’s intercept was adjusted using the
following equation:

* -~ T ﬁ'
=p +1 -1
b =h Og(l—ﬂ) og(l—fr)

where ﬁo is the original intercept, 7 is the training data set’s
ratio of known to unknown interactions, and 7 is the expected
ratio, which is estimated by accepting interactions with a 5%
false discovery rate based on the model’s APMS method.

False Discovery Rate Calculation

We currently compute FDRs for only the APMS scoring
algorithm used. First, p-values are calculated for each
interaction’s two scores by comparing them to their
corresponding empirical null distributions determined via the
previously mentioned simulation method. The p-value for a
particular score is then equal to one plus the number of
simulated scores greater than or equal to that score, divided by
one plus the number of simulated scores. The adjustment by a
pseudocount of one is necessary because the null distributions
were not generated by an exhaustive permutation method.*
Finally, with all p-values calculated, the FDR is controlled by
the Benjamini—Hochberg method.** FDRs for the Spotlite
classifiers will be the subject of future work.

FLAG Affinity Purification and Western Blot Analyses
For FLAG affinity purification, HEK293T cells were lysed in

0.1% NP-40 lysis buffer (10% glycerol, SO mM HEPES, 150
mM NaCl, 2 mM EDTA, 0.1% NP-40) containing protease
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inhibitor mixture (1861278, Thermo Scientific, Waltham, MA)
and phosphatase inhibitor (78427, Thermo Scientific, Waltham,
MA). Cell lysates were cleared by centrifugation and incubated
with FLAG resin (F2426, Sigma-Aldrich Corporation, St. Louis,
MO) before they were washed with lysis buffer and eluted with
NuPAGE loading buffer (Life Technologies, Carlsbad, CA).
Detection of proteins by Western blot was performed using the
following antibodies: anti-FLAG M2 monoclonal (Sigma-
Aldrich Corporation, St. Louis, MO), anti-MAD2L1 (A300—
3014, Bethyl Laboratories, Montgomery, TX), anti-MCM3
(A300—192A, Bethyl Laboratories, Montgomery, TX), anti-
SLK (A300—499A, Bethyl Laboratories, Montgomery, TX),
antiffactin polyclonal (A2066, Sigma-Aldrich Corporation, St.
Louis, MO), anti-KEAP1 polyclonal (ProteinTech. Chicago,
IL), anti-DPP3 polyclonal (97437, Abcam, Cambridge, MA),
and anti-VSV polyclonal (A190—131A, Bethyl Laboratories,
Montgomery, TX).

B RESULTS AND DISCUSSION

Comparative Analysis Reveals Complementarity and
Differential Classification Accuracies for Previously
Reported Protein Interactions

Existing spectral count-based APMS scoring methods demon-
strate a high level of accuracy in predicting protein complex
comembership, and thus make them appealing features for
classification. We analyzed their performance on five data sets
describing protein complexes associated with unique biological
functions, deubiquitination (DUB),"® autophagy (AIN),*
chromatin remodeling (TIP49),*® histone modification
(HDAC),*” and transcriptional regulation (Complexome)50
(Table 1). These data sets range extensively in their number of
experiments, interaction network connectivity, and purification
technique, which results in a diverse training set capable of
testing the generalizability of APMS methods and our classifier.
A direct comparison of three popular and fundamentally
distinct scoring algorithms, HGSCore, CompPASS, and
SAINT, revealed overlapping and complementary prediction
accuracies (Figure 1). Specifically, the three methods were
applied separately to each data set, and the top 5% of
interactions were accepted as a good and consistent point
estimate of a 5% FDR. Although some methods performed
better than others, each approach was capable of identifying
known protein—protein interactions disjoint from the remain-
ing two. That said, the intersection of the three data sets
showed strong enrichment for validated protein interactions.
Interestingly, despite the high overlap among known
interactions (mean Jaccard coefficient of 0.512), there was
large disagreement among the yet-to-be determined inter-
actions (mean Jaccard coefficient of 0.206). As expected, no
single method identified all of the previously annotated protein
interactions. Each has their own scenarios in which they are
more appropriate to use than the other. The HGSCore, for
example, performs poorly on small data sets such as HDAC
(Figure 2) and as discussed in the method’s original paper.'*
SAINT is limited to data sets with appropriate and
comprehensive controls, and CompPASS can have difficulty
with data sets comprising highly interconnected baits such as
TIP49 (Figure 2). Therefore, we chose to improve each
method individually through integration with indirect data to
broaden and strengthen the confidence of selected interactions
and to allow users to choose the most suitable APMS method
for their data set.
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Figure 1. Comparison of accepted interactions using various APMS
scoring methods. Overlaps of the top 5% of interactions for each
APMS scoring method are shown for each data set. Areas are
approximately proportional to the total number of interactions within
their respective subsets.

