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Abstract. Discovery of periodic patterns in time series data has become an active research area
with many applications. These patterns can be hierarchical in nature, where a higher-level pat-
tern may consist of repetitions of lower-level patterns. Unfortunately, the presence of noise may
prevent these higher-level patterns from being recognized in the sense that two portions (of a
data sequence) that support the same (high-level) pattern may have different layouts of occur-
rences of basic symbols. There may not exist any common representation in terms of raw symbol
combinations; and hence such (high-level) pattern may not be expressed by any previous model
(defined on raw symbols or symbol combinations) and would not be properly recognized by any
existing method. In this paper, we propose a novel model, namely meta-pattern, to capture these
high-level patterns. As a more flexible model, the number of potential meta-patterns could be
very large. A substantial difficulty lies in how to identify the proper pattern candidates. However,
the well-known Apriori property is not able to provide sufficient pruning power. A new property,
namely component location property, is identified and used to conduct the candidate generation
so that an efficient computation-based mining algorithm can be developed. Last, but not least,
we apply our algorithm to some real and synthetic sequences and some interesting patterns are
discovered.
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1. Introduction

Periodicity detection on time series data is a challenging problem of great importance in
many real applications. The periodicity is usually represented as repeated occurrences
of a list of symbols in a certain order at some frequency (Han et al, 1998, 1999; Yang
et al, 2000). Due to the changes of system behavior, some pattern may only be notable
within a portion of the entire data sequence; different patterns may present at different
places and be of different durations. The evolution among patterns may also follow some
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regularity. Such regularity, if any, would be of great value in understanding the nature of
the system and building prediction models. Consider the application of inventory replen-
ishment. The history of inventory refill orders can be regarded as a symbol sequence.
For brevity, let us only consider the replenishment of flu medicine. Figure 1(a) shows
the history of refill orders of a pharmacy during 1999 and 2000 on a weekly basis. The
symbol ‘r’ means a refill order of flu medicine was placed in the corresponding week,
while, ‘-’ represents that no flu medicine replenishment was made in that week. It is
easy to see that the replenishment follows a biweekly pattern during the first half of each
year and a triweekly cycle during the second half of each year. This seasonal fluctuation
also forms a high-level periodic pattern (the period length is one year). However, such
high-level patterns may not be expressible by any previous model (defined in terms of
raw symbols) due to the presence of noise, even when the noise is very limited. In the
above example, a major outbreak of flu caused a provisional replenishment in the 4th
week of 1999 (Fig. 1(a)). Afterwards, even though the replenishment frequency is back
to once every other week, the occurrences of all subsequent replenishments become
misaligned. Even though the biweekly replenishment cycle was notable in the first two
quarters of both 1999 and 2000, the corresponding portions in the data sequence have
a different layout of replenishment occurrences. This characteristic determines that the
representation of the above two-level periodicity is beyond the expressive power of any
traditional model of periodic patterns that only takes raw symbols as components. In any
traditional model, each symbol specified in a pattern uniquely matches its counterpart
in the data sequence, and all occurrences of a pattern have to share a unique common
layout. This inherent limitation would prevent many interesting high-level patterns from
being captured. Note that, even if the period length (i.e., 52 weeks) is given,1 the on-
ly annual pattern that is able to be generated under the traditional model via pairwise
comparison of symbols corresponding to each week shown in Fig. 1(b). The symbol
‘*’ denotes the don’t care position2 and can match any symbol on the corresponding
position. Clearly, little information is conveyed in this pattern as the important two-level
periodicity is completely concealed.

To tackle the problem, we propose a so-called meta-pattern model to capture high-
level periodicities. A meta-pattern may take occurrences of patterns/meta-patterns (of
lower granularity) as components. In contrast, we refer to the patterns that contain only
raw symbol(s) as the basic patterns, which may be viewed as special cases of meta-
patterns. In general, the noise could occur anywhere, be of varied duration, and even
occur multiple times within the portion where a pattern is notable as long as the noise
is below some threshold. Even though the allowance of noise plays a positive role in
characterizing system behavior in a noisy environment, it prevents such a meta-pat-
tern from being represented in the form of an (equivalent) basic pattern. The model of
meta-pattern provides a more powerful means of periodicity representation. The recur-
sive nature of meta-pattern can not only tolerate a greater degree of noises/distortion,
but also can capture the (hidden) hierarchies of pattern evolutions, which may not be
expressible by previous models. In the previous example, the biweekly and the tri-
weekly replenishment cycles can be easily represented by P1 = (r : [1, 1], ∗ : [2, 2])
and P2 = (r : [1, 1], ∗ : [2, 3]), respectively, where the numbers in brackets indicate
the offset of the component within the pattern. The two-level periodicity can be easily
represented as (P1 : [1, 24], ∗ : [25, 25], P2 : [26, 52]), which can be interpreted as
the pattern P1 repeats at the first 24 weeks and the pattern P2 repeats from week 26 to

1 Note that in many applications, e.g. seismic periodicity analysis, the period length is usually unknown in
advance and is part of the mining objective.
2 It is introduced to represent the position(s) in a pattern where no strong periodicity exhibits.



Discovering High-Order Periodic Patterns 245

F
ig

.1
.

M
et

a-
pa

tte
rn

.



246 J. Yang et al.

week 52. As shown in Fig. 1 (c), each rectangular box denotes the portion where the cor-
responding low-level pattern (i.e., either (r : [1, 1], ∗ : [2, 2]) or (r : [1, 1], ∗ : [2, 3]))
is notable.

Unfortunately, the flexibility of meta-pattern poses serious challenges in the discov-
ery process, which may not be encountered in mining basic patterns:

• While a basic pattern has two degrees of freedom, the period (i.e., the number of posi-
tions in the pattern) and the choice of symbol for each single position, a meta-pattern
has an additional degree of freedom: the length of each component in the pattern. It
is incurred by the fact that a component may occupy multiple positions. This extra
degree of freedom increases the number of potential meta-pattern candidates dramat-
ically.
• Many patterns/meta-patterns may collocate or overlap for any given portion of a se-

quence. As a result, during the meta-pattern mining process, there could be a large
number of candidates for each component of a (higher-level) meta-pattern. This also
aggravates the mining complexities.

Therefore, how to identify the ‘proper’ candidate meta-patterns is crucial to the
overall efficiency of the mining process, and will be the focus of the algorithmic part of
the paper. To tackle this problem, we employ a so-called component location property,
in addition to the traditionally used Apriori property, to prune the search space. This
is inspired by the observation that a pattern may participate in a meta-pattern only if
its notable portions exhibit a certain cyclic behavior. A computation-based algorithm is
devised to identify the potential period of a meta-pattern and, for each candidate period,
the potential components and their lengths within the meta-pattern. The set of all meta-
patterns can be categorized according to their structures and are evaluated in a designed
order so that the pruning power provided by both properties can be fully utilized.

