
Vol. 23 ISMB/ECCB 2007, pages i401–i407
BIOINFORMATICS doi:10.1093/bioinformatics/btm220

Inferring missing genotypes in large SNP panels using fast

nearest-neighbor searches over sliding windows

Adam Roberts1, Leonard McMillan1,*, Wei Wang1, Joel Parker2, Ivan Rusyn3 and
David Threadgill4
1Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, 2Constella Group,
Durham, NC 27713, 3Department of Environmental Sciences and Engineering, University of North Carolina,
Chapel Hill, NC 27599 and 4Department of Genetics, University of North Carolina, Chapel Hill,
NC 27599, USA

ABSTRACT

Motivation: Typical high-throughput genotyping techniques

produce numerous missing calls that confound subsequent

analyses, such as disease association studies. Common remedies

for this problem include removing affected markers and/or samples

or, otherwise, imputing the missing data. On small marker sets

imputation is frequently based on a vote of the K-nearest-neighbor

(KNN) haplotypes, but this technique is neither practical nor

justifiable for large datasets.

Results: We describe a data structure that supports efficient

KNN queries over arbitrarily sized, sliding haplotype windows,

and evaluate its use for genotype imputation. The performance of

our method enables exhaustive exploration over all window sizes

and known sites in large (150K, 8.3M) SNP panels. We also compare

the accuracy and performance of our methods with competing

imputation approaches.

Availability: A free open source software package, NPUTE, is

available at http://compgen.unc.edu/software, for non-commercial

uses.

Contact: mcmillan@cs.unc.edu

1 INTRODUCTION

Panels of single nucleotide polymorphisms (SNPs) are

important tools for identifying gene-disease associations.

Analyzing complex traits, like most diseases, involves

genome-wide mapping of phenotypic traits, which requires

many samples along with large and dense marker sets. Such

datasets are apt to contain a significant number of missing

genotypes. In practice, there are four options for dealing

with this problem: (1) repeating the genotyping in missing

regions, (2) modifying analysis tools to tolerate missing data,

(3) removing SNPs and/or samples with missing data or

(4) inferring the missing data. In this report, our focus is on

inferring missing genotypes, otherwise known as imputation.

Of all these options, imputation attempts to leverage existing

tools and data resources while avoiding the labor and cost of

additional genotyping, but at the risk of introducing potential

biases or errors.

Many genetic linkage and association analysis tools

require complete data, yet typical genotyping technologies

exhibit missed call rates ranging from 5 to 20% (Huentelman

et al. 2005). Therefore, methodologies for dealing with

unresolved genotypes are an imminent and practical concern.

Most tools that handle missing genotypes implicitly perform

some sort of in silico inference as either a preprocess or a side

effect of the analysis. A common method for handling missing

genotype calls is to remove either the offending SNP or an

entire sample (Kang et al. 2004). Such thinning of datasets can

lead to significant reductions in the detection power and

mapping resolution since it sacrifices good data, which often

affects the majority of SNPs.
An alternative to throwing away information is to infer

missing genotypes by considering the similarities in the haplo-

type structures between samples due to sequences at the same

genomic locations that are identical by descent. Searching for

haplotype similarities among unrelated samples is justifiable on

the basis of the coalescent theory. However, the extent of these

identity regions is limited due to historical recombinations and

mutations. One way of balancing these coalescent and divergent

forces is to consider haplotype similarities within variably sized

sliding windows.

The problem of inferring missing genetic markers is often

confounded by the question of diploid phasing. Phasing

alone is a difficult computational challenge, which is further

complicated by the introduction of missing genotypes. In fact,

most systematic approaches to phasing in the presence of

missing markers have proven to be computationally intractable

for large datasets. This leads to a class of algorithms that offer

only approximate solutions with no guarantees of optimality.

Coupling imputation with phasing adds an unnecessary

complication to animal studies where inbred (isogenic) lines

are commonly used (Threadgill et al. 2002). Furthermore, even

highly accurate phasing methods, which consider pedigrees

(trios), still result in missing calls. For example, a homozygous

minority paternal genotype crossed with a missing maternal

genotype that yields a heterozygous child implies a transmitted

majority allele from the maternal haplotype paired with an

unknown (missing value).
A variety of techniques have been applied to the problem of

imputing missing genotypes. A common statistical approach

is to infer missing genotypes from haplotype frequencies of*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://compgen.unc.edu/software
http://creativecommons.org/licenses/

population samples using either expectation maximization

(EM) (Qin et al., 2002) or Bayesian methods (Lin et al., 2002;

Niu et al., 2002; Stephens et al., 2001). More recent approaches

incorporate models of recombination by partitioning markers

into haplotype blocks based on entropy measures (Su et al.,

2005) or by inferring a mosaic of haplotype clusters (Scheet and

Stephens, 2006). Tree-based imputation methods have also

been developed that infer missing genotypes on the basis of

perfect phylogeny rather than haplotype structure (Dai et al.

