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ABSTRACT

Motivation: RNA-Seq technique has been demonstrated as a revolu-

tionary means for exploring transcriptome because it provides deep

coverage and base pair-level resolution. RNA-Seq quantification is

proven to be an efficient alternative to Microarray technique in gene

expression study, and it is a critical component in RNA-Seq differential

expression analysis. Most existing RNA-Seq quantification tools

require the alignments of fragments to either a genome or a tran-

scriptome, entailing a time-consuming and intricate alignment step.

To improve the performance of RNA-Seq quantification, an align-

ment-free method, Sailfish, has been recently proposed to quantify

transcript abundances using all k-mers in the transcriptome, demon-

strating the feasibility of designing an efficient alignment-free method

for transcriptome quantification. Even though Sailfish is substantially

faster than alternative alignment-dependent methods such as

Cufflinks, using all k-mers in the transcriptome quantification impedes

the scalability of the method.

Results: We propose a novel RNA-Seq quantification method, RNA-

Skim, which partitions the transcriptome into disjoint transcript clus-

ters based on sequence similarity, and introduces the notion of

sig-mers, which are a special type of k-mers uniquely associated

with each cluster. We demonstrate that the sig-mer counts within

a cluster are sufficient for estimating transcript abundances with ac-

curacy comparable with any state-of-the-art method. This enables

RNA-Skim to perform transcript quantification on each cluster inde-

pendently, reducing a complex optimization problem into smaller op-

timization tasks that can be run in parallel. As a result, RNA-Skim uses

54% of the k-mers and510% of the CPU time required by Sailfish. It

is able to finish transcriptome quantification in510 min per sample by

using just a single thread on a commodity computer, which represents

4100 speedup over the state-of-the-art alignment-based methods,

while delivering comparable or higher accuracy.

Availability and implementation: The software is available at http://

www.csbio.unc.edu/rs.

Contact: weiwang@cs.ucla.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

RNA-Seq technique has been demonstrated as a revolutionary

means for examining transcriptome because it provides incom-

parable deep coverage and base pair-level resolution (Ozsolak

and Milos, 2010). Though RNA-Seq sequencing exhibits itself

as an efficient alternative to Microarray techniques in gene ex-

pression study (Wang et al., 2009), it also brings unprecedented

challenges, including (but not limited to) how to rapidly and
effectively process the massive data produced by the proliferation

of RNA-Seq high-throughput sequencing, how to build statis-
tical model for accurate quantification of transcript abundances

for transcriptome, etc.
Most of current RNA-Seq tools for RNA-Seq quantification

contain two main steps: an alignment step and a quantification
step. Various aligners [TopHat (Trapnell et al., 2009), SpliceMap

(Au et al., 2010), MapSplice (Wang et al., 2010)] are devised to
infer the origin of each RNA-Seq fragment in the genome. The

alignment step is usually time-consuming, requiring substantial
computational resources and demanding hours to align even one

individual’s RNA-Seq data. Because there are multiple variations
of RNA-Seq sequencing techniques, e.g. single-end sequencing

and paired-end sequencing, to facilitate the discussion in this
article, we simply refer to the read or the pair of reads from a

RNA-Seq fragment as a fragment. More importantly, a signifi-
cant percentage of the fragments cannot be aligned without am-

biguity, which yields a complicated problem in the quantification
step: how to assign the ambiguous fragments to compatible tran-

scripts and to accurately estimate the transcript abundances. To
tackle the fragment multiple-assignment problem, an expect-

ation-maximization (EM) algorithm (Pachter, 2011) is often
used to probabilistically resolve the ambiguity of fragment as-

signments: at each iteration, it assigns fragments to their com-
patible transcripts with a probability proportional to the

transcript abundances, and then updates the transcript abun-
dances to be the total weights contributed from the assigned

fragments, until a convergence is reached. The EM algorithm’s
simplicity in its formulation and implementation makes it a

popular choice in several RNA-Seq quantification methods
[Cufflinks (Trapnell et al., 2010), Scripture (Guttman et al.,

2010), RSEM (Li and Dewey, 2011), eXpress (Roberts and
Pachter, 2013)]. Because all fragments and all transcripts are

quantified at the same time in the EM algorithm, it usually re-
quires considerable running time. Some studies [IsoEM (Nicolae

et al., 2011), MMSEQ (Turro et al., 2011)] reduced the scale of
the problem by collapsing reads if they can be aligned to the

same set of transcripts. It is also worth mentioning that RNA-
Seq quantification is an important first step for differential ana-

lysis on the transcript abundances among different samples
(Trapnell et al., 2012).

The alignment step is a vital step in the RNA-Seq assembly
study (Trapnell et al., 2010) and has become the computational

bottleneck for RNA-Seq quantification tasks. If users are only
interested in RNA-Seq quantification of an annotated transcrip-

tome, aligning RNA-Seq fragments to the genome seems cum-
bersome: not only do the RNA-Seq aligners take a long time to

align fragments to the genome by exhaustively searching all*To whom correspondence should be addressed.
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possible splice junctions in the fragments, they may also generate
misaligned results owing to repetitive regions in the genome or
sequencing errors, introducing errors in the quantification results

(Zhang et al., 2013).
From another perspective, the annotation databases of tran-

scriptome, e.g. RefSeq (Pruitt et al., 2007) and Ensembl (Flicek

et al., 2011), play an increasingly important role in RNA-Seq
quantification. For example, TopHat/Cufflinks supports a
mode that allows users to specify the transcriptome by supplying

an annotation database (a GTF file). RSEM (Li and Dewey,
2011) uses bowtie (Langmead et al., 2009)—a DNA sequence
aligner—to align fragments directly to the transcriptome.