In summary, we claim the following contributions in this paper:

• A model of meta-pattern is identified to capture the cyclic relationship among dis-
covered periodic patterns and to enable a recursive construction of exhibited cyclic
regularities.
• The component location property is proposed to provide further pruning power, in

addition to the traditional Apriori property.
• A computation-based algorithm is designed to identify and to verify potential meta-

pattern candidates.

The remainder of this paper is organized as follows. Section 2 gives a brief overview
of recent related research. The general model is presented in Section 3. Section 4 out-
lines the major steps of our algorithm. The algorithms of component generation and the
pattern verification are elaborated in Sections 5 and 6, respectively. Section 7 presents
experimental results. The conclusion is drawn in Section 8.

2. Related Work

Most previous work on mining sequence data fell into two categories: discovering se-
quential patterns (Agrawal and Srikant, 1995; Berndt and Clifford, 1996; Padmanabhan
and Tuzhilin, 1996; Srikand and Agrawal, 1996; Mannila et al, 1997; Bettini et al, 1998;
Chakrabarti et al, 1998; Das et al, 1998; Guralnik et al, 1998; Padmanabhan and Tuzhilin,
1998; Garofalakis et al, 1999; Spiliopoulou, 1999; Han et al, 2000; Zaki, 2000, 2001)
and mining periodic patterns(Han et al, 1998; Ozden et al, 1998; Han et al, 1999; Yang
et al, 2000). The primary difference between them is that the models of sequential pattern
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purely take into account the number of occurrences of the pattern, while the frameworks
for periodic patterns focus on characterizing cyclic behaviors.

2.1. Sequential Patterns

Discovering frequent sequential patterns was first introduced in Agrawal and Srikant
(1995). The input data is a set of sequences, called data sequences. Each data sequence
is a list of transactions and each transaction consists of a set of items. A sequential
pattern also consists of a (fully ordered) list of transactions. The problem is to find all
frequent sequential patterns with a user-specified minimum support, where the support
of a sequential pattern is the percentage of data sequences that contain the pattern.
Apriori-based algorithms, such as AprioriALL (Agrawal and Srikant, 1995) and GSP
(Srikand and Agrawal, 1996), were proposed to mine patterns with some minimum
support in a level-wise manner. To further improve the performance, a projection-based
algorithm called FreeSpan (Han et al, 2000) was introduced to reduce the candidate pat-
terns generated and hence reduce the number of scans through the data.Additional useful
constraints (such as time constraint and regular expression constraint) and/or taxono-
mies were also studied extensively in Garofalakis et al (1999), Srikand and Agrawal
(1996), and Zaki (2000) to enable more powerful models of sequential patterns.

As a more generative model, the problem of discovering frequent episodes from
a sequence of events was presented in Mannila et al (1997). An episode is defined
to be a collection of events that occur relatively close to each other in a given par-
tial order. A time window is moved across the input sequence and all episodes that
occur in some user-specified percentage of windows are reported. This model was
further generalized by Padmanabhan and Tuzhilin (1996) to suit temporal logic pat-
terns.

2.2. Periodic Patterns

Full cyclic pattern was first studied in Ozden et al (1998). The input data to Ozden et
al (1998) is a set of transactions, each of which consists of a set of items. In addition,
each transaction is tagged with an execution time. The goal is to find association rules
that repeat themselves throughout the input data. Han et al (1998, 1999) presented algo-
rithms for efficiently mining partial periodic patterns. In practice, not every portion in
the time series may contribute to the periodicity. For example, a company’s stock may
often gain a couple of points at the beginning of each trading session but it may not
have much regularity at later times. This type of looser periodicity is often referred to
as partial periodicity. We will see later that our model also allows partial periodicity.

The inclusion of a user-defined calendar is studied in Ramaswamy et al (1998).
A user explicitly defines a calendar and interesting patterns are discovered based on
the calendar. For example, if a user defines temporal subsequence to start on the days
when the US government announces the unemployment rate as the calendar and this
calendar is applied to the stock prices in the New York Stock Exchange, then some
interesting patterns can be discovered relating the reaction of stock prices to these an-
nouncements.

To accommodate the phenomenon that the system behavior may change over time, a
flexible model of asynchronous periodic pattern was proposed inYang et al (2000). In this
model, a qualified pattern may be present only within a subsequence and whose occur-
rences may be shifted due to disturbance. Two parameters, min_rep and max_dis, are
employed to specify the minimum number of repetitions required within each segment
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of non-disrupted pattern occurrences and the maximum allowed disturbance between
any two successive valid segments. The intuition behind this is that a pattern needs
to repeat itself at least a certain number of times to demonstrate its significance and
periodicity. On the other hand, the disturbance between two valid segments has to be
within some reasonable bound. Otherwise, it would be more appropriate to treat such
disturbance as a signal of ‘change of system behavior’ instead of random noise injected
into some persistent behavior. The parameter max_dis acts as the boundary to sepa-
rate these two phenomena. For example, Fig. 1(c) shows six valid segments of pattern
(r : [1, 1], ∗ : [2, 2]) (for both 1999 and 2000) if we set min_rep = 2. (Each val-
id segment is indicated by a shaded region.) Moreover, if we set max_dis = 3, the
three valid segments in 1999 (separated by a disturbance of 1 symbol) form a valid
symbol subsequence of (r : [1, 1], ∗ : [2, 2]), while the three valid segments in 2000
from another valid symbol subsequence. Obviously, the appropriate values of these two
parameters are application dependent and need to be specified by the user. Note that,
due to the presence of disturbance, some subsequent valid segment may not be well
synchronized with the previous ones. (Some position shifting occurs.) Upon satisfying
these two requirements, the longest valid subsequence of a pattern is returned. A two-
phase algorithm is devised first to generate potential periods by distance-based pruning
followed by an iterative procedure to derive and validate candidate patterns and locate
the longest valid subsequence. Still, this paper only concerns patterns constructed from
raw symbols and does not address the problem of meta-patterns. As we pointed out
earlier, due to the extra degree of freedom possessed by meta-patterns and the massive
amount of potential candidate components, no direct generalization of existing algo-
rithm (designed for mining patterns consisting of only raw symbols) can be applied to
mine meta-patterns efficiently. In fact, serious challenges exist in how to quickly identify
the ‘proper’ candidate meta-patterns so that unnecessary computation can be avoided.
Thus, we will focus on candidate meta-pattern generation (rather than the candidate
meta-pattern validation) in this paper. In addition, Sheng and Hellerstein (2001) pre-
sented a method to discover patterns with unknown periodicity. This work differs from
the meta-pattern because it does not address the problem of finding nested (hierarchical)
patterns.

