Intelligent Sequential Mining Via Alignment:
Optimization Techniques for Very Large DB

Hye-Chung Kum®, Joong Hyuk Chang?, and Wei Wang?

! University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
2 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{kum, weiwang}@cs.unc.edu, jhchang@uiuc.edu

Abstract. The shear volume of the results in traditional support based
frequent sequential pattern mining methods has led to increasing in-
terest in new intelligent mining methods to find more meaningful and
compact results. One such approach is the consensus sequential pattern
mining method based on sequence alignment, which has been success-
fully applied to various areas. However, the current approach to consen-
sus sequential pattern mining has quadratic run time with respect to
the database size limiting its application to very large databases. In this
paper, we introduce two optimization techniques to reduce the running
time significantly. First, we determine the theoretical bound for precision
of the proximity matrix and reduce the time spent on calculating the full
matrix. Second, we use a sample based iterative clustering method which
allows us to use a much faster k-means clustering method with only a
minor increase in memory consumption with negligible loss in accuracy.

1 Introduction

The goal of sequential pattern mining is to detect patterns in a database com-
prised of sequences of itemsets. For example, retail stores often collect customer
purchase records in sequence databases in which a sequential pattern indicates
a customer’s buying habit. In such a database, each purchase is represented as
a set of items, itemsets, purchased together, and a customer sequence would be
a sequence of such itemsets.

Sequential pattern mining is commonly defined as finding the complete set of
frequent subsequences [I]. Much research has been devoted to efficient discovery
of such frequent sequential patterns [I] [7] [§]. However, such problem formu-
lation of sequential patterns has some inherent limitations. First, the result set
is huge and difficult to use without more post processing. Even the number of
maximal or closed sequential patterns are huge, and many of the patterns are
redundant and not useful. Second, the exact match based paradigm is vulnerable
to noise and variations in the data. Many customers may share similar buying
habits, but few follow exactly the same buying patterns. Finally, frequency alone
cannot detect statistically significant patterns [4].

To overcome these limitations, recently there is an increasing interest in new in-
telligent mining methods to find more meaningful and compact results. The new
methods abandon the traditional paradigm and take a fundamentally different

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 587-E37] 2007.
© Springer-Verlag Berlin Heidelberg 2007

588 H.-C. Kum, J.H. Chang, and W. Wang

Table 1. Representing the underlying pattern

seq (O 10 [@BC) [(DE))
seqa ((A) | 0 [(BCX)[(D))
seqs (AB)[(B)| (BC) | (D))
seqs (A 0] (B) [(DE)
[consensus_pat] ((A) [[(BC) [(D)) |

approach. One such approach to intelligent sequential pattern mining is the con-
sensus sequential pattern mining based on sequence alignment. Consensus sequen-
tial patterns can detect general trends in a group of similar sequences, and may be
more useful in finding non-trivial and interesting long patterns. It can be used to
detect general trends in the sequence database for natural customer groups, which
is more useful than finding all frequent subsequences.

Formally, consensus sequential patterns are patterns shared by many sequences
in the database but not necessarily exactly contained in any one of them. Table[I]
shows a group of sequences and a pattern that is approximately similar to them.
In each sequence, the bold items are those that are shared with the consensus pat-
tern. seq; has all items in consensus pat, in the same order and grouping, except
it is missing item A and has an additional item E. Similarly, seq4 is missing C and
has an extra E. In comparison, seqs and seqz have all items but each has a couple
of extra items. These evidences strongly indicate that consensus pat is the hidden
underlying pattern behind the sequences. Such pattern mining of consensus pat-
terns can effectively summarize the database into common customer groups and
identify their buying patterns.

An effective algorithm for consensus sequential pattern mining has been pro-
posed in [B]. The alignment based method, ApproxMAP(APPROXimate Multiple
Alignment Pattern mining), has been applied to many areas such as multi-
database mining [3], temporal streaming data mining [6], and policy analysis.
Moreover, a detailed comparison study of the alignment based and support base
methods has shown the effectiveness of ApproxMAP [4].