Aligning RNA-Seq fragments to transcriptome avoids the com-
putation to detect novel splice junctions in fragments and elim-
inates the non-transcriptome regions in the genome from further

examination, and thus reduces the total running time of the
quantification method and the number of erroneous alignments
in the results.

To further improve the performance, the utility of k-mers was
recently proposed. The concept of k-mers—short and consecu-
tive sequences containing k nucleic acids—has been widely used

in bioinformatics, including genome and transcriptome assembly
(Fu et al., 2014; Grabherr et al., 2011), error correction in
sequence reads (Le et al., 2013), etc. Because the number of

k-mers in the genome or transcriptome is enormous when k is
large (e.g. k � 25), the need to store all k-mers impedes their
counting. Most of existing methods save memory usage during

the computation by using sophisticated algorithms and advanced
data structures [bloom filter (Melsted and Pritchard, 2011), lock-
free memory-efficient hash table (Marcais and Kingsford, 2011),

suffix array (Kurtz et al., 2008)] or relying on disk space to com-
pensate memory space (Rizk et al., 2013).
Thanks to the recent advances in both annotated transcrip-

tome and algorithms to rapidly count k-mers, the transcriptome-
based alignment-free method, Sailfish (Patro et al., 2013),
requires 20 times less running time and generates comparable

results with alignment-dependent quantification methods.
Sailfish is a lightweight method: it first builds a unique index
of all k-mers that appear at least once in the transcriptome,

counts the occurrences of the k-mers in the RNA-Seq fragments
and quantifies the transcripts by the number of occurrences of
the k-mers through an EM algorithm.

Regardless of being alignment-dependent or alignment-free,
all methods need to recover the fragment depth—the number
of fragments that cover a specific location—across the whole

transcriptome as one of the initial steps. However, none of the
existing methods exploit the strong redundancy of the fragment
depth in RNA-Seq data. More specifically, Fig. 1 shows a strong

correlation between the fragment depth of any two locations that
are a certain distance apart on the transcriptome, varying the
distance from 1 to 100bp. Even when the two locations are

20 bp away from each other, the Pearson correlation score is
still as high as 0.985. In other words, if an RNA-Seq quantifica-
tion method that is able to recover the fragment depths for every

20 bp and quantify the abundance levels based on such informa-
tion, there should be no significant accuracy loss in the result.
Recently, Uziela and Honkela (2013) developed a method that

simply counts the number of alignments that covers the locations
of hybridization probes used in the gene expression studies.

Though these probes only represent a sparse sampling on every

transcript in the transcriptome, the method still provides reason-

ably accurate results. The observation and the method inspire us

to ask the following question: what is the minimum information

we need to achieve comparable accuracy in RNA-Seq quantifi-

cation to the state-of-the-art methods? More specifically, does

there exist a subset of k-mers that can provide accurate transcrip-

tome quantification? And if so, how do we identify and use them

to quantify transcriptome efficiently?
To answer these questions, we introduced a special type of

k-mers called sig-mers, which only appear in a (small) subset of

transcripts in the transcriptome. Based on these sig-mers, we

developed a method, RNA-Skim, which is much faster than

Sailfish and also maintains the same level of accuracy in the

results. RNA-Skim includes two stages, preparation and quanti-

fication. In the preparation stage, RNA-Skim first partitions

transcripts into clusters and uses bloom filters to discover all

sig-mers for each transcript cluster, from which a small yet in-

formative subset of sig-mers is selected to be used in the quanti-

fication stage. In the quantification stage, a rolling hash method

(Karp and Rabin, 1987) is developed to rapidly count the occur-

rences of the selected sig-mers, and an EM algorithm is used to

properly estimate the transcript abundance levels using the sig-

mer counts. Because no sig-mer is shared by two transcript clus-

ters, the task can be easily divided into many small quantification

problems, which significantly reduces the scale of each EM pro-

cess and also makes it trivial to be parallelized. While RNA-Skim

provides similar results to those of alternative methods, it only

consumes 10% of the computational resources required by

Sailfish.
In this article, we first describe the RNA-Skim method, then

discuss how we compared RNA-Skim with other methods, fol-

lowed by the experimental results using both simulated and real

data.

2 METHOD

In this section, we introduced the notion of sig-mers, which is a special

type of k-mers that may serve as signatures of a cluster of transcripts,

distinguishing them from transcripts in other clusters in the transcriptome

that do not contain these k-mers.

Fig. 1. This figure shows the correlations of the fragment depth of any

pair of locations as a function of the distance between the two locations

from 1 to 100bp. This figure is generated based on the alignments re-

ported by TopHat on a real RNA-Seq data
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2.1 sig-mer

In this article, an annotated transcriptome � consists of a set of T tran-

scripts: �=ft1; :::; tTg. A transcript t is an RNA sequence composed of a

string of four bases ‘A’, ‘U’, ‘C’ and ‘G’. In this article, we use the

corresponding four DNA nucleotide bases ‘A’, ‘T’, ‘C’, ‘G’ to represent.