3. Definition of Meta-Patterns

Let � = {a, b, c, . . .} be a set of literals. A traditional periodic pattern (Han et al, 1999;
Yang et al, 2000) consists of a tuple of k components, each of which is either a literal
or ‘*’. k is usually referred to as the period of the pattern. ‘*’ can be substituted for
any literal and is used to enable the representation of partial periodicity. For example,
. . . , a, b, c, a, b, d, a, b, b, . . . is a sequence of literals and (a, b, ∗)3 represents that the
incident ‘b following a’occurs for every 3 time instances in the data sequence. The peri-
od of this pattern is 3 by definition. Note that the third component in the pattern is filled
by a ‘*’ since there is no strong periodicity present in the data sequence with respect to
this component. Because a pattern may start anywhere in the data sequence, only pat-
terns whose first component is a literal in � need be considered. In this paper, we refer
to this type of pattern as a basic pattern as each component in the pattern is restricted
to be either a literal or a ‘*’. In contrast, a meta-pattern may have pattern(s)/meta-pat-
tern(s) as its component(s). This enables us to represent complicated basic patterns in a

3 Since each component corresponds to exactly one symbol, we do not have to explicitly record the offset of
a component within the pattern as this information can be easily derived.
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more concise way and possibly to reveal some hidden patterns among discovered ones.
Formally, a meta-pattern is a tuple consisting of k components (x1, x2, . . . , xk) where
each xi (1 ≤ i ≤ k) can be one of the following choices augmented by the offsets of
the starting and ending positions of the component with respect to the beginning of the
meta-pattern.

• a symbol in �;
• ‘don’t care’ *;
• a pattern/meta-pattern.

We also require that at least one position of a meta-pattern has to correspond to a non
‘*’ component to ensure a non-trivial pattern. For example, ((r : [1, 1], ∗ : [2, 2]) :
[1, 24], ∗ : [25, 25], (r : [1, 1], ∗ : [2, 3]) : [26, 52]) is a meta-pattern with three
components: (r : [1, 1], ∗ : [2, 2]), *, and (r : [1, 1], ∗ : [2, 3]). The length of a com-
ponent is the number of positions that the component occupies in the meta-pattern. In
the previous example, the component length of (r : [1, 1], ∗ : [2, 2]) is 24. We also
say that 52 is the span of this meta-pattern, which is equal to the sum of the length
of all components in the meta-pattern. This pattern can be interpreted as ‘the pattern
(r : [1, 1], ∗ : [2, 2]) is true for 24 positions (or weeks in previous example) followed
by the pattern (r : [1, 1], ∗ : [2, 3]) for 27 positions with a gap of one position in
between, and such a behavior repeats for every 52 positions’. For brevity, we some-
times omit the augmenting offset of a component if the length of the component is
only one position. For example, (r, ∗) is the abbreviation of (r : [1, 1], ∗ : [2, 2]) and
((r, ∗) : [1, 24], ∗, (r, ∗ : [2, 3]) : [26, 52]) is equivalent to ((r : [1, 1], ∗ : [2, 2]) :
[1, 24], ∗ : [25, 25], (r : [1, 1], ∗ : [2, 3]) : [26, 52]). It is obvious that the meta-pattern
is a more flexible model than the basic pattern and the basic pattern can be viewed as a
special (and simpler) case of the meta-pattern. Because of the hierarchical nature of the
meta-pattern, the concept of level is introduced to represent the ‘depth’ of a meta-pat-
tern. By setting the level of basic pattern to be 1, the level of a meta-pattern is defined
as the maximum level of its components plus 1. According to this definition, the level
of (r, ∗ : [2, 3]) is 1 and the level of P1 = ((r, ∗) : [1, 24], ∗, (r, ∗ : [2, 3]) : [26, 52])
is 2. Note that the components of a meta-pattern do not have to be of the same level.
For instance, (P1 : [1, 260], ∗ : [261, 300]) is a meta-pattern (of level 3) which has a
level-2 component and a level-1 component.

All terminologies associated with the basic patterns (Yang et al, 2000) (i.e., level-1
patterns) can be generalized to the case of meta-patterns (i.e., higher-level patterns). We
now give a brief overview of terms defined inYang et al (2000) for basic patterns. Given
a symbol sequence D′ = d1, d2, . . . , ds and a basic pattern P = (p1, p2, . . . , ps), we
say D′ supports P iff, for each i(1 ≤ i ≤ s), either pi = ∗ or pi = di . D′ is also called
a match of P . Given a pattern P and a symbol sequence D, a list of j disjoint matches
of P in D is called a segment with respect to P iff they form a contiguous portion of
D. j is referred to as the number of repetitions of this segment. Such a segment is said
to be a valid segment iff j is greater than or equal to the required minimum repetition
threshold min_rep. A valid subsequence in D (with respect to P ) is a set of disjoint
valid segments where the distance between any two consecutive valid segments does not
exceed the required maximum disturbance threshold max_dis. P is said to be a valid
pattern in D if there exists a valid subsequence in D with respect to P . The parameters
min_rep and max_dis, in essence, define the significance of the periodicity and the
boundary to separate noise and change of system behavior. The appropriate values of
min_rep and max_dis are application dependent and are specified by the user.

Similarly, given a symbol sequence D′ = d1, d2, . . . , ds , for any meta-pattern X =
(x1 : [1, t1], x2 : [t1 + 1, t2], . . . , xl : [tl−1 + 1, s]), D′ supports X iff, for each com-
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ponent xi , either (1) xi is ‘*’ or (2) xi is a symbol and dti−1+1 = . . . = dti = xi or
(3) xi is a (meta-)pattern and dti−1+1, . . . , dti is a valid subsequence with respect to xi .
D′ is in turn called a match of P . We can define segment, subsequence, and validation
in a similar manner to that of a basic pattern. Given a meta-pattern X and a symbol
sequence D, a list of j disjoint matches of X in D is called a segment with respect to X
iff they form a contiguous portion of D. j is referred to as the number of repetitions of
this segment. Such segment is said to be a valid segment iff j is greater than or equal to
the required minimum repetitions min_rep. A valid subsequence in D (with respect to
X) is a set of disjoint valid segments where the distance between any two consecutive
valid segments does not exceed the required maximum disturbance max_dis. P is said
to be a valid pattern in D if there exists a valid subsequence in D with respect to X.
Look back to the medicine replenishment example: the max_dis parameter solves the
shift problem. Our model can tolerate that the pattern shifts at most max_dis symbols.
In other words, our model can capture the patterns that have at least min_rep perfect
repetitions continuously and at most max_dis interruption between two portions of
perfect repetitions.

In this paper, given a symbol sequence and two parameters min_rep and max_dis,
we aim at mining valid meta-patterns together with their longest valid subsequences
(i.e., the valid subsequence which has the most overall repetitions of the corresponding
meta-pattern). Since a meta-pattern can start anywhere in a sequence, we only need to
consider those starting with a non ‘*’ component.