However, ApproxMAP has quadratic time complexity with respect to the size
of the database limiting its application to very large databases. The time com-
plexity is dominated by the clustering step which has to calculate the proximity
matrix and build the clusters. In this paper, we introduce two effective optimiza-
tion techniques. First, ApproxMAP can be optimized by calculating the proximity
matrix to only the needed precision. In this paper, we introduce and prove the
theoretical bound of the required precision reducing the running time consider-
ably. Second, the clustering step can be improved by adapting the well known
k-means method to ApproxMAP. Here, we introduce modifications to the typical
algorithm that address the issues with calculating the mean, cluster initializa-
tion, and determining the number of clusters required. We further investigate
the tradeoff between time and space empirically to determine the appropriate
sample size and the utility of the optimization technique.

The remainder of the paper is organized as follows. Section [illustrates the
basic ApproxMAP algorithm. The details and theoretical basis for the optimiza-
tion are given in Section [l Finally, Section [presents the experimental results.

Intelligent Sequential Mining Via Alignment 589

Table 2. Sequence database D lexically sorted

1D Sequences 1D Sequences
seqa ((A) (B) (DE)) seqs ((AY) (BD) (B) (EY))
seq2 ((A) (BCX) (D) seai ((BO) (DE))

seqs ((AE) (B) (BC) (D)) seqo ((I) (LM))

seqr (AJ) (P) (K) (LM)) seqs
seqs ((AX) (B) (BC) (2) (AE)) seqio ((

Table 3. cluster 1 (min strenth = 50% A w > 4)

seqa ((A) 0 (BCX) 0 (D))
seqs ((AE) (B) (BC) 0 (D))
seqa ((A) 0 (B) 0 (DE))
seq1 (0 0 (BC) 0 (DE))
seqs ((AX) (®) (BC) (2) (AE))
seqe ((AY) (BD) (B) 0 (EY)>>

seqio (V) 0 0 (PW) (E)
Weighted Seq wseqi (A:5, E:1,V:1, X:1,Y:1):6 (B:3, D:1):3 (B:6, C:4,X:1):6 (P:1,W:1,Z:1):2 (A:1,D:4, E:5,Y:1):7 7
Consensus Pattern ((A) (BC) (DE))

Table 4. cluster 2 (min strength = 50% A w > 2)

seqs () 0 (KQ) (M)
seqr (AJ) (P) (K) (LM))
seq (0] 0 0 (LM))
Weighted Sequence wsegz ((A:1,1:2,J:2):3 (P:1):1 (K:2,Q:1):2 (L:2,M:3):3 3
Consensus Pattern (1) (K) (LM))

2 Consensus Sequential Pattern Mining: ApproxMAP

We presented sequential pattern mining based on sequence alignment in [5]. Ex-
tending research on string analysis, we generalized string multiple alignment to
find consensus sequential patterns in ordered lists of sets. The power of multi-
ple alignment hinges on the following insight: the probability that any two long
data sequences are the same purely by chance is very low. Thus, if several long
sequences can be aligned with respect to particular frequent items, we will have
implicitly found sequential patterns that are statistically significant.

ApproxMAP has three steps. First, k£ nearest neighbor clustering is used to
partition the database. Second, for each partition, the optimal multiple align-
ment is approximated by the following greedy approach: in each partition, two
sequences are aligned first, and then a sequence is added incrementally to the
current alignment until all sequences have been aligned. At each step, the goal
is to find the best alignment of the added sequence, p, to the existing alignment
of p — 1 sequences. A novel structure, weighted sequence, is used to summarize
the alignment information in each cluster. In short, a weighted sequence is a
sequence of itemsets with a weight associated with each item. The item weight
represents the strength of the item where strength is defined as the percentage
of sequences in the alignment that have the item present in the aligned position.
Third, a consensus pattern is generated for each partition.

590 H.-C. Kum, J.H. Chang, and W. Wang

Tables 2 to M is an example. Given Table Bl ApproxMAP (1) calculates the
proximity matrix and partitions the data into two clusters (k = 2), (2) aligns the
sequences in each cluster — the alignment compresses all the sequences into one
weighted sequence per cluster, and (3) summarizes the weighted sequences into
consensus patterns using the cutoff point min strength. Note that the consensus
patterns ((A)(BC)(DE)) and ((1J)(K)(LM)) do not match any sequence exactly.