The length of a transcript sequence may vary from 100 to 10 000bp.

A partition of a given transcriptome � groups all transcripts into P dis-

joint non-empty subsets or clusters, denoted by ð�Þ=f�1; :::; �Pg. For

example, one commonly adopted partition of transcriptome is to group

transcripts into genes based on their locations on the genome. For any

transcript t, we use �ðtÞ to denote the cluster to which t belongs.

A substring of length k from a transcript sequence, its reverse se-

quence, its complimentary sequence or its reverse and complimentary

sequence is called a k-mer of the transcript. We define a function

k-mer() to represent the set of all k-mers from a single transcript or a

cluster of transcripts, denoted as k-mer(t) or k-merð�pÞ, respectively. For

simplicity, if a string s is a k-mer of transcript t, we say s 2 k-merðtÞ. In

this case, s 2 k-merð�ðtÞÞ is also true.

DEFINITION. Given a length k, a transcriptome � and its partition ð�Þ, if

a k-mer s only exists in one cluster �p and never appears in other clusters

� n �p, we call it a sig-mer of cluster �p. And for any given cluster �p, we

denote all of its sig-mers as �ð�pÞ. That is,

�ð�pÞ=fsjs 2 k-merð�pÞ;8�q 2 � n �p; s 2 k-merð�qÞg:

Sig-mers characterize the uniqueness of each cluster. It is obvious that

the number of sig-mers heavily depends on the transcriptome partition. If

transcripts with similar sequences are assigned to different clusters,

k-mers from these transcripts may not qualify as sig-mers.

Consequently, fewer sig-mers may be identified, and in the worst case,

some cluster may not have any sig-mers.

2.2 Workflow of RNA-Skim

Because sig-mers are unique to only one cluster of transcripts, if a sig-mer

occurs in some RNA-Seq reads, it indicates the sig-mer’s corresponding

transcripts may be expressed. Therefore, its occurrence in the RNA-Seq

data may serve as an accurate and reliable indicator of the abundance

levels of these transcripts. We proposed a method, RNA-Skim, for quan-

tifying the transcripts using the sig-mer counts in RNA-Seq data. Because

no sig-mer is shared between transcript clusters, the problem reduces to

quantifying transcript abundances using sig-mer counts within each clus-

ter, which can be solved much more efficiently and can be easily paralle-

lized. This is different from Sailfish that uses all k-mers in the

transcriptome. In fact, RNA-Skim can be considered as a generalization

of Sailfish: if the whole transcriptome is treated as a single cluster that

includes all transcripts, all k-mers become sig-mers, and RNA-Skim de-

generates to the exact formulation of Sailfish.

The workflow of RNA-Skim includes two stages: preparation and

quantification. In preparation, RNA-Skim clusters the transcripts based

on their sequence similarities, finds all sig-mers for each transcript cluster

and selects a subset of sig-mers to be used in the quantification stage. In

quantification, RNA-Skim quickly counts the occurrences of sig-mers

and quantifies transcripts within each cluster. The preparation stage of

RNA-Skim does not require RNA-Seq read data and thus can be com-

puted once as an offline process and be repeatedly used in the quantifi-

cation stage.

2.3 Preparation stage

In the preparation stage, RNA-Skim only requires users to supply a

transcriptome (including all transcript sequences and gene annotations)

and specifies a desired sig-mer length to be used in RNA-Skim.

Transcriptome Partitioning A straightforward way to partition tran-

scripts is based on their genome locations from an annotation database.

However, the result of this partitioning approach may not be optimal

because some transcripts of different genes may have similar sequences or

share common subsequences. To minimize the number of common

k-mers shared between clusters, RNA-Skim uses a sequence similarity-

based algorithm to generate a partition of transcriptome, instead of using

any existing partition. We first define the k-mer-based similarity, which is

used as the sequence similarity in the algorithm.

DEFINITION. The k-mer-based similarity of two sets of sequences �i and �j
is defined as the higher of the two ratios: the number of common k-mers

divided by the total number of k-mers in �i, and the number of common

k-mers divided by the total number of k-mers in �j:

k-mer-Similarityð�i; �jÞ= ð1Þ

max
jk-merð�iÞ \ k-merð�jÞj

jk-merð�iÞj
;
jk-merð�iÞ \ k-merð�jÞj

jk-merð�jÞj

 !
: ð2Þ

Transcripts from the same gene are likely to be similar to each other.

To avoid unnecessary computation, RNA-Skim operates at the level of

genes rather than transcripts. However, calculating the exact similarity

between a pair of genes requires generating all k-mers appearing in each

gene and taking the intersection of the two sets. This is computationally

expensive. To expedite the computation, RNA-Skim uses the data struc-

ture—bloom filter (Bloom, 1970)—coupled with a sampling-based ap-

proach to approximate the similarity between two genes. The bloom

filter is a space-efficient probabilistic data structure that is used to test

whether an element is a member of a set, without the need of storing the

set explicitly. A bloom filter includes a vector of bits and several inde-

pendent hash functions. Initially, all bits are set to 0. When an element is

added to the bloom filter, the bits based on the hash values of the element

are set to 1. The bloom filter reports an element is in the bloom filter if its

corresponding bits are all set to 1. A bloom filter may yield a small

number of false positives, but no false negatives. The false-positive rate

is bounded if the number of elements in the set is known. It can be

maintained efficiently when new members are added to the set.