4. Algorithm Outline

The great flexibility of the model poses considerable difficulties to the generation of
candidate meta-patterns. Therefore, we will focus on the efficient candidate generation
of meta-patterns in the remainder of this paper. The well-known Apriori property holds
on the set of meta-patterns of the same span, which can be stated as follows: for any
valid meta-pattern P = (P1 : [1, t1], P2 : [t1 + 1, t2], . . . , Ps : [ts−1 + 1, ts]), the
meta-pattern constructed by replacing any component Pi with ‘*’in P is also valid. For
example, let X1 = ((a, b, ∗) : [1, 19], ∗ : [20, 21]) and X2 = ((a, b, ∗) : [1, 19], ∗ :
[20, 21], (b, c) : [22, 27], ∗ : [28, 30], X1 : [31, 150]). If X2 is a valid meta-pattern,
then the pattern X3 = ((a, b, ∗) : [1, 19], ∗ : [20, 21], (b, c) : [22, 27], ∗ : [28, 150])
(generated by replacing X1 with ‘*’) must be valid as well. Note that X2 is a level-3
meta-pattern which has three non ‘*’ components: (a, b, ∗), (b, c), and X1; whereas X3
is a level-2 meta-pattern that has two non ‘*’ components: (a, b, ∗) and (b, c). Intuitive-
ly, X3 should be examined before X2 so that the result can be used to prune the search
space.

Nevertheless, because of the hierarchical characteristic of the meta-pattern, theApri-
ori property does not render sufficient pruning power as we proceed to high-level patterns
from discovered low-level patterns. After identifying valid meta-patterns of level l, the
brute force method (powered by the Apriori property) to mine patterns of level l + 1
is first to generate all possible candidates of level l + 1 by taking valid lower-level
patterns as component(s); and then, verify them against the symbol sequence. While
the verification of a base pattern can be performed efficiently (e.g., in linear time with
respect to the length of the symbol sequence (Yang et al, 2000)), the verification for a
candidate meta-pattern may be a cumbersome process because of the typically com-
plicated structure of the candidate meta-pattern. In fact, considerable difficulty lies in
determining whether a certain portion of the raw symbol sequence corresponds to a
valid subsequence of a component of the candidate pattern, especially when the com-
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ponent itself is also meta-pattern. One strategy to speed up the process is to store all
valid subsequences of each valid low-level pattern when the pattern is verified. Then
the procedure of determining whether a portion of the sequence is a valid subsequence
of a given component can be accomplished via table look-up operations. Even though
this strategy requires additional storage space, it can usually lead to at least an order
of magnitude of performance improvement. We will refer to this method as the match-
based approach in the remainder of this paper: However, this match-based approach is
still very cumbersome, and more specifically, suffers from two major drawbacks:

• The number of candidate patterns of a certain level (say level l) is typically an ex-
ponential function of the number of discovered lower-level meta-patterns. While a
basic pattern has two degrees of freedom – the period and the choice of symbol at
each position/component – a meta-pattern has an additional degree of freedom: the
length of each component. This additional degree of freedom dramatically increases
the number of candidate patterns generated. If there are v valid lower-level patterns,
the number of candidate patterns of span s and with exactly k components for level l
is in the order of �(vk × (2k)s).
• There are typically a huge number of valid subsequences associated with each valid

pattern even though only a few of them may eventually be relevant. Generating and
storing all of them would consume a significant amount of computing resources and
storage space, which in turn leads to unnecessary inefficiency.

To overcome these drawbacks, we made the following observation.

Property 4.1. (Component Location Property) A valid low-level meta-pattern may
serve as a component of a higher-level meta-pattern only if its presence in the symbol
sequence exhibits some cyclic behavior and such cyclic behavior has to follow the same
periodicity as the higher-level meta-pattern by sufficient number of times (i.e., at least
min_rep times).

In the above example, the meta-pattern X1 can serve as a component of a higher-level
meta-pattern (e.g., X2) only if the locations of valid subsequences of X1 exhibit a cyclic
behavior with a period equal to the span of X2 (i.e., 150). Otherwise, X1 could not
serve as a component of X2. This property suggests that we can avoid the generation
of a huge number of unnecessary candidate meta-patterns by deriving candidates from
qualified span-component combinations according to the component location property.
To identify qualified span-component combinations, we need to detect the periodici-
ties exhibited by the locations of valid subsequences of each low level meta-pattern.
This can be achieved without generating all valid subsequences for a meta-pattern. In
fact, only the set of maximum valid segments is sufficient. For a given pattern, a valid
segment is a maximum valid segment if it is not a portion of another valid segment:
for example, if min_rep = 3 and max_dis = 6, {S1, S2, S3, S4, S5S6} is the set of
maximum valid segments of basic pattern (a, ∗) for the symbol sequence in Fig. 2(a).
Usually, the number of maximum valid segments is much smaller than the number
of valid subsequences. The total number of distinct valid subsequences of (a, ∗) in the
symbol sequence given in Fig. 2(a) would be in the order of hundreds. It is in essence
an exponential function of the number of maximum valid segments. Furthermore, for
each maximum valid segment, we only need to store a pair of location indexes indicat-
ing its starting and ending positions. In the above example, the segment S1 occupies 8
positions (positions 1 to 8) in Fig. 2(a) and its location indexes are the pair (1, 8). The
location indexes of maximum valid segments indeed provide a compact representation
of all necessary knowledge of a valid low-level meta-pattern and is motivated by the
following observations:



252 J. Yang et al.

F
ig

.2
.

C
om

pu
ta

tio
n-

ba
se

d
ap

pr
oa

ch
.



Discovering High-Order Periodic Patterns 253

• Given the set of location indexes of maximum valid segments of a pattern, it is
easy to compute all possible starting positions and ending positions of valid sub-
sequences. Any starting position of a valid segment is also a starting position of a
valid subsequence because a valid subsequence is essentially a list of valid segments.
Given a maximum valid segment S containing r repetitions of the pattern, there are
r −min_rep+ 1 distinct starting positions that can be derived from S. More specifi-
cally, they are the positions of the first r −min_rep+ 1 occurrences of the pattern in
S, respectively. For instance, positions 1 and 3 are the two starting positions derived
from S1. Similarly, all possible ending positions can be computed as well.
• The starting positions of the valid subsequences that exhibit cyclic behavior also

present the same periodicity and so do their ending positions. Figure 2(b) shows the
set of possible starting positions and ending positions of valid subsequences of (a, ∗).
When min_rep = 3, by careful examination, the potential periodicities of (a, ∗) (i.e.,
the possible spans of meta-patterns that (a, ∗) may participate in as a component) in-
clude 7, 9, 11, 18, and 20. The periodic behavior discovered on starting positions and
ending positions for span = 18 is shown in Fig. 2(c) and (d), respectively.