2006, Eskin et al., 2003). In comparison to these previous

methods, ours is refreshingly simple. It relies on uncomplicated

measures of pairwise haplotype dissimilarity. The advantage of

its simplicity is that its speed, which is sufficient to enable

exhaustive searches over multiple parameters. The result of this

combination is a fast imputation approach with competitive

accuracy, thus providing a baseline adhering to the age-old

principle of Occam’s razor—with all else being equal, simpler

solutions should be preferred over more complicated

alternatives.

2 METHODS

There are three key elements of our imputation approach. The first is

a data structure supporting fast K-nearest neighbor (KNN) searches

over sliding windows of arbitrary sizes in constant time (independent

of window size). Second, the speed afforded by this data structure

enables us to perform exhaustive searches over all reasonable window

sizes for an optimal size, thus implicitly finding haplotype blocks.

Finally, we are able to estimate our imputation accuracy by

exhaustively inferring every known SNP value as if it were missing

from the dataset. In other words, we do not rely on sampling.

In this section we describe our SNP representation, supporting data

structures, and the imputation method itself.

2.1 Data structures and data preparation

2.1.1 SNP vectors Any method involving genetic markers

requires a simple and efficient representation of the markers themselves.

Assuming biallelic SNPs, we choose to represent the markers as

a ternary (three-valued) vector; extensions to handle multi-allelic loci

are straightforward. The samples are first sorted alphabetically to

provide an ordering to the alleles. We represent the majority allele of

the SNP as a ‘0’, the minority allele as a ‘1’ and an unknown value as

a ‘?’. Note that due to the presence of unknowns, the allele represented

by the ‘0’ may not in fact be a true majority, but we enforce that the

number of ‘0’s in the vector is greater than or equal to the number of

‘1’s. In SNPs with equal allele frequencies the ‘0’ is assigned to the first

called allele value in sample order. We store these vectors in an array in

chromosome order with separate fields for the chromosome, sequence

location, the majority and minority nucleotides and the marker ID.

In this way, all significant information is preserved.

2.1.2 Pairwise mismatch vectors The next data structure we

generate is the pairwise mismatch vector of each SNP. In this discussion

we assume a panel ofM markers and S samples. We augment each SNP

in the panel with a pairwise mismatch vector, v. This ternary vector has

a length of S(S�1)/2, with one entry per sample–sample pair. Each

entry, vij, where j4i, is set to ‘1/2’ if either si or sj is missing, ‘0’ if si¼ sj,

and to ‘1’ if si 6¼ sj (in practice we scale these values by a factor of 2).

The pairwise mismatch vectors can be computed efficiently by the

following method. We first make three ternary vectors of length S.

The first vector, z, reflects a mapping of all ‘1’s of the SNP to ‘2’s,

all ‘?’s to ‘1’s, and all ‘0’s to ‘0’s. The second vector, o, maps all SNP

‘0’s to ‘2’s, all ‘1’s to ‘0’s, and all ‘?’s to ‘1’s. The third vector, q, is all

‘1’s. Next, the pairwise mismatch vector, v, is initialized to an empty

vector, and we iterate through the SNP vector (si, i¼ 0 to S�1)

performing the following. If si¼¼ ‘0’, we concatenate the vector slice

z[iþ 1,S�1] to v, if si¼¼ ‘1’, we concatenate o[iþ 1,S�1], and if

si¼¼ ‘?’, we concatenate q[iþ 1,S�1]. When the iteration completes,

the pairwise mismatch vector has a length of S(S�1)/2 and has been

filled as specified.

2.1.3 Mismatch accumulator array Exploring the space of all

window sizes surrounding each allele across a large panel of

samples appears, at first glance, to be a daunting computational task.

Moreover, the task of estimating the imputation accuracy for a

given window size requires inferring genotypes that are already known.

Ideally, these tasks would be performed exhaustively (every known

genotype would be inferred for every window size) to find an

optimum setting for the actual unknown genotypes. The immensity

of the implied computations would lead most analysts to resort to

sampling techniques.