3 Optimizations to ApproxMAP

ApproxMAP has total time complexity of O(NZ,,- L2, - Iscq+k-Nseq) where Nyeq
is the total number of sequences, L, is the length of the longest sequence, Iq
is the maximum number of items in an itemset, and k is the number of nearest
neighbors considered. The time complexity is dominated by the clustering step
which requires the computation of the proximity matrix (O(NZ, L2, Iseq)) and
builds clusters (O(k-Ngeq)). The quadratic run time with respect to the database
size may limit its applications to very large databases. There are two components
constituting the running time for calculating the proximity matrix: (1) the per
cell calculation, O(L2,, - Iseq), and (2) the total of N2 cell calculations needed
for the proximity matrix. We discuss how to optimize both in this section.

3.1 k-Nearest Neighbor (k-NN) Clustering

ApproxMAP uses uniform kernel density based k-nearest neighbor (k-NN) clus-
tering. We have found that such a density based method worked well due to its
ability to build clusters of arbitrary size and shape around similar sequences. In
this agglomerative method, each point links to its closest neighbor, but (1) only
with neighbors that have greater density, and (2) only up to k nearest neighbors.
Thus, the algorithm essentially builds a forest of single linkage trees (each tree
representing a natural cluster), with the proximity matrix defined as follows,

dist' (seq;, seq;) =

MAX DIST if dist(seq;,seq;) < disty(seq;) and Density(seq;, k) = Density(seq;, k) (1)

dist(seq;, seq;) if dist(seqq, seq;) < disty(seq;) and Density(seq;, k) < Density(seq;, k)
oo otherwise

where dist(seq;, seq;) = max?ﬁ:;: Hgﬁzﬂe)q] py and MAX DIST =max{dist(seqi, seq;)} +
1. D(segq;, seq;j) is the commonly used hierarchical edit distance defined via a
recurrence relation. disty(seq;) is the k-NN region defined as the maximum dis-
tance over all k-NN and Density(seq;, k) = d:LsIZ,ES(ZZq)) where ng(seq;) is the
number of sequences in the k-NN region. An effective implementation has three
steps : (1) build the proximity matrix, (2) build the k-NN list using the matrix,

and (3) merge the k-NN sequences when applicable. The details are in [3].

3.2 Optimizing the Proximity Matrix Calculation

Each cell in the proximity matrix is calculated using Equation[Il Thus, the time

complexity is O(L2,, - Iseq) for solving the recurrence relation for D(seq;, seq;)

Intelligent Sequential Mining Via Alignment 591

Table 5. Recurrence relation table

seqr (AJ) (P) (K) (LMm)
seqs 0 1 2 3 4
W 1 Jroasnooa L g U
(KQ) 2 g 11;1; ;i \2§1§ 1;+2;’;:12 \3;12 z% H4;22
(M) 3 1252; o \22’2; 2 \222; s \322;

through dynamic programming such as shown in Table [l Often a straight for-
ward dynamic programming algorithm can be improved by only calculating up
to the needed precision. Here we discuss how to reduce the per cell calculation
time by stopping the calculation of such a table midway whenever possible.

In Table Bl we show the intermediate calculation along with the final cell
value. Each cell RR(p,q) has four values in a 2x2 matrix. Let us assume we
are converting seq7 to seqs. Then, the top left value shows the result of moving
diagonally by replacing itemset p with itemset ¢q. The top right value is the result
of moving down by inserting ¢. The bottom left cell is the result of moving right
by deleting p. The final value in the cell, shown in the bottom right position,
is the minimum of the three. The arrows indicate the direction. The minimum
path to the final answer, RR(||seq|, ||seq;||) = D(seqi, seq;), is shown in bold.

For example, when calculating the value for RR(3,2) = 12, you can either
replace (KQ) with (K) (upper left: RR(2,1)+ REPL((KQ), (K)) =15+ 3 = 12),
insert (KQ) (upper right: RR(3,1) + INDEL = 2} 4+ 1 = 31), or delete (K)
(lower left: RR(2,2) + INDEL =15 +1 = 2}). Since 1] is the minimum, the
replace operation is chosen (diagonal). The final distance 2(13 can be found by
following the minimum path: diagonal (REPLACE), right(DELETE), diagonal,
and diagonal. This path gives the pairwise alignment shown in Table [l