Thus, our strategy is to first compute the set of possible starting positions and identify, if
any, the ones that exhibit some periodicity. The same procedure is also performed on the
ending positions. If the same periodicity exists for both starting positions and ending po-
sitions, we then examine, for each pair of starting and ending positions, whether a valid
subsequence exists and what is the possible format of the higher-level meta-pattern (i.e.,
possible span of the meta-pattern and possible length of the component). Figure 2(e)
shows some candidate components generated from (a, ∗) and the valid subsequences
that support them. It is important to notice that the maintenance of the location indexes of
maximum valid segments leads to a double-win situation. Besides its positive role in can-
didate generation, it also enables the verification process to be accomplished efficiently
without the expensive generation and maintenance of all valid subsequences or the ne-
cessity to resort to the raw symbol sequence. As a result, we devise an efficient computa-
tion-based algorithm (as opposite to the traditional match-based approach) in the sense
that the discovery of valid meta-patterns (other than base patterns) can be accomplished
through pure computation (performed on the location indexes of maximum valid seg-
ments) without ever resorting back to the raw symbol sequence. It has been demonstrated
that this advantage offers at least two orders of magnitude speed-up compared to the
match-based approach. The component location property can provide a substantial inter-
level pruning effect during the generation of high-level candidates from valid low-level
meta-patterns, whereas the traditional Apriori property can render some pruning power
to conduct the mining process of meta-patterns of the same level. While all meta-
patterns can be categorized according to their levels and the number of non ‘*’ compo-
nents in the pattern as shown in Fig. 3, the pruning effects provided by the component
location property and the Apriori property are indicated by dashed arrows and solid ar-
rows, respectively. Consequently, the algorithm consists of two level of iterations. The
outer iteration exploits the component location property, while the inner iteration utilizes
the Apriori property. More specifically, each outer iteration discovers all meta-patterns
of a certain level (say, level l) and consists of the following two phases:

1. Candidate component generation. For each newly discovered valid pattern/meta-
pattern of level l, generate candidate components for meta-patterns of level l + 1.
The component location property is employed in this phase.

2. Candidate pattern generation and verification. This phase generates candidate meta-
patterns of level l+1 based on the candidate components discovered in the previous
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step and validates them. This phase utilizes the Apriori property and contains an
iteration loop. During each iteration, meta-patterns with a certain number (say k) of
non ‘*’ components are examined, which includes the following two steps.

(a) If k = 1, the candidate singular meta-patterns4 of level l+ 1 are generated from
candidate components derived in the previous phase. Otherwise, the candidate
meta-patterns of level l + 1 with k non ‘*’ components are generated based on
the discovered level-(l + 1) meta-patterns with (k − 1) non ‘*’ components.

(b) The newly generated candidate patterns are validated.

This inner iteration continues until no new candidate patterns of level (l + 1) can be
generated.

The entire procedure terminates when no new candidate components can be generated.
In the following sections, we will elaborate on each phase in detail.

5. Candidate Component Generation

For a given pattern X of level l, a three-step algorithm is devised to generate candi-
date components (based on X) of patterns of level l + 1. The formal description of the
algorithm is in Algorithm 5.1.

Algorithm 5.1. Component candidate generation

/* To find component candidates for patterns of level l + 1 */

Component_Generation(min_rep, SegX)
/* SegX is the set of maximum valid segments for an lth-level pattern X */
{

starting← ∅
/* It holds possible starting positions of valid subsequences of X. */
ending← ∅
/* It holds possible ending positions of valid subsequences of X. */
start ← ∅
/* It holds starting positions in starting that exhibit some periodicity. */
end ← ∅
/* It holds ending positions in ending that exhibit some periodicity. */
candidates ← ∅
/* It holds the set of valid subsequences (of X) that support candidate
components derived from X. */
Find_Start_End(SegX, starting, ending)
Periodicity(starting, start)
/* Finding positions in starting that exhibits some span s
and storing them into start structures. */
Periodicity(ending, end)
/* Finding positions in ending that exhibits some span s
and storing them into end structures. */
for each retained span s do

4 A singular meta-pattern is a meta-pattern that has only one non ‘*’ component. Otherwise, it is called a
complex meta-pattern.
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Component (s, start, end, candidates)
/* For a given span s, find the possible length of the component
that involves X */

return (candidates)
}

The proposed algorithm assumes that for a given lth-level pattern X, the set of the
maximum valid segments of X are stored in SegX. Note that only the location indexes
are physically stored and all other information associated with each maximum segment
can be derived easily. For example, S1, S2, S3, S4, S5, and S6 are the maximum valid
segments of (a, ∗) in Fig. 2(a). Looking ahead, in the meta-pattern validation procedure
(see Section 6.2), the algorithm will output all maximum valid segments of a valid meta-
pattern as a by-product of the longest valid subsequence discovery without incurring
any extra overhead. Note that we only keep track of the set of maximum valid segments
instead of all valid subsequences because the number of the valid subsequences is much
larger than the number of the maximum valid segments. The benefits of only tracking
maximum valid segments are shown in Section 7.2.2.

In the subroutine Find_Start_End inAlgorithm 5.2, each maximum valid segment
(in SegX) is examined successively to compute the set of possible starting and ending
positions of valid subsequences. A possible starting position is the one that has at least
min_rep repetitions immediately following it. Similarly, a possible ending position is
the one with at least min_rep repetitions immediately preceding it. Figure 2(b) shows
the possible starting/ending positions derived from the maximum valid segments in
Fig. 2(a).

Even though two maximum segments in SegX may overlap, their start_rep sets
are disjoint from each other (that is, no position (in the input sequence) serves in the set
start_rep for multiple maximum segments). For instance, S1 and S2 overlap with each
other, and {1, 3, 5, 7} and {6, 8, 10, 12, 14, 16} are the sets of starting positions of repe-
titions in S1 and S2 respectively. They are obviously disjoint. Therefore, each position in
the input sequence serves as a starting position at most once. The same proposition also
holds for the ending position. Thus, the computational complexity of each invocation
of Find_Start_End is O(N), where N is the length of the input sequence.