RNA-Skim first builds a bloom filter for the set of k-mers of each

gene. Then, it randomly samples two subsets of k-mers—noted as Xð�iÞ
and Xð�jÞ—from the pair of genes, and the k-mer-Similarityð�i; �jÞ is

approximated by maxð
jXð�iÞ \ k-merð�jÞj

jXð�iÞj
;
jk-merð�iÞ \ Xð�jÞj

jXð�jÞj
Þ (our experiments

show that we only need a small number (e.g. 10) of k-mers from each

gene to achieve approximation with high accuracy). After we calculate the

approximated similarities for every pair of genes, an undirected graph is

built with each node representing a gene. There is an edge between two

nodes if the similarity of the two corresponding genes exceeds a user-

specified threshold �. Each connected component of this graph naturally

forms a cluster of nodes; each cluster of nodes forms a cluster of genes

and transcripts of the genes.

Sig-mers discovery By definition, the sig-mers are essentially the k-mers

occurring in only one cluster of transcripts. A brute force way to find all

sig-mers is, for every k-mer in the transcriptome, to determine whether

the k-mer that appears in one cluster also appears in some other cluster.

Because the number of possible k-mers is in the order of billions, without

any sophisticated data structure and data compression algorithms, stor-

ing the k-mers alone will easily take at least tens of gigabytes of memory

space, which is way beyond the capacity of any commodity computer.

RNA-Skim again uses bloom filters to reduce memory usage. Three

types of bloom filters are used: a bloom filter BF:ALL for checking

whether a given k-mer has been examined, a bloom filter BF:DUP for

checking whether a given k-mer appears in more than one cluster and a

bloom filter BF:Sð�pÞ for each cluster �p for checking whether a given

k-mer is in k-merð�pÞ.
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First, for each cluster �p, all distinct k-mers in it are enumerated:

RNA-Skim enumerates all k-mers for every transcript in the cluster,

and adds them to BF:Sð�pÞ; if a k-mer is already in BF:Sð�pÞ, it will be

ignored. Second, every distinct k-mer in �p is added into BF:ALL, and if

it is already in BF:ALL (that is, it was added when RNA-Skim examined

other clusters), it is added into BF:DUP. Therefore, if a k-mer occurs in

multiple clusters, it is added in BF:DUP. Last, every k-mer of the tran-

scriptome is enumerated again, and if the k-mer is not in BF:DUP, it is

reported as a sig-mer, as it only occurs in one cluster.

Because bloom filters may have false-positive reports, but never have

false-negative reports, through this approach, some genuine sig-mer

strings may be missed, but a non-sig-mer will never be labeled as a sig-

mer. Figure 2 shows the pseudocode of our algorithm.

Sig-mers selection RNA-Skim does not use all sig-mers because they

are still numerous. Instead, RNA-Skim selects a subset of sig-mers for the

quantification stage. We used a simple approach to select sig-mers from

all sig-mers found by the previous step: for every transcript, sig-mers are

evenly chosen based on the sig-mer locations such that any two sig-mers

are at least 50 base pair away from each other in the given transcript.

Because some sig-mers may appear in multiple transcripts in the same

cluster, for every selected sig-mer, all transcripts are re-examined, and the

ones that contain the sig-mer are also recorded. Through this approach,

we can guarantee that every transcript is associated with some sig-mers

(as long as there exist some sig-mers). A good sig-mer coverage is crucial

for accurate quantification of transcript abundance. The final output of

the preparation step includes the partition of the transcriptome, selected

sig-mers and their associating clusters and transcripts.

2.4 Quantification stage

The quantification stage requires users to provide RNA-Seq data (e.g.

FASTQ/FASTA files) and the selected sig-mers associated with tran-

scripts containing them from the preparation stage.

Sig-mer counting Because the number of sig-mers used in RNA-Skim is

much smaller than the number of k-mers typically used by other k-mer-

based approaches, all sig-mers can be stored in a hash table in memory.

The number of occurrences of all sig-mers can be counted by enumerating

all k-mers in the RNA-Seq reads and looking up the k-mers in the hash

table to update the corresponding counters. RNA-Skim basically follows

this scheme with a tweak on the hash function to further speed up the

computation.

In a straightforward implementation of the previously described algo-

rithm, every k-mer incurs an O(k) operation to calculate its hash value,

and this hash operation can be further reduced to O(1) by the Robin–

Karp pattern matching algorithm (Karp and Rabin, 1987). The Robin–

Karp pattern matching algorithm requires a special hash function—

rolling hash—that only uses multiplications, additions and subtractions.