In ApproxMAP, we note that we do no need to know dist(seg;, seq;) for all 7, j
to full precision. In fact, the modified proximity matrix based on dist’(seg;, seq;)
has mostly values of co because k < N. Thus, if a cell is clearly oo at any point,
we can stop the calculation and return oco. This will reduce the per cell calcu-
lation time significantly. dist’(seq;, seq;) is clearly oo if seq; is not a k-nearest
neighbor of seq;, and seq; is not a k-nearest neighbor of seq;. Remember that the

modified proximity matrix is not symmetric. The following theorems prove that
min row(p)
maz{||seqll,||seq; |}

max{disty(seq;), disty(seq;)} for any row p. Here disty(seq;) is the radius of
the k-nearest neighbor region for sequence seq;, and min row(p) is the smallest
value of row p in the recurrence table. In the following theorems, we denote a
cell in the recurrence table as RR(p, ¢) with the initial cell as RR(0,0) = 0 and
the final cell as RR(||seq;l|,||seq;||) = D(||seq:l|, ||seq;l])-

seq; and seq; are not k-nearest neighbor of each other when

Theorem 1. There is a connected path from RR(0,0) to any cell RR(p, q) such
that (1) cells along the path are monotonically increasing, (2) the two indices

592 H.-C. Kum, J.H. Chang, and W. Wang

never decrease (i.e. the path always moves downward or to the right), and (3)
there must be at least one cell from each row 0 to p — 1, in the connected path.

Proof. The theorem comes directly from the definitions. First, the value of any
cell RR(p,q) is constructed from one of the three neighboring cells (up, left,
or upper left) plus a non-negative number. Consequently, the values have to
be monotonically increasing. Second, every cell must be constructed from three
neighboring cells - namely up, left, or upper left. Hence, the path must move
downward or to the right. Finally, since there has to be a connect path from
RR(0,0) to RR(p, q), there must be at least one cell from each row 0 to p — 1.

Theorem 2. RR(||seqil|,|seq;l|) is greater than or equal to the minimum row
value in any row. (i.e. RR(||seq;||, ||seq;||) > min row(p) for all 0 < p < ||seq;l|)

Proof. Let us assume that there is a row, p, such that RR(||seq;|,||seq;||) <
min row(p). Let min row(p) = RR(p,q). There are two possible cases. First,
RR(p, q) is in the connected path from RR(0,0) to RR(]|seq;||, || seg;|). Since the
connected path is monotonically increasing by Theorem [0l RR(||seql|, | seq;]|)
must be greater then equal to RR(p, q). Thus, RR(||seq;l|, ||seq;l|) > RR(p,q) =
min row(p). This is a contradiction. Second, RR(p,q) is not in the connected
path from RR(0,0) to RR(||seql,||seq;]|). Now, let RR(p,a) be a cell in the
connected path. Then, min row(p) = RR(p,q) and RR(p,a) > RR(p,q). Thus,
RR(||seqil|, ||seq;ll) > RR(p,a) > RR(p,q) = min row(p). This is also a contra-
diction. Thus, by contradiction RR(||seq;, ||seg;||) < min row(p) does not hold
for any rows p. In other words, RR(||seq|, |seq;||) > min row(p) for all rows p.
Theorem 3. If ™ row() y > max{disti(seq;), diste(seq;)} for any row

maz{||seqi .| seq |l

p, then seq; is not a k-NN of seq;, and seq; is not a k-NN of seq;.

Proof. By Theorem[2 RR(||seq;]|, ||seq;
row p. Thus, dist(seq;, seq;) =

|) = D(seqi, seqj) > min row(p) for any
D(seqi,seqj) > min row(p)
maz{|[seqillllseq; |} = maz{|seq:||seq;[I}
>max{disty(seq;), disti(seq;)} for any row p. By definition, when dist(seq;,seq;)
>maz{disty(seq;), disti(seq;)}, seq; and seq; are not k-NN of each other.

In summary by Theorem [B as soon as the algorithm detects a row p in the
min row(p) s maz{dist(seq;), distp(seq;)}, it

maz{||seqi|,llseq; |}
is clear that dist’(seq;, seq;) = dist'(seq;, seq;) = oco. At this point, the recur-
rence table calculation can stop and simply return co. Checking for the condition

min row(p) .) .)
B S T max{disty(seq;), disty(seq;)} at the end of each row takes

negligible time and space when k < N and k < L.

recurrence table such that

3.3 Optimizing the Clustering Method

Now, we investigate how to reduce the NZ,, cell calculations by using an itera-
tive clustering method similar to the well known k-mediods clustering methods.
k-mediods clustering is exactly the same as the more popular k-means algorithm,
except it works with the representative points in clusters rather than the means