Integration of Indirect Data Improves APMS Scoring
Methods

To further improve upon interaction predictions, we chose to
include data outside of APMS that had previously been shown
to correlate with cocomplexed proteins. These indirect sources
of evidence were mRNA coexpression patterns among seven
species, GO annotation similarity, phenotypic similarity,
domain—domain binding affinities, and homologous inter-
actions. Each was encoded into a feature and, along with the
APMS scoring methods, describes a putative pair of interacting
proteins. Then, using a two-layer logistic regression classifier,
these interactions were predicted to be genuine based on the
values of their corresponding features.

To benchmark these Spotlite classifiers against the stand-
alone APMS scoring methods, we performed a variation of
cross-validation by training our classifier on each combination
of data sets, excluding one, and then testing on the remaining
data set (Figure 2). Spotlite versions consistently outperformed
their corresponding “APMS only” methods based on ROC
curve analysis and partial AUC, which demonstrates greater
sensitivity and specificity toward previously determined
interactions. These data also demonstrate that the discrim-
inatory patterns learned from each data set were generally
applicable since classification accuracy was superior across all
cross-validation instances. Mutant phenotype and disease
similarity were not selected as significantly discriminating
features and were excluded from the model but remain in the
database for annotation purposes. To generate our final
classifier for use in the Spotlite web application, all data sets
were used for training. Table 2 shows each feature’s coverage
within the Spotlite database and its logistic regression log-odds
coefficients. As expected, the APMS features were the most
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important features used to distinguish between known and false
or unknown cocomplexed proteins.

Spotlite Web Application for Public Use

We have made Spotlite available to the research community
through a user-friendly web application that follows a simple
workflow (Figure 3). Users may upload a tab-delimited file
containing each experiment, its bait, prey, and each prey’s
spectral count. Next, identifier mapping is performed to
determine the NCBI entrez gene identification of the protein’s
gene. APMS scores are then calculated as well as their
corresponding p-values by determining the empirical null
distribution via permutations of the original data set. Next, the
indirect feature data, which has been precomputed for every
potential pair of genes, is retrieved from the database.
Unmapped proteins, which have no retrievable indirect data,
use raw feature averages to avoid bias toward predicting either
true or false interactions. Finally, the data are scored by the
logistic regression classifier. The false discovery rates are
calculated, and users can then explore and visualize their results
through the website or export them to a spreadsheet. Users can
choose whether to use the logistic regression classifier or only
the APMS methods. This is particularly useful for data sets that
are not entirely of human origin and therefore do not have
indirect features contained within the Spotlite database. To
maintain privacy, all uploaded APMS data and results are
deleted after 24 h of upload or destroyed on command by the
user.