In rolling hash, the hash value HðrÞ of the first k-mer in the RNA-Seq

read r is calculated by

Hðr½0; :::; k� 1�Þ=�ðr½0�Þ � hk�1+�ðr½1�Þ � hk�2+:::+�ðr½k� 1�Þ � h0;

where h is the base of the hash function, r½i� is the ith character in s and

the character hash function �ðÞ maps a character to an integer value. One

way to calculate the hash value for the (sequentially ordered) second k-

mer r½1; :::; k� is

Hðr½1; :::; k�Þ=�ðr½1�Þ � hk�1+�ðr½2�Þ � hk�2+:::+�ðr½k�Þ � h0:

But thanks to the structure of the rolling hash function, Hðr½1; :::; k�Þ

can be calculated in a much faster way:

Hðr½1; :::; k�Þ=ðHðr½0; :::; k� 1�Þ � �ðr½0�Þ � hk�1Þ � h+�ðr½k�Þ � h0;

which only requires one subtraction, three multiplications and one add-

ition. We can look up the hash value in the hash table, and if it is in the

hash table, its associated counter is incremented accordingly. Because

RNA-Skim uses this specially designed hash function, we implemented

our own hash table in RNA-Skim using open addressing with linear

probing. The base h is arbitrarily set to be a prime number 37, and the

function �ðÞ maps every character to its actual ASCII value.

Quantification Because every cluster of transcripts has a unique set of

sig-mers, which are the k-mers that never appear in other transcript clus-

ters, every cluster can be independently quantified byRNA-Skim, resulting

in a set of smaller independent quantification problems, instead of one

huge whole transcriptome quantification problem in other approaches.

Formally, if �p is a cluster of transcripts, the set of sig-mers of �P is

denoted by Sð�pÞ, a sig-mer is denoted by s (s 2 Sð�pÞ), the set of all

occurrences of sig-mers is denoted by Oð�pÞ, an occurrence of a sig-mer

in the RNA-Seq dataset is denoted by o (o 2 Oð�pÞ) and the sig-mer of

the occurrence is denoted by zo. From the previous steps, we obtained cs
(the number of occurrences of the sig-mer s in the RNA-Seq data), ys;t
(binary variables indicating whether the sig-mer s is contained in the

sequence of transcript t) and bt (the number of sig-mers that are contained

by transcript t). C is the number of occurrences of all sig-mers

(C=
X
s

cs).

Same as in the previous study (Pachter, 2011), we define )=f�tgt2�p
where �t is the proportion of all selected sig-mers that are included by the

reads from transcript t, and
X

�t=1. For an occurrence o; pðo 2 tÞ

represents the probability that o is chosen from transcript t, in a genera-

tive model,

pðo 2 tÞ=yzo;t
�t
bt

ð3Þ

Therefore, the likelihood of observing all occurrences of the sig-mers as

a function of the parameter ) is

Lð�Þ=
Y

o2Oð�pÞ

X
t2�p

pðo 2 tÞ=
Y

o2Oð�pÞ

X
t2�p

yzo;t
�t
bt

ð4Þ

=
Y

s2Sð�pÞ

ð
X
t2�p

ys;t
�t
bt
Þ
cs : ð5Þ

Fig. 2. The pseudocode to find all sig-mers
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This is in spirit similar to the likelihood function used in other studies,

except that this is the likelihood of observing sig-mers rather than frag-

ments (Li and Dewey, 2011) or k-mers (Patro et al., 2013). Thus, we also

used an EM algorithm to find � that maximizes the likelihood: it alter-

nates between allocating the fraction of counts of observed sig-mers to

transcripts according to the proportions � and updating � given the

amount of sig-mers assigned to transcripts. RNA-Skim also applies the

same technique used in Patro et al. (2013), Nicolae et al. (2011) and Turro

et al. (2011) to collapse sig-mers if they are contained by the same set of

transcripts. (See the Supplementary Material)

RNA-Skim reports both Reads Per Kilobase per Million mapped

reads (RPKM) and Transcripts Per Million as the relative abundance

estimations of the transcripts, and both metrics are calculated by the

way used in Sailfish (Patro et al., 2013).

So far, we have described both preparation and quantification stages in

RNA-Skim. In the last, a toy example is provided to illustrate how each

stage works in RNA-Skim in Figure 3.

3 SOFTWARE FOR COMPARISON

RNA-Skim is implemented in C++ with heavy usage of the

open-source libraries bloomd (Dadgar, 2013), protobuf

(Google, 2013) and an open-source class StringPiece (Hsieh,

2013). The parameter settings will be discussed in the Section 5.
We compared RNA-Skim with four different quantification

methods: Sailfish (0.6.2), Cufflinks (2.1.1), RSEM (1.2.8) and

eXpress (1.5.1) in both simulated and real datasets. TopHat

(2.0.10) and Bowtie (1.0.0) are used as the aligners when needed.

For Sailfish, we set k-mer size to be 31 because this value gives

the highest accuracy in the simulation study, among all k-mer

sizes supported by Sailfish (k � 31). For other software, we

followed the experiments in Patro et al. (2013) to set the param-

eters. Input to Cufflinks was generated by TopHat, which used

Bowtie (–bowtie1), allowing up to three mismatches per read (-N

3 and –read-edit-dist 3). Both TopHat and Cufflinks were pro-

vided with a reference transcriptome. RSEM and eXpress dir-

ectly used Bowtie to align the reads to the transcriptome, with

the argument (-N 3) to allow up to three mismatches per read.

The eXpress was executed in the streaming mode, to save the

total quantification running time. For simulation study, we used

the estimations without bias correction for Sailfish, Cufflinks and

eXpress. For real datasets, the estimations with bias correction

are used for these three methods. For RSEM, since it does not

provide an option to control the bias correction, we did not

differentiate its usage in the simulation and real data studies.