Intelligent Sequential Mining Via Alignment 593

Algorithm 1 (Sample Based Iterative Clustering)

Input: asetof sequences D = {seq;}, the sampling percentage o, and the number of neighbor

sequences k' for the sampled database;

Output: a set of clusters {C;}, where each cluster is a set of sequences;

Method: I. Randomly sample the database D into D’ using «. The size of
D’ will be a trade off between time and accuracy. The ex;)eriments indicate that at a
minimum ||D’|| should be 4000 sequences for the default k' = 3. Furthermore, roughly
10% of the data will give comparable results when Nseq > 40, 000.

2. Run uniform kernel density based k-NN clustering [3] on D’ with
parameter k’. The output is a set of clusters {C%}

3. Center: Find the representative sequence for each cluster C.. The rep-
resentative sequence, seqsr, for a cluster, C", is chosen such that X idist(seqsr, S€qs;)
for all sequences, seqs;, in cluster C” is minimized (minimum intra-cluster distance).

4. Initialization: Initialize each cluster, C;, with the representative se-
quence, seqsr, found in the previous step.

5. Cluster: Assign all other sequences in the full database, D, to the
closest cluster. That is assign sequence seq; such that dist(seq;, seqsr) is minimum
over all representative sequences, seqsr.

6. Recenter: Find the representative sequence for each cluster C;. Repeat
the centering step in 3 for all clusters C's formed over the full database.

7. Iteratively repeat Initialization, Cluster, and Recenter. Steps 5 through
7 are repeated until no representative point change for any cluster or a certain iteration
threshold, M AX LOOP = 100, is met.

of clusters. There are two major difficulties in using the k-mediods clustering
methods directly in ApproxMAP. First, without proper initialization, it is impos-
sible to find the proper clusters. Thus, finding a good starting condition is crucial
for k-mediods methods to give good results in terms of accuracy and speed [2].
Second, the general k-mediods method requires that the user input the number
of clusters. However, the proper number of partitions is unknown in advance.

To overcome these problems, we introduce a sample based iterative clustering
method. It involves two main steps. The first step finds the clusters and its
representative sequences based on a small random sample of the data, D’, using
the density based k-NN method. Then in the second step, the number of clusters
and the representative sequences are used as the starting condition to iteratively
cluster and recenter the full database until the algorithm converges. The full
algorithm is given above. When ||D’|| <« ||D|, the time complexity for clustering
is obviously O(t - Nseq) where ¢ is the number of iterations needed to converge.
The experimental results show that the algorithm converges very quickly. Figure
[[(a) shows that in most experiments it takes from 3 to 6 iterations.

When using a small sample of the data, k (for k-NN algorithm) has to be
smaller than what is used on the full database to achieve the clustering at the
same resolution because the k-NN in the sampled data is most likely (k+ a)-NN
in the full database. In ApproxMAP, the default value for k is 5. Hence, the
default for k¥’ in the sample based iterative clustering method is 3.

4 Evaluation

In our previous work, we have developed a benchmark that can quantitatively as-
sess how well different sequential pattern mining methods can find the embedded

594 H.-C. Kum, J.H. Chang, and W. Wang

patterns in the data []. In this section, we apply the benchmark to conduct an
extensive performance study on the two optimizations.

The benchmark uses the well known IBM data generator [I] which allows us
to study the performance systematically. In addition, the IBM data generator
embeds base patterns that represent the underlying trend in the data. By match-
ing the results back to these embedded patterns, the benchmark can be used to
measure the loss in accuracy due to the optimization. In particular, recoverabil-
ity provides a good estimation of how well the items in the base patterns were
detected. Recoverability is comparable to the commonly used recall except that
it weights the results by the strength of the patterns in the database.

Most other criteria were not influenced by the optimizations. As expected in
any alignment model, in all experiments there were no spurious patterns and
negligible number of extraneous items resulting in excellent precision close to
100%. The amount of redundant patterns in the results remained similar to
that of the basic ApproxMAP algorithm. The only criteria that was affected was
the total number of patterns returned. Not surprisingly, recoverability is a good
indicator for the number of total patterns returned increasing or decreasing
accordingly. Thus, for simplicity we only report recoverability in our results.