Spotlite Analysis of KEAP1 APMS Data

To demonstrate its utility, performance, and ease in identifying
true interacting proteins from APMS data, we reanalyzed our
previously published data on the KEAP1 E3 ubiquitin ligase
affinity purified from HEK293T cells®* (Table S1, Supporting
Information). Specifically, cells engineered to stably express
FLAG-tagged KEAP1 were detergent solubilized and subjected
to FLAG affinity purification and shotgun MS. Using biological
triplicate KEAP1, APMS experiments, and a reference set of an
additional 44 FLAG purifications performed on 21 different
baits, the KEAP1 protein interaction network was scored and
visualized with Spotlite. The unfiltered KEAP1 data set
contained 1010 prey proteins, of which 32 were annotated as
being previously identified as KEAP1 interactors (Figure 4A).
After application of Spotlite—CompPASS and a global 5% FDR
threshold based on CompPASS scores, the network reduced to
34 proteins. We accepted the same number of proteins for the
Spotlite—CompPASS classifier, of which 16 were database
interactions and 18 were putative novel interactors. Next, we
selected seven KEAP1 interacting proteins that passed Spotlite
thresholding for further validation by immunoprecipitation and
Western blot analysis: MCM3, DPP3, SLK, MCC, MCMBP,
MAD2LI, and SQSTMI. All seven endogenously expressed
proteins copurified with FLAG-tagged KEAP1 (Figure SB).
In addition to providing the logistic regression classification
score, the Spotlite web application lists the following individual
features for each protein pair: HGSCore, CompPASS, SAINT,
gene ontologies for BP and CC, CXP for seven species,
domain—domain binding score, homologous interactions,
shared mutant mouse phenotypes, shared human diseases,
and whether the proteins have previously been shown to
interact. As an example, Spotlite’s visualization for the KEAP1—
MAD2LL1 interaction is provided in Figure S. Both proteins
affect growth and size in mice, specifically postnatal growth
retardation with KEAP1 and decreased embryo size with
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Figure 2. Classifier cross-validation and comparison. Receiver operating characteristic curves for each data set. Each scoring method’s partial area

under the curve is displayed in the graph insets.

MAD?2L1. Additionally, both proteins are encoded by mRNAs,
which positively correlate across human tissues, and both
proteins are strongly associated with oncogenesis.

B CONCLUSIONS

Protein MS is quickly becoming a staple technology in
academic laboratories. The rapidly decreasing instrumentation
costs, often prepackaged and streamlined bioinformatic pipe-
lines, and enhanced mass accuracy and scan speeds are no
doubt driving the recent explosion of protein MS data. With
similar advances in two-hybrid technologies, it is now
economically feasible to pursue and in fact achieve a fairly
comprehensive proteome-wide binary interaction network. A
key step in this endeavor is the computational filtering of
spurious interactions within the resulting data sets.

After performing hundreds of APMS experiments directed at
mapping protein connectivity central to various signal trans-
duction pathways, we and others quickly found the high rate of
false-positive identification rate limiting and exceedingly
expensive. Appreciating the need for an accessible and accurate
APMS scoring algorithm, we developed Spotlite as a new
computational tool capable of discriminating between true
interactions and the contaminants within APMS data.
Importantly, we deployed Spotlite through a web-based
application that provides open access and transparency to any
interested scientist. The implementation of popular APMS
scoring methods provides researchers the ability to use the
most appropriate method for their particular data set. Inclusion
of indirect data as features within Spotlite’s logistic regression
model not only achieves increased prediction accuracy, but also
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Table 2. Feature Importances for Logistic Regression Classifiers

feature type” database coverageb

—In(HGSCore p-value) direct 11.79%
—In(CompPASS p-value) direct 11.79%
—In(SAINT p-value) direct 11.79%
non-APMS model

intercept

domain—domain binding affinity sequence 70.32%
homologous interactions sequence 85.86%
cellular localization GO functional 61.69%
chicken coexpression expression 29.90%
mouse coexpression expression 53.91%
biological process GO functional 48.66%
human coexpression expression 70.42%
monkey coexpression expression 33.93%
fish coexpression expression 8.51%
rat coexpression expression 33.49%
worm coexpression expression 2.73%

log-odds coefficients?