Other parameters were set to default values for these methods.
All methods were run on a shared cluster managed by the

Load Sharing Facility (LSF) system. The running time and

CPU time of these methods are measured by LSF. Each cluster

node is equipped with Intel(R) Xeon(R) 12-core 2.93GHz CPU

and at least 48GB memory. All files were served by the Lustre

file system.

4 MATERIALS

All materials including both simulated and real data are based on

the mouse population and consist of paired-end reads with 100bp

length per read. We used C57BL/6J downloaded from Ensembl

(Build 70) as the reference genome in all experiments. All methods

studied in this article were provided with 74215 protein-coding

annotated transcripts from the Ensembl database. The simulation

Fig. 3. An illustration of how RNA-Skim works on a toy transcriptome of five transcripts
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datasets, including 100 mouse samples with the number of reads

varying from 20 millions to 100 millions, were generated by the

flux-simulator (Griebel et al., 2012) with its default error model

enabled. For real datasets, we used the RNA-Seq data from 18

inbred samples and 58 F1 samples derived from three inbred

mouse strains CAST/EiJ, PWK/PhJ and WSB/EiJ. The RNA-
Seq data was sequenced frommRNA extracted from brain tissues

of both sexes and from all six possible crosses (including the

reciprocal).

5 RESULTS

In this section, we first compared alternative partition algorithms

and how they impact sig-mer selections in RNA-Skim and then
furnish a comparison with four alternative methods on both

simulated and real data. At last, we demonstrated that RNA-

Skim is the fastest method among all considered methods.

5.1 Similarity-based partition algorithm

We compared the result of our similarity-based partition algo-

rithm with those from two alternative ways to partition tran-

scripts: transcript-based partition (every cluster contains a

transcript) and gene-based partition (every cluster contains the

transcripts from an annotated gene). The similarity threshold �
in our partition algorithm was set to be 0.2 (more details are

provided later on the parameter choice). Table 1 compares

these partitions on the same transcriptome. The number of clus-

ters generated by our similarity-based partition is 20% fewer

than the number of genes. The average number of transcripts

per cluster is�20% more than the average number of transcripts
per gene. Most clusters only contain transcripts from a single

gene, though the largest cluster contains 6107 transcripts.

These transcripts in the largest cluster share a substantial

number of k-mers (e.g. from paralogous genes), which need to

be examined altogether to accurately estimate their abundance

levels. Failing to consider them together (e.g. by using transcript-

based or gene-based partitions) will compromise the number of

sig-mers that help distinguish transcripts and hence impair the

accuracy of transcriptome quantification. Even though this clus-

ter contains many transcripts, it represents510% of the total

number of transcripts.
We used these three types of partitions as the input to the sig-

mer discovery method. To evaluate the goodness of a partition,

we measured the proportion of each transcript that is covered by

sig-mers and plot the cumulative distribution of all transcripts

sorted in ascending order of their sig-mer coverage in Figure 4,
with varying k-mer sizes. For any transcript, the higher the sig-

mer coverage is, the more accurate the abundance estimation will
be. Our similarity-based partition is the best: almost all tran-

scripts have at least 80% sig-mer coverage, which pushes the
curves to the upper left corner of the plot regardless of the k-
mer size. The gene-based partition is slightly worse: �95% of

transcripts have at least 80% sig-mer coverage. The gene-based
partition tends to result in low sig-mer coverage for genes sharing

similar sequences. The transcript-based partition is the worst for
an obvious reason: transcripts from the same genes may share

exons and thus the number of sig-mers that can distinguish a
transcript may be very small. We also observed that using longer

k-mer improves the sig-mer coverage.
In the end, RNA-Skim selects 2 586388 sig-mers to be used in

the quantification stage, and these sig-mers count for53.5% of
74 651 849 distinguished k-mers used by Sailfish. Because RNA-

Skim uses a much smaller set of sig-mers, it is able to use the
rolling hash method—a very fast but memory-inefficient meth-
od—to count sig-mers in RNA-Seq reads.

5.2 Simulation study

Figure 5 compares the performance of the five methods on the

simulated data using four metrics: Pearson’s correlation coeffi-
cient, Spearman’s rank correlation coefficient, significant false-

positive rate (SFPR) and significant false-negative rate (SFNR).
For brevity, we use Pearson (Truth), Spearman (Truth), SFPR

and SFNR to denote these metrics, respectively. The Pearson’s
correlation coefficient is calculated in a logarithmic scale, using
all transcripts whose true and estimated abundance values are