4.1 Proximity Matrix Calculations

ApproxMAP can be optimized with respect to O(L?eq) by calculating the prox-
imity matrix used for clustering to only the needed precision. Here we study the
speed up gained empirically. We only need to study the reduction in running
time because this first optimization maintains the results of ApproxMAP. Fig-
ure [[[(b) shows the speed up gained by the optimization with respect to Ly, in
comparison to the basic algorithm. The figure indicates that such optimization
can reduce the running time to almost linear with respect to Lgeq.

To investigate the performance further, we examined the actual number of
cell calculations reduced by the optimization. That is, with the optimization, the
modified proximity matrix has mostly values of co because k < N. For those
dist' (seq;, seqj) = oo, we investigated the dynamic programming calculation for
dist' (seq;, seqj) to see how many cells in the recurrence table were being skipped.
To understand the savings in time, we report the following in Figure [I(c).

of iterations
cCaMwsOON®OD

36000 " ApproxMAP —+— |
32400 |- ApprOXMAP-PM -

Percent(%)

20 e

Run Time (sec)
)
8
8
8

Reduction in cell calculations —+—

Reduction in runping time -

0 20000 40000 60000 80000 100000 0 10 20 30 40 50 0 10 20 30 40 50
Nseq : # of sequences Lseq : avg # of itemsets per sequence Lseq : avg # of itemsets per sequence

(a) Number of iterations (b) Running time w.r.t. Lseq (c) Reduction in time & calculation

Fig. 1. Results of optimizing the proximity matrix calculation (ApproxMAP-PM)

Intelligent Sequential Mining Via Alignment 595

>~ the number of cells in the recurrence table skipped

- 100
> the total number of cells in the recurrence table %

When 10 < Ly, < 30, as Ly, increases more and more proportion of the
recurrence table calculation can be skipped. Then at L., = 30, the proportion
of savings levels off at around 35%-40%. This is directly reflected in the savings in
running time in Figure[Il(c). Figure[l(c) reports the reduction in calculations and
running time due to the optimization as a proportion of the original algorithm.
Clearly, the proportion of savings increase until Ls.q = 30. At Lsq = 30 the
running time levels off at around 40%. Thus, we expect that when Lg., > 30,
the optimization will give a factor of 2.5 speed up in running time. This is a
substantial improvement in speed without any loss in accuracy of the results.

4.2 Sample Based Iterative Clustering

The sample based iterative clustering method can optimize the time complexity
with respect to O(steq) at the cost of some reduction in accuracy and larger
memory requirement. The larger the sample size the better the accuracy with
slightly longer running time. We investigate the tradeoff empirically.
Figure[J(a) presents recoverability with respect to sample size (k' = 3). When
Nseq > 40,000, recoverability levels off at 10% sample size with good recoverabil-
ity at over 90%. When Ny, < 40,000, ApproxMAP requires a larger sample size of
20%-40%. In summary, the experiment suggests that the optimization should
be used for databases when Ns., > 40,000 with sample size 10%. For databases
with Nseq < 40,000 a larger sample size is required as 10% will result in signifi-
cant loss in accuracy (Figure 2Ib)). Essentially, the experiments indicate that
the sample size be at least 4000 seqs to get comparable results when k' = 3.

100

90 -

80

P =N

70 |

Recoverability (%)
Recoverability (%)

60 - 1 70F X
Nseq=10K —+—
Nseq=20K ------
50 - Nseq=30K ¥~ | 60 |
Nseq=40K & ApproxMAP —+—
% . . Nseq=60K --a-- 50 LAPPIOXMAP-IC ;-)
4 10 20 30 40 50 0 20000 40000 60000 80000 100000

Sample size (%) Nseq : # of sequences

(a) Recoverability by sample size (b) Recoverability by Nseq (sample=10%)

50

216000 |- " ApproxMAP —— 1 APPrOXMAP-IC (all) —->—
ApproxMAP-IC (all) - ApproxMAP-IC (none) -
180000 | APPOXMAP-IC (none) -] 20 "
—_ ol *. S ’
g 144000 | £ 30 o
kA H * *
2 108000 [8
E s 2
72000 - . E| N
P © Koo
36000 - .
. *
o ™ 0
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

Nseq : # of sequences Nseq : # of sequences

(c) Running time (sample=10%) (d) Reduction in running time (sample=10%)

Fig. 2. Results for sample based iterative clustering (ApproxMAP-IC)