Algorithm 5.2. Find valid starting and ending positions

Find_Start_End(SegX, starting, ending)
{

for each segment seg ∈ SegX do
for each start_rep ∈ seg do
/* start_rep records the starting position of each repetition
in a maximum segment. */

if (Valid_Start(start_rep, seg)) do
/* If there are at least min_rep repetitions following start_rep,
then Valid_Start returns true, otherwise false. */

starting← starting ∪ start_rep
for each end_rep ∈ seg do
/* end_rep records the ending position of each repetition
in a maximum segment. */

if (Valid_End(end_rep, seg)) do
/* If there are at least min_rep repetitions preceding end_rep,
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then Valid_End returns true, otherwise false. */
ending← ending ∪ end_rep

return
}

The Periodicity function in Algorithm 5.3 locates periodicities presented in a list
of positions and is applied to both starting positions and ending positions. With two
scans of the list of possible starting positions, we can generate a potential span s of
higher-level meta-pattern that X may participate in. Intuitively, s should be at least the
minimum length of a valid subsequence of X (i.e., span(X)×min_rep, where span(X)
is the span of X). For example, in Fig. 2(a), the minimum length of a valid subsequence
of (a, ∗) is 2 × 3 = 6 if min_rep = 3. In turn, the span of any valid meta-pattern that
takes (a, ∗) as a component has to be at least 6 since the component (a, ∗) will occupy
at least 6 positions. During the first scan, a counter is initialized for each possible span
greater than or equal to span(X)×min_rep. While scanning through the list of starting
positions, for each starting position x, consider the distance of x to any previous starting
position y in the list. If it is larger than span(X)×min_rep, the corresponding counter
is incremented. At the end of the scan, only spans whose corresponding counter reaches
min_rep − 1 are retained. During the second pass through the list, for each retained
span s, the algorithm locates series of at least min_rep starting positions, such that the
distance between any pair of consecutive ones is s. Note that there may be multiple series
existing concurrently. As shown in Fig. 2(c), {1, 19, 37}, {3, 21, 39}, and {10, 28, 46}
are three series of starting positions that exhibit periodicity of span 18. The same process
is also performed on the ending positions. Figure 2(d) shows the result for span 18 in
the above example.

It is easy to see that the first scan through the list takes O(|list |2) computations and
the second scan may consume O(|S|×|list |2) time, where |list | and |S| are the number
of positions in list and the number of retained spans after the first scan, respectively.
Since the number of positions in list is at most the length of the input sequence, the
overall computational complexity is O(|S| × |list |2) = O(|S| × N2), where N is the
length of the input sequence.

Algorithm 5.3. Periodicity discovery

Periodicity(list, potential)
{

for each potential span s (s ≥ min_rep × span(X)) do
initialize a counter count[s] to zero

for each position x ∈ list do
for each position y ∈ list (y < x) do

distance← x − y
increment count[distance]

S ← all spans s where count[s] ≥ min_rep − 1
/* S holds spans of potential periodicities that may exhibit in list */
for each span s ∈ S do

for each position x ∈ list do
if there exists a series of positions x, x + s, . . . , x + i × s in list

and i ≥ min_rep do
/* In the case that multiple valid values of i exist, the maximum
one is chosen. */

potential[s] ← potential[s] ∪ {x, x + s, . . . , x + i × s}
/* potential stores the set of positions in list that
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exhibit periodicity. */
return

}
Then, in the function Component (Algorithm 5.4), for each retained span s, consider

each pair of cyclic starting position series x, x+s, . . . , x+s×jx and cyclic ending posi-
tion series y, y+s, . . . , y+s×jy . If there exist two sub-series, x′, x′+s, . . . , x′+λ×s
and y′, y′ + s, . . . , y′ + λ × s such that min_rep × span(X) ≤ y′ − x′ ≤ s and
λ ≥ min_rep, then X may participate in a meta-pattern of span s as a component that
occupies y′ −x′ positions. The subsequence from position x′ to y′, from position x′ + s
to y′ + s, and so on are potentially valid subsequences to support X as a component in
a higher-level meta-pattern. For example, there are 3 series of cyclic starting positions
and 3 series of cyclic ending positions corresponding to span 18 as shown in Fig. 2(c)
and (d) respectively. Let us take a look at the starting position series 3, 21, 39 and end-
ing position series 15, 33, 51. The starting position 3 and ending position 15 satisfy the
above condition and the subsequences from position 21 to 33, and from position 39 to
51 are two additional potential valid subsequences to support (a, ∗) as a component of a
higher-level meta-pattern and such a component occupies 13 positions (Fig. 2(e)). Note
that the subsequences in this example are not perfect repetitions of (a, ∗). In fact, each
of them consists of two perfect segments of (a, ∗) separated by a disturbance of length
1. This example further verifies that the meta-pattern can indeed tolerate imperfection
that is not allowed in basic periodic patterns.

Since, for a given span s, the cardinalities of start[s] and end[s] are at most the input
sequence length N , the computational complexity of Component () is O(|start[s]| ×
|end[s]|) = O(N2) for a given span s.

Algorithm 5.4. Find potential component

Component(s, start, end, candidates)
{

for each start_position ∈ start[s] with span s do
for each end_position ∈ end[s] with span s do

if (end_position− start_position ≤ s) and
/* The total length of the component cannot exceed
the span of the periodicity. */

(end_position− start_position ≥ min_rep × span(X)) and
/* The length of the component has to be at least the minimum
length of a valid subsequence of X */

(Valid_Subsequence (start_position, end_position)) do
/* Valid_Subsequence returns true if the subsequence between
start_position and end_position
is a valid subsequence of X. */

{
component_length← end_position− start_position
new_component ← (X, component_length)
candidates ←
candidates ∪ (start_position, end_position, new_component)

}
}

Notice that the above identified potential subsequences are not guaranteed to be
valid because we only consider the possible starting and ending positions and ignore
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whether the symbols in between form a valid subsequence. In fact, the identified sub-
sequences might not be valid especially in the scenario where valid segments scatter
sparsely throughout the data sequence. This can be observed from the example in Fig. 4.
The three potential subsequences generated for component length 18 are invalid if
max_dis = 5. Therefore, it is necessary to validate these subsequences. We note that
the set of maximum valid segments and their connectivity5 can be organized into a graph
and a depth-first traversal would be able to verify whether a subsequence between two
positions is valid or not.

It is easy to see that each invocation of Component_generation() would take
O(|S| × N2) computation. Note that this is only a worst-case bound and the actual
running time is usually much faster. We also want to mention that, without the com-
ponent location property, an algorithm that employs the Apriori property would have
to consume as much as O(N2×min_rep) time. Experimental studies in Section 7 also
demonstrate the pruning power of the component location property.

6. Candidate Pattern Generation and Validation

6.1. Candidate Pattern Generation

For each combination of component P , span s, and component length p, the candi-
date singular pattern (P [1, p], ∗ : [p + 1, s]) is constructed. In the previous example
in Fig. 2, four candidate singular meta-patterns (starting at position 1) are constructed
from the candidate component (a, ∗) for span 18, one for each distinct component length
shown in Fig. 2(e). They are ((a, ∗) : [1, 6], ∗ : [7, 18]), ((a, ∗) : [1, 8], ∗ : [9, 18]),
((a, ∗) : [1, 13], ∗ : [14, 18]), and ((a, ∗) : [1, 15], ∗ : [16, 18]). Note that any pattern
of format (∗ : [1, t], P [t + 1, t + p], ∗ : [t + p + 1, s]) is essentially equivalent to
(P [1, p], ∗ : [p + 1, s]) with a shifted starting position in the data sequence.