40.01 RPKM. This calculation is the same as that used by
Sailfish (Patro et al., 2013). The Spearman’s rank correlation is

calculated on the set of transcripts whose true abundance values
are40.01 RPKM. The SFPR and SFNR are calculated to assess

the estimation distributions on the set of transcripts excluded by

Fig. 4. The distribution sig-mer coverages across all transcripts an as-

cending order of the sig-mer coverage. The upper the curve is, the better

the corresponding partition is

Table 1. This table compares three different partitions

Type Number of

clusters

Average number of

transcripts per cluster

Size of the

largest cluster

Transcript 74 215 1 1

Gene 22 584 3.29 39

RNA-Skim 18269 4.06 6107

Sailfish 1 74 215 74215

Note: If the partition contains only one cluster of all transcripts, RNA-Skim degen-

erates to Sailfish. We thus listed it in the table for comparison.
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the previous metrics: if a transcript’s estimation is40.1 RPKM,

but its true abundance value is50.01 RPKM (a 10-fold suppres-

sion), we call it a significant false positive; similarity, if a tran-

script’s estimation is50.01 RPKM, but its true abundance value

is40.1 RPKM (a 10-fold amplification), we call it a significant

false negative. There are two reasons that we chose SFPR and

SFNR instead of the regular false-positive rate and false-negative

rate: first, we prefer the transcripts with relatively large abun-

dance values (40.1 RPKM) because they are accountable for

99% the RNA-Seq data; second, owing to the noisy nature of

RNA-Seq, for the transcripts with small abundance values

(50.01 RPKM), it is difficult to calculate accurately, e.g. both

RSEM and Sailfish set the default minimal abundance value to

be 0.01 RPKM.
For RNA-Skim, we varied the sig-mer length from 20 to 95 bp.

Other methods are presented as horizontal lines for comparisons.

Despite the small differences by individual metrics, Figure 5

shows that these five methods exhibit comparable performance:

no method outperforms the remaining methods across all metrics

and the maximal difference by any metric is within 0.05.

Figure 5(a) and 5(b) show two concave curves of Pearson

(Truth) and Spearman (Truth) for RNA-Skim by varying its

sig-mer length. There are two factors explaining the concave

curves. First, when the sig-mer length increases, sig-mers

become more distinct and the sig-mer coverage increases,

which improves the correlations between the truth and estima-

tion. Second, for any fixed read length, when we increased the

sig-mer length, the probability that a sig-mer is contained by a

single read drops, causing the decrease in the number of sig-mers

observed in the RNA-Seq data, which may exacerbate the cor-

relations. In summary, there is a clear trade-off on the sig-mer

length. Empirically, the best sig-mer length is between 55 to 60,

and we thus used 60 in other experiments.

For the same reason, in Figure 5(c) and 5(d), we found that the

increase in the sig-mer length affects positively on SFPR, but

negatively on SFNR. When the sig-mer length equals 30, it has

similar SFPR with Sailfish, but worse SFNR score than Sailfish,

indicating that the complete set of k-mers still has its advantage

than a small set of sig-mers. However, RNA-Skim is able to use

much longer k-mers that Sailfish does not support, so RNA-

Skim using longer k-mers can have a better SFPR than

Sailfish. Other methods also follow the same inverse correlation:

while Sailfish and eXpress are the worst in SFPR among these

five methods, they are the best two in SFNR.
Figure 6 shows the Pearson (Truth), Spearman (Truth), SFPR

and SFNR as a function of the number of sig-mers used in

RNA-Skim. In Figure 6(a), 6(b) and 6(d), when the number of

sig-mers increases, the three metrics improve substantially,

though at different paces. Figure 6(c) shows no significant

change in SFPR for different numbers of sig-mers. This obser-

vation suggests that we should use as many sig-mers as possible

given available memory space. To ensure RNA-Skim to have

similar memory usage to that of other methods, RNA-Skim

uses 2.58 million sig-mers. This is also the default setting in

other experiments in this article.
Table 2 shows that the metrics do not vary much when using

different similarity thresholds. In the simulation study, we varied

the similarity threshold � from 0.06 to 0.28 and observed at most

0.005 change across all metrics. Owing to limited space, the de-

tailed results for the thresholds between 0.06 and 0.28 are

omitted.

Figure 7 shows a strong and clear linear correlation between

the estimated RPKM scores by RNA-Skim and the true RPKM

scores on one simulated sample.

In simulation study, we note that the accuracy of RNA-Skim

depends on the sig-mer length and the number of sig-mers, but is

insensitive to the threshold �. When these parameters are chosen

properly, RNA-Skim produces similar results to those by other

methods.

5.3 Study using real RNA-Seq data

Because the flux simulator cannot simulate RNA-Seq data with

bias effects, and there might also be other unknown factors in the

real RNA-Seq data that the simulator fails to capture, we also

compared RNA-Skim with other methods on real data. Because

we do not know the ground truth on real data, we computed the

Pearson correlation and Spearman correlation between the re-

sults produced by RNA-Skim and one other method, referred to

as Pearson (methods) and Spearman (methods) to distinguish

from the previous computed correlations between RNA-Skim

result and the ground truth.
Figure 8 shows that the distributions of the Pearson (methods)

and Spearman (methods) are not significantly different between

real data and simulated data. For example, the differences be-

tween the mean values of the correlations on both simulated and

real data are no more than 0.02 across all methods. This

(a) (b)

(c) (d)

Fig. 5. (a), (b), (c) and (d) plot Pearson (Truth), Spearman (Truth), SFPR

and SFNR of RNA-Skim as a function of sig-mer length, respectively.

For comparison, we also plotted that of the other four methods as the

horizontal lines. The reported values are the average across 100 simulated

samples. The red crosses indicate the sig-mer length (i.e. 60 bp) used in

other experiments in this article
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consistency suggests that the result from RNA-Skim may have

similar correlations with the unobserved truth. The slightly wider

distribution of the correlations in real data (than that in simu-

lated data) suggests the real data may exhibit more diversity than

simulated data. (For the comparison with gene expression data,

please see the Supplementary Material).