training coverage®  first layer model ~ HGSCore =~ CompPASS SAINT

100.00% 0.506 0.348 0.49
100.00%
100.00%
0.230 0.230 0.19
—2.699 —2.371 —-2.370 -2.6
88.33% 2.693
99.53% 0.585
86.02% 0.324
41.21% 0.266
66.68% 0.210
84.33% 0.178
82.04% 0.153
39.33% 0.091
15.63% 0.065
45.45% 0.022
5.23% 0.015

“Classification of the type of evidence a feature represents with respect to cocomplexed proteins. bPercentage of all potentially cocomplexed pairs of
genes within the Spotlite database containing values for a feature. APMS score coverages represent the percentage of bait—prey interactions tested,
including preys with zero spectra. Ontology coverages computed by taking the percentage of gene pairs in which both genes have at least one
annotation. Homologous interactions coverage, both genes must have a known homologue in the same species. Domain—domain binding affinity
coverage, both genes must contain a known domain. “Coverages calculated identically to b restricted to the training data set. 9Coefficients are for
scaled and centered features in the first layer model and raw features in the second layers.

Parameter Selection
APMS algorithm: HGSCore, CompPASS, or SAINT
Use indirect features?

Data upload

Input file
Experiment IDs, Experiment type,
Bait IDs, Prey IDs, spectral counts

ID mapping

( APMS score calculation )
G-values via random permutationa
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Figure 3. Schematic of Spotlite workflow. The gray box represents the
two-layer logistic regression classifier.
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yields valuable information regarding shared biological function,
phenotype, and disease relationships among protein pairs.
Given the success of established scoring approaches
employed by CompPASS, HGSCore, and SAINT, we initially
set out to define their relative performance on various APMS
data sets and by doing so to identify the most accurate
approach for implementation within a classification scheme.
However, our analyses revealed valuable complementarity
between the algorithms, which appeared partially dependent
upon the network architecture and size of the analyzed APMS
data set as well as the presence of control experiments. As such,
we found great success by providing a separate classification
model for HGSCore, CompPASS, and SAINT that allows the
user to choose the most appropriate method for their data set.
Though Spotlite’s performance shows a marked improvement
over existing methods, its success is governed by the small
number of known protein interactions (positive data set), the
lack of validated noninteractions (negative data set), and
mislabeled instances used during training. Furthermore, many
indirect features lacked high coverage, which resulted in missing
values. While these limitations may place a ceiling on current
performance, data will continue to pour in and fill the gaps. We
expect Spotlite to improve over time because of increased
feature coverage and retraining of the classifiers as larger and
more comprehensive interaction networks become available.
A critical aspect of any supervised learning approach is the
selection of a gold standard data set containing accurately
labeled examples that are representative of the future data to be
classified. While many protein—protein interactions are
annotated, proteins known not to interact are rare; the
Negatome is the sole available resource and of prohibitively
small size.’””> The common practice of treating all unknown
interactions as false interactions leads to an issue when
evaluating the performance of a classifier by ROC curves
because they require accurate knowledge of the ground truth.
Though the number of true negatives in the training data sets is
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expected to greatly exceed the number of false negatives, the
number of true positives is likely less than the number of false
negatives since there are many novel interactions still to
discover. As we have shown, it is possible to train different
classifiers that agree on the already known interactions, which
result in similar ROC curves, but with extremely different
predictions for novel interactions. In this case, it would be
difficult to objectively decide which classifier had superior
classification accuracy. An expensive and time-consuming
solution would be to update the ROC curves after attempting
low-throughput validation of many of the predictions. It would
instead be desirable for the research community to generate
several well-annotated interaction networks with extremely high
accuracy and coverage.