For the generation of candidate complex patterns, the Apriori property is employed.
The candidate pattern (x1 : [1, t1], x2 : [t1+1, t2], . . . , xl : [tk−1+1, s]) is constructed
if all of (x2 : [1, t2 − t1], . . . , xl : [tk−1 − t1 + 1, s − t1], ∗ : [s − t1 + 1, s]),6
(x1 : [1, t1], ∗ : [t1 + 1, t2], . . . , xl : [tk−1 + 1, s]), . . ., and (x1 : [1, t1], x2 : [t1 +
1, t2], . . . , ∗ : [tk−1 + 1, s]) are valid patterns. Referring back to the inventory replen-
ishment example discussed previously, after we identify ((r, ∗) : [1, 24], ∗ : [25, 52])
and ((r, ∗ : [2, 3]) : [1, 27], ∗ : [28, 52]) as valid patterns (through the process pre-
sented previously), two candidate patterns will be constructed via the Apriori property,
and they are ((r, ∗) : [1, 24], ∗, (r, ∗ : [2, 3]) : [26, 52]) and ((r, ∗) : [1, 24], (r, ∗ :
[2, 3]) : [25, 51], ∗). In general, for a given set of valid patterns, multiple candidate
patterns can be constructed, each of which corresponds to a possible layout of gaps
(filled by *) between each pair of consecutive non ‘*’ components. This is the primary
difference between the application of the Apriori property in traditional models and in
the discovery of meta-pattern.

6.2. Canonical Pattern

The candidate patterns generated by the method above may be redundant. For in-
stance, let us consider sequence ABABABAB. Both patterns (AB) and (ABAB) can be

5 If the disturbance between two segments is at most max_dis, then we consider they are connected. Other-
wise, they are considered not connected.
6 This is equivalent to (∗ : [1, t1], x2 : [t1 + 1, t2], . . . , xl : [tk−1 + 1, s]).
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valid patterns if min_rep ≤ 3. However, it is clear that the pattern (ABAB) is a redun-
dant pattern of (AB). Thus, all valid patterns can be divided into two categories: derived
patterns and canonical patterns.

Definition 6.1. A pattern P1 is called a derived pattern if there exists another pattern
P2 (P2 
= P1) and P1 can be formed by appending multiple P2 together.

We say P1 is derived from P2. In the previous example, (ABAB) is derived from
(AB).

Definition 6.2. A pattern P1 is called a canonical pattern if there does not exist any
pattern from which P1 is derived.

(AB) is a canonical pattern in the previous example.
In many applications users are only interested in the valid canonical patterns. To

remove the derived patterns from consideration, we use the following observation. Let
P1 be a pattern derived from P2. P1 is valid if P2 is valid by definition. As a result, we
only need to consider the canonical patterns. During the candidate generation phase, we
take a look at a candidate to see whether it is canonical. If so, we keep it as a candidate.
Otherwise, it is removed from further consideration.

6.3. Candidate Pattern Validation

For a given candidate meta-pattern X, we need to find the longest valid subsequence for
X if there exists any. This is similar to the longest subsequence identification algorithm
presented in Yang et al (2000), with one exception: a component in a meta-pattern may
correspond to a valid subsequence of some lower-level pattern, while each component
in Yang et al (2000) is restricted to a symbol. This brings some difficulty to the iden-
tification of occurrence of X in the symbol sequence. Fortunately, the problem can be
easily solved since we keep in candidate the set of maximum valid segments that may
support a lower-level pattern as a component of X in the step of candidate component
generation. To verify whether a component Y matches a certain portion of the sequence,
we can go back to verify Y against the maximum valid segments stored in candidate.
To further improve the efficiency of the algorithm, the segments in candidate can be
organized in some data structure, e.g., a tree.

The rest of the algorithm deals with how to stitch occurrences of a meta-pattern
together to generate the longest valid subsequence. This part of the algorithm is exactly
the same as that in Yang et al (2000) where, for a given candidate meta-pattern X, the
longest valid subsequence can be located in linear computation time with respect to
the length of the symbol sequence. it. Note that this procedure does not need to resort
to the raw symbol sequence and therefore can be accomplished very efficiently.

At the same time as generating the longest valid subsequence, a separate data struc-
ture SegX is maintained simultaneously to store all maximum valid segments. Every
time a match of the meta-pattern X is discovered, if there exists a segment seg in SegX

such that the last repetition of X in seg is adjacent to the current match, then we extend
seg to include the current match. Otherwise, a new segment that consists of the current
match is created. After a scan of the input symbol sequence, segments that contain less
than min_rep repetitions of X are removed from SegX. The remaining segments are the
maximum valid segments of X, which will be used in generating candidate components
of higher-level meta-patterns.

Each invocation of Maximum_V alid_Segment () takes O(N) time to finish. The
set SegX can be indexed according to the ending position of each segment to facilitate
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the process. Since there are at most N
span(X)×min_rep

segments of X, the space required

to store SegX is O( N
span(X)×min_rep

). Note that we only need to store the starting and
ending positions of each segment.

Algorithm 6.1. Maximum valid segment discovery

Maximum_Valid_Segment()
{

for each match M of X discovered in the symbol sequence do
if there exist a segment seg ∈ SegX s.t. seg is adjacent to M do

extend seg to include M
else

newseg← M
SegX ← SegX ∪ {newseg}

for each seg ∈ SegX do
if seg has less than min_rep repetitions do

SegX ← SegX − {seg}
return

}

7. Experimental Results

The meta-pattern discovery algorithm is implemented in C on an AIX workstation with
300 MHz CPU and 128 MB main memory. A real trace log from the search engine
scour.net is employed to evaluate the benefits of the meta-pattern model while four syn-
thetically generated sequences are used to measure the performance of our algorithm.

7.1. Scour Traces

Scour is a web search engine specialized in multimedia content search whose URL is
‘http://www.scour.net’. Since early 2000, the average daily number of hits on Scour has
grown to over one million. A trace of all hits on Scour between March 1 and June 8 (total
100 days) (V. Busam, personal communication, 2000) were collected. The total number
of accesses is over 140 million. Then the entire trace is summarized into a sequence
as follows. The trace is divided into 30-minute intervals. The number of hits during
each 30-minute interval is calculated. Finally, we label each interval with a symbol. For
example, if the number of hits is between 0 and 9999, then this interval is labeled as a,
if the number of hits is between 10,000 and 19,999, then this interval is labeled as b, and
so on. The summarized sequence consists of 4800 occurrences of 43 distinct symbols.