596 H.-C. Kum, J.H. Chang, and W. Wang

In the iterative clustering method more memory is required in order to fully
realize the reduction in running time because the NZ,, proximity matrix needs
to be stored in memory across iterations. In the basic method, although the
full proximity matrix has to be calculated, the information can be processed
one row at a time and there is no need to return to any values. That is, we
only need to maintain the k-NN list without keeping the proximity matrix in
memory. However in the iterative clustering method, it is faster to store the
proximity matrix in memory over different iterations so as not to repeat the
distance calculations. When N, is large, the proximity matrix is huge. Hence,
there is a large memory requirement for the fastest optimized algorithm.

Nonetheless, the proximity matrix becomes very sparse when the number of
clusters is much smaller than N.,. Thus, much space can be saved by using a
hash table instead of a matrix. Furthermore, a slightly more complicated scheme
of storing only up to the possible number of values and recalculating the other
distances when needed (much like a cache) will still reduce the running time
compared to the basic method. Efficient hash tables are a research topic on its
own and will be studied in the future. For now, the initial implementation of a
simple hash table demonstrates the huge potential for reduction in time well. In
order to fully understand the potential, we measured the running time assuming
(1) memory was limitless and (2) no memory was available to store the proximity
matrix. That is, distance values were never recalculated in the first experiment
and always recalculated in the second experiment.

Figure 2(b) and (c) show the loss in recoverability and the gain in running
time with respect to Ny, with the optimization (sample size=10%, k' = 3).
Figure 2I(d) depicts the relative running time with respect to Ngeq. optimized
(all) is a simple hash table implementation with all proximity values stored and
optimized (none) is the implementation with none of the values stored. The
implementation of a simple hash table was able to run up to Ng., = 70,000 with
2GB of memory (Figures [X(c) and 2(d) - optimized (all)). A more efficient hash
table could easily improve the memory requirement.

A good implementation would give running times in between the optimized
(all) and the optimized (none) line in Figure Blc). The results clearly show
that the optimization can speed up time significantly at the cost of negligible
reduction in accuracy. Figure[2(d) show that the optimization can reduce running
time to roughly 10%-40% depending on the size of available memory. Even in
the worst case the running time is significantly faster by a factor of 2.5 to 4. In
the best case, the running time is an order of magnitude faster.

5 Conclusions

Optimizing data mining methods is important in real applications which often
have very large databases. In this paper, we proposed two optimization tech-
niques for ApproxMAP that can reduce the running time significantly for consen-
sus sequential pattern mining based on sequence alignment.

Intelligent Sequential Mining Via Alignment 597

References

N =

. R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, pp. 3-14, 1995

. A. Goswami, R. Jin, and G. Agrawal. Fast and Exact Out-of-Core K-Means Clus-
tering. In Proc. of the Int’l Conference on Data Mining (ICDM), pp. 83-90, 2004.

. H.C. Kum, J.H. Chang, and W. Wang. Sequential pattern mining in multi-databases
via multiple alignment. In DMKD, 12(2-3), pp. 151-180, 2006.

. H.C. Kum, J.H. Chang, and W. Wang. Benchmarking the effectiveness of sequential
pattern mining methods. In Data and Knowledge Engineering, 60, pp30-50, 2007.

. H.C. Kum, J. Pei, W. Wang, and D. Duncan. ApproxMAP : Approximate mining
of consensus sequential patterns. In Proc. of SDM, pp. 311-315, 2003.

. A. Marascu and F. Masseglia. Mining data streams for frequent sequences extrac-
tion. In Proc. of the IEEE Workshop on Mining Complex Data (MCD), 2005.

. P. Tzvetkov, X. Yan, and J. Han. TSP: Mining top-k closed sequential patterns. In
Proc. of the Int’l Conference on Data Mining (ICDM), pp. 418-425, 2003.

. X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large
datasets. In Proc. of the SIAM Int’l Conf on Data Mining, pp. 166-177, 2003.

	Introduction
	Consensus Sequential Pattern Mining: $ApproxMAP$
	Optimizations to $ApproxMAP$
	k-Nearest Neighbor (k-NN) Clustering
	Optimizing the Proximity Matrix Calculation
	Optimizing the Clustering Method

	Evaluation
	Proximity Matrix Calculations
	Sample Based Iterative Clustering

	Conclusions