We have developed a data structure, called a mismatch accumulator

array (MAA), which tabulates the most time-consuming inner-

loop calculations needed to compare genotypes within any window

size. Furthermore, it avoids all of the redundant calculations in

the naive approach. The cost of constructing an MAA scales linearly

with the number of SNPs, and it permits comparisons of sequence

similarities between samples within sliding windows of arbitrary sizes

in constant time. This allows our method to be both exhaustive

and fast. Furthermore, its accuracy is competitive with the most

advanced statistically based approaches at a small fraction of

their computation time. The MAA can also be easily adapted to

perform other tasks such as finding all identical sub-regions among

sample pairs.

As each SNP pairwise mismatch vector is computed, the MAA is

built as shown in Figure 1. We first initialize a matrix of width S(S�1)/2

and height Mþ 1, with the first row set to zero. We then loop

through the SNPs in their sequence order (i¼ 0 to M�1). For each

SNP, the mismatch vector is computed as in Section 2.1.2, added the

vector to the previous entry (MAAi) in the MAA, and the sum is placed

in the next row (MAAiþ1).

For SNPs in the interior of a chromosome, we define a window

of size L centered at marker i to extend L markers above and below.

For SNPs less than L markers from the beginning or end of

a chromosome, the window extends L SNPs in one direction

and to the boundary of the chromosome in the other. To find the

10010

10001

011?0

00101

0?100

1??10

2202 020 20 2

2220 002 02 2

2210 012 12 1

0202 202 20 2

1200 111 22 0

1102 111 11 2

2 2 0 2 0 2 0 2 0 2

4 4 0 2 0 2 2 2 2 4

6 6 3 2 0 3 4 3 4 5

6 8 3 4 2 3 6 5 4 7

7 10 3 4 3 4 7 7 6 7

8 11 3 6 4 5 8 8 7 9

0 0 0 0 0 0 0 0 0 0SNPs
Mismatch

Vector

MAA

Fig. 1. Our fast imputation method relies on an auxiliary data structure

called a mismatch accumulator array (MAA). The number of

differences between any two haplotypes within an arbitrary window

can be computed by subtracting the MAA entries for the two SNPs

bounding the window.

A.Roberts et al.

i402

mismatch vector of a window thus defined, we subtract the MAA vector

indexed by max(i�L,0) from the vector indexed by min(iþLþ 1,M)

as follows:

Wði,LÞ ¼ MAAminðiþLþ1,MÞ �MAAmaxði�L,0Þ ð1Þ

When searching for optimal window sizes, we remove the contributions

to the MAA of the SNP being imputed; this is easily accomplished with

two more vector operations as follows:

Wtði,LÞ ¼ ðMAAminðiþLþ1,MÞ �MAAminðiþ1,MÞÞ

þ ðMAAi �MAAmaxði�L,0ÞÞ ð2Þ

This step is unnecessary when imputing actual missing data (‘?’s),

as they are given a mismatch of equal value (1/2) from all other alleles

on the same SNP.

2.1.4 Mismatch hash table and window vector While effective

on small datasets, this method requires significant storage on large sets

(such as the 8.3 million markers of the Perlegen dataset). We have an

alternative method for computing the windows in a constant time

without having to store the entire MAA. The normalization of SNPs

according to their majority and minority alleles enables us to easily find

repeated SNP patterns in the dataset. Our alternative method takes

advantage of this and reduces the space requirements to the number

of unique SNP vectors, or strain distribution patterns (SDPs).

For this method, we build the pairwise mismatch vectors as before

but store them in a hash table indexed by the SDP vector. Thus, all

instances of each SDP share a mismatch vector. We also utilize a single

window mismatch vector, w, to keep track of the window as we iterate

through the SNP vectors (i¼ 0 to M�1). w is initialized to the sum of

the first L SNPs’ mismatch vectors. For each window, starting at i¼ 0,

we add the vector for SNP iþLþ 1 to w and subtract the vector for

SNP max(i�L,0). When iþLþ 1 is greater than M, we add nothing to

w. In other words, at each step we are adding the next SNP vector to the

top of the window and subtracting the SNP vector from the bottom

of the window. Thus, at any time, the value of w¼W(i,L) as defined

in Equation (2) of Section 2.1.3.

When using this method during the search for an optimal L,

we remove the center SNP by subtracting its mismatch vector from w.

2.1.4 Finding closest sample(s) The final piece of our imputa-

tion strategy is finding the best sample to use for imputing each allele.