Table 1 shows the number of patterns discovered from the Scour sequence with re-
spective thresholds. There exist some interesting patterns. When min_rep and max_dis
are set to 3 and 200, respectively, there is a level 3 meta-pattern. This level 3 pattern
describes the following phenomenon. On a weekday between 4 am and 12 pm EST,
there exists a pattern (b,b) where b stands for the number of hits is between 10,000 and
19,999; and during 5 pm to 1:30 am EST, we found the pattern (e, *), which means that
the number of hits is between 40,000 and 49,999. Furthermore, this pattern repeated
itself during each weekday within a week (i.e., level 2 pattern) and it also exhibits a
weekly trend (i.e., level 3 pattern). This observation confirms the cyclical behavior of
the Internet traffic discovered in Thompson et al (1997). Furthermore, various studies
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Table 1. Patterns discovered in scour trace

min_rep 3 10 20

max_dis 200 200 200

Level 1 patterns 107 31 15

Level 2 patterns 12 5 2

Level 3 patterns 1 0 0

Meta only Patterns 10 5 2

(Crovella and Bestavros, 1997) have shown that the traffic on the World Wide Web
exhibits self-similarity, which also confirms our findings. In addition, we also compute
the meta-patterns that cannot be expressed in the form of basic patterns. We call these
patterns meta only patterns and the number of these patterns is also shown in Table 1.
From this table, we can see that most of the discovered level 2 and 3 patterns can-
not be expressed in the form of basic patterns, and thus can only be represented as
meta-patterns.

To further understand the behavior of our proposed meta-pattern mining algorithm,
we constructed four long synthetic sequences and the performance of our algorithm on
these sequences is presented in the following section.

7.2. Synthetic Sequences

The four synthetic sequences are generated as follows. Each sequence consists of 1024
distinct symbols and 20M occurrences of symbols. The synthetic sequence is generated
as follows. First, at the beginning of the sequence, the level of pattern is determined
randomly. There are four possible levels, i.e., 1, 2, and 3, 4. Next, the number of seg-
ments in this pattern is determined. The length l of each segment is selected based on
a geometric distribution with mean µl . The number of repetitions of a lower-level pat-
tern in a segment is randomly chosen between min_rep and � l

p
�, where p is the span

of the lower-level pattern. The number of symbols involved in a pattern is randomly
chosen between 1 and the span p. The number of valid segments is chosen according
to a geometrical distribution with mean µs . After each valid segment, the length of the
disturbance is determined based on a geometrical distribution with mean µd . This pro-
cess repeats until the length of the sequence reaches 20M. Four sequences are generated
based on values of µl , µs , µr , and µd in Table 2.

7.2.1. Effects of Component Location Property Pruning

In our proposed algorithm, we use the component location property pruning to reduce
the candidate patterns. Table 3 shows the pruning power of our algorithm. The pruning
power is measured as the fraction of candidate patterns. We can see that the candidate
patterns in our algorithm are around 10−2 to 10−4 of the overall patterns. This means that
on average less than 1% of all patterns need to be examined in our algorithm. In addition,
the pruning power increases (i.e., the fraction decreases) with larger min_rep because
fewer patterns may be qualified by a larger (more restricted) min_rep parameter. In this
experiment, the max_dis is fixed to 20.

We also study the effects of the parameter max_dis on our algorithm. Table 4 shows
the effects of max_dis. The pruning power of our algorithm is evident. More than 99%
of patterns are pruned. The pruning power decreases with larger max_dis threshold
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Table 2. Parameters of synthetic data sets

Data Set µl µs µr µd

DS1 5 5 50 50

DS2 5 5 1000 1000

DS3 100 1000 50 50

DS4 100 1000 1000 1000

Table 3. Effects of min_rep on pruning power

min_rep Scour trace DS1 DS2 DS3 DS4

10 0.008 0.002 0.002 0.001 0.003

20 0.002 0.0008 0.0007 0.0002 0.0009

30 0.0008 0.0002 0.0003 0.00008 0.0002

40 0.0003 0.00004 0.00007 0.00001 0.00005

because more patterns may be qualified. Overall, the component location property can
prune away a significant number of patterns and thus reduce the execution time of the
pattern discovery process. We fix min_rep to 20.

7.2.2. Effects of Computation-Based Approach

In our approach, we only store the maximum valid segments for each pattern. We com-
pare the computation-based approach with the match-based approach. In the match-
based approach, for each pattern, all valid subsequences are stored and used to mine
higher-level meta-patterns. For each level of pattern, we track the CPU time consumed
by the computation-based approach and the match-based approach. (We assume that all
information can be stored in main memory. Since the number of possible subsequences
is much larger than that of maximum valid segments, the match-based approach has
more advantages with this assumption.) The ratio of the CPU time of the computation-
based approach over that of the match-based approach is calculated and presented in
Table 5. It is obvious that the computation-based approach can save at least 95% of the
CPU time compared to the match-based approach. This is due to the fact that the number
of maximum valid segments is far less than that of valid subsequences, as we explained
in Section 5.

7.2.3. Overall Response Time

The overall response time is one of the most important criteria for evaluation of an
algorithm. We mine the meta-patterns with different min_rep threshold. For a given
min_rep, we mine the patterns on all four data sets and the average response time over

Table 4. Effects of max_rep on pruning power

max_dis Scour trace DS1 DS2 DS3 DS4

10 0.0009 0.0002 0.0002 0.0001 0.0003

20 0.002 0.0008 0.0007 0.0002 0.0009

30 0.008 0.002 0.003 0.0008 0.002

40 0.01 0.007 0.009 0.002 0.005
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Table 5. CPU time ratio of computation-based approach versus match-based approach

Level DS1 DS2 DS3 DS4

2 0.02 0.02 0.04 0.01

3 0.05 0.03 0.01 0.02

Fig. 5. Response time of meta-pattern mining algorithm.

the four data sets are taken and shown in Fig. 5. The average response time decreases
exponentially as min_rep increases. Although the average response time is a bit long
when min_rep is small, it is still tolerable (around 1 hour) due to the pruning effects of
component location property and the computation-based candidate pattern generation.
The meta-pattern mining algorithm is also applied to symbol sequences with different
lengths. We found that the response time of our algorithm is linearly proportional to the
length of the symbol sequence.

8. Conclusion

Meta-pattern is proposed to capture the hierarchical cyclic behavior exhibited in a data
sequence. A meta-pattern itself can serve as a component of some higher-level meta-
patterns. To accommodate noises in the data sequence, two parameters min_rep and
max_dis are used to qualify a subsequence. The number of candidates of meta-patterns
could be very large. To minimize the response time of the pattern mining process, a
pruning algorithm based on the component location property and Apriori property is
proposed which can greatly reduce the number of candidate patterns. In addition, a
computation-based algorithm is designed to identify potential meta-pattern candidates.
We use the meta-pattern mining algorithm on some real traces and some very interesting
results are discovered.
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