Spotlite currently includes APMS scoring algorithms
designed for spectral counting data; however, with the recent
accessibility of high-resolution MS and its accompanying
software, scientists are transitioning to protein quantification
based on peptide signal intensity for its superior limits of
quantification and linearity. Accordingly, APMS computational
methods will also need to support these in the future since
SAINT-MSI has already accomplished this and Spotlite will as
well. Additionally, labeled experiments comparing bait and
control purifications within the same sample using SILAC,
iTRAQ, or TMT tags are common but still lack dedicated
software for interaction prediction.

Presently, Spotlite classification using indirect features is only
available for human APMS data; however, HGSCore,
CompPASS, and SAINT themselves can still be used on any
data set through the web application. Aside from integrating
other species’ indirect data using the current workflow, we
envision the possibility of using APMS from multiple species to
improve predictions through homologous interactions, which is
already a powerful feature in our implementation. Along these
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lines, merging data sets from various laboratories has the
potential to further increase accuracy. While this is currently
possible with Spotlite, it should be done with great care since
contaminants will vary due to differences in cell lines, mass
spectrometers, and protocols, which leads to improperly high
APMS feature values for mutually exclusive contaminants that
now appear more unique. This combined analysis of data sets is
an area of future research.

A further limitation is that FDRs are based on APMS scores
instead of the Spotlite classifiers. Machine learning classifiers
often use cross-validation to determine a threshold that
achieves desired levels of specificity and sensitivity; however,
this would be far from accurate because of our limited
knowledge of the true positives. Instead, we recommend
accepting the same number of interactions as the chosen APMS
method would at the desired FDR. We expect this approach to
be conservative as the Spotlite classifiers have superior ROC
curves. In the future, determining the empirical null distribution
of the classifier scores will allow for controlling the FDR
directly on the classifier scores.

A major focus of our research is on the development of
proteomic and functional genomic technologies to define the
mechanics and disease contribution of KEAP1. The KEAP1
protein functions as a CUL3-based E3 ubiquitin ligase, most
well-known for its ubiquitination of the NFE2L2 transcription
factor.>>~>> Somatic inactivating mutations in KEAP1 have
been reported in a variety of solid human tumors, particularly in
lung cancer.”*™®* The leading model posits that KEAP1
inactivation results in constitutive NFE2L2 transcriptional
activation of antioxidant and pro-survival genes.’>*° APMS
analysis of KEAP1 followed by Spotlite scoring and a 5% FDR
filter revealed 34 associated proteins. Of the eight proteins
validated to reside within KEAP1 protein complexes by IP/
Western blot, the indirect data, as visualized through the
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score (classifier), APMS score (HGSCore, CompPASS, SAINT), gene ontologies for biological process (BP) and cellular component (CC), gene co-
expression for seven species (CXP), domain—domain binding score (domain), Naive Bayes’ homologous interaction classifier (homo int), shared
phenotypes (phen), shared human diseases (disease), and whether the proteins have previously been shown to interact (DB?; H = high throughput,
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Spotlite web application, drew attention to the KEAP1-—
MAD2L1 protein association. Specifically, the MAD2LI1
protein is known to function pivotally within the spindle
assembly checkpoint complex, which holds cells in metaphase
until chromosome—spindle attachment is complete.”*® Like
KEAP1, MAD2LI1 is strongly associated with cancer; its
overexpression drives chromosomal instability and aneu-
ploidy.®>’® MAD2L2 is also known to be ubiquitinated,
although the E3 ubiquitin ligase is unknown.”"’* An intriguing
possibility is that KEAP1 ubiquitinates MAD2L1 to control its
activity and stability. Within cancer systems, somatic mutation
of KEAP1 may coincide with elevated MAD2LI activity and

thus drive aneuploidy.
In conclusion, we have provided a user-friendly web

application for predicting complex comembership from
APMS data. This web application employs a novel, logistic
regression classifier that integrates existing, proven APMS
scoring approaches, gene coexpression patterns, functional
annotations, protein domains, and homologous interactions,
which we have shown to outperform existing APMS scoring

methods.
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