5.4 Running time

For the preparation stage (including transcriptome partitioning

and sig-mer selection), RNA-Skim takes �3h to finish on the

mouse transcriptome by using a single thread. Most time is spent

on calculating the k-mer-based similarities between different

pairs of genes. It takes �10min to finish sig-mer discovery and

selection. It is worth noting that these steps only need to be run

once for one population beforehand, and after sig-mers are se-

lected and their connections with transcripts are established, the

result can be repeatedly used on quantifying the transcriptome of

many samples. Therefore, the running time for the preparation

stage is less critical than the running time of the quantification

stage, and the one-time investment of 3 h is acceptable.

For the quantification stage, we compared both the running

time and the CPU time of these five methods on a real sample

with 44 millions of paired-end reads. The running time is the

(a) (b)

(c) (d)

Fig. 6. (a), (b), (c) and (d) plot Pearson (Truth), Spearman (Truth), SFPR

and SFNR as a function of the number of sig-mers used in RNA-Skim,

respectively. For comparison, we also showed that of the other four

methods as horizontal lines. The reported values are the average across

100 simulated samples. The red crosses indicate the number of sig-mers

(i.e. 2.58 million sig-mers) used in other experiments in this article

(a) (b)

(c) (d)

Fig. 8. (a), (b), (c) and (d) show the distributions of the Pearson

(methods) and Spearman (methods) correlations between the results

from RNA-Skim and the results from each of the remaining methods

on both simulated and real data

Fig. 7. The scatterplot of the estimated RPKM scores by RNA-Skim

versus the true RPKM scores. Both axes are in a logarithmic scale, and

all transcripts whose true RPKM or estimated RPKM is 50.01 are

omitted

Table 2. This table shows that the four metrics do not change much for

different similarity threshold �

� Pearson Spearman SFP SFN

0.06 0.9438 0.9242 0.0692 0.0233

0.28 0.9440 0.9237 0.0698 0.0235
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elapsed time between the start and end of a method, and the

CPU time is the total time a method uses on each core of the

CPU. For a single thread method, the running time is exactly the

same as the CPU time. And for a multi-threading method run-

ning on a multi-core CPU, the running time is typically shorter

than the CPU time. RNA-Skim is submitted as a single thread

method. Sailfish, Cufflinks with TopHat as the aligner and

RSEM with Bowtie as the aligner are submitted with multi-

threading enabled and requiring eight threads. eXpress is an

online algorithm, and it can quantify a streaming input of align-

ments generated by Bowtie in real time. Bowtie and eXpress use

six and two threads for alignment and quantification,

respectively.

Table 3 summarizes the running time of all five methods.

RNA-Skim is the fastest, �11� faster than the second best

method, Sailfish, on the CPU time. Even when Sailfish uses

eight threads, RNA-Skim is �1.6� faster on the running time

by just using one thread. Because the aligner usually consumes

lots of computation time, RNA-Skim has4100 times speedup on

the CPU time compared with Cufflinks, RSEM and eXpress.
Overall, these results demonstrate that RNA-Skim provides

comparable accuracy with other methods on both simulated

and real data, using a much shorter running time.

6 DISCUSSION AND CONCLUSION

We introduced RNA-Skim, a lightweight method that can rap-

idly and efficiently estimate the transcript abundance levels in

RNA-Seq data. RNA-Skim exploits the property of sig-mers,

significantly reducing the number of k-mers used by the

method and the scale of the optimization problem solved by

the EM algorithm. Based on our benchmark, it is at least 10�

faster than any alternative methods. To the best of our know-

ledge, the design principle of almost all existing methods is to use

as much data as possible for RNA-Seq quantification. Our re-

sults are encouraging, in the sense that they demonstrate a dif-

ferent, yet promising, direction of building a much faster method

by discovering and using only informative and reliable features—

the counts of sig-mers in RNA-Seq data.

Currently, the annotation databases are incomplete and still

under development. Aligners and alignment-dependent RNA-

Seq methods are commonly used to allow unknown transcript

discovery, which will further improve the completeness and ac-

curacy of the annotation databases. The performance of tools

like Sailfish and RNA-Skim depends on the quality of the

annotation database. Their accuracy is likely to improve when

annotation databases become complete or nearly complete in the

future. They will become better choices when we have a better

understanding of transcriptome and transcript discovery task be-

comes less important.
Because RNA-Skim is still under development, there are sev-

eral directions to further improve its performance. (i) RNA-Skim

uses a simple hash table implementation without any optimiza-

tion on the memory usage. We will investigate advanced data

structures enabling better memory utilization. (ii) Currently, the

sig-mer selection algorithm in RNA-Skim only ensures uniform

coverage. In the future, we will explore variable selection tech-

niques to select fewer but more informative sig-mers. (iii) The

current version of RNA-Skim does not have built-in bias correc-

tion capability, even though it already produces results compar-

able with the state-of-the-art methods with bias correction on

real data. We plan to incorporate bias correction in the next

version of RNA-Skim, which is likely to improve the perform-

ance further. In addition, we also plan to support multi-thread

implementation and deploy RNA-Skim in differential expression

analysis. We are optimistic that, when we add the multi-thread-

ing capability to RNA-Skim, the running time will be further

improved.
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