We do so by choosing the closest haplotype match to that which is

being imputed inside the window W(i,L), where i is the index of the

SNP being imputed. Recall that W(i,L) is a vector of size S(S�1)/2

containing the pairwise mismatches between all haplotypes in the

window. When imputing sample h in SNP i, we extract the S�1

mismatch values between h and the other haplotypes and organize them

in ascending order. The closest haplotype with a known allele is used for

the imputation. If multiple haplotypes are tied for the minimum

mismatch value, we allow each to vote for the call. A tie in the vote is

broken by moving to the next closest mismatch values and so on.

2.2 Our imputation approach

There are two phases to our imputation method. In the first phase,

we scan the panel to find an optimal window size for imputation based

on our ability to accurately predict the called genotypes. In the second

phase, we use this window size to infer the missing (uncalled) genotypes.

2.2.1 Finding the optimal window We estimate the best window

size for the imputation by scanning over a large range of windows and

estimating our imputation accuracy for known allele values. Due to the

speed of our data structures, we are able to estimate based on every

known allele in the dataset instead of relying on sampling.

For each window size (L) in our test set, we iterate through the

vectors in the MAA (i¼ 0 to M�1), treating i as the SNP in the center

of a window of size L. We find the mismatch vector for the window

using (2) in Section 2.1.3. This formula removes the mismatch

contribution of SNP i so that its own known value will not bias the

imputation. We choose an imputation value for each allele of the SNP

using the strategy in Section 2.1.4 and compare it with the actual allele

value. The only alleles we do not test in this way are:

(1) Missing genotypes (?’s).

(2) Singleton alleles.

Singleton alleles are ignored because we effectively mask out the

allele being imputed. If we mask out a singleton allele, the SNP is no

longer biallelic as was assumed.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0% 5% 10% 15% 20% 25% 30%

% Unknown

Im
p

u
ta

ti
o

n
 A

cc
u

ra
cy

NPUTE
fastPHASE
3NN
Majority

Fig. 2. Imputation accuracy by percent unknown (from 150k). On a

block of 1024 markers, 5, 10, 15, 20 and 25% random missed calls were

simulated for five datasets each. The accuracy results after imputation

of the same datasets by the four algorithms were then averaged.

FastPHASE’s accuracy is practically indistinguishable from NPUTE’s

(0.5% difference on average). Both performed over 1.4% better than

3NN, and outperformed majority allele imputation by over 40%.

90.0%

90.5%

91.0%

91.5%

92.0%

92.5%

93.0%

93.5%

94.0%

94.5%

95.0%

0% 5% 10% 15% 20% 25% 30%

% Unknown

Im
p

u
ta

ti
o

n
 A

cc
u

ra
cy

NPUTE
fastPHASE
3NN

Fig. 3. Imputation accuracy by percent unknown (from Perlegen).

The same method was used as in Figure 2 on 1024-SNP blocks

from Perlegen. On these datasets, NPUTE slightly underperforms

fastPHASE at 2 points, slightly outperforms fastPHASE at 2 other

points, and ties at the final point. 3NN does significantly worse than

these two methods (average of 3.1%), and majority is not plotted

to improve scaling but is again over 40% lower.

Inferring missing genotypes in large SNP panels

i403

In this manner, we can calculate how well our imputation method

would have imputed each known value in the set and determine a

good estimate of our performance on the actual missed calls for each

window size.

In all datasets that we have tested using our approach, reasonable L’s

have ranged from 5 to 150. We believe the optimal window size can be

found with a search of no more than 100 windows, and thus we have set

that as the default number to test. On larger sets (such as the 150 k and

Perlegen sets described below) there is a clear decrease in accuracies

after the optimal window size has been passed. Such trends permit early

termination of the search.

2.2.2 Imputing unknowns After the optimal window size has

been estimated, the actual imputation can be carried out. The method

is the same as above except only missing calls are imputed and are

overwritten with the computed value. Since only missing calls are being

imputed, there is no need to subtract out the center mismatch vector as

before and Equation (1) is used instead of (2).

3 RESULTS

We have compared our imputation speed and accuracy to

several commonly reported imputation methods and to publicly

available tools. These range from simple methods, such as

assigning all missed calls to the majority allele and K-nearest

neighbors voting methods (Troyanskaya et al. 2001; Xie et al.

2005; Wang and Dudoit, 2004), to the more complex Bayesian

(Scheet and Stephens, 2006) approach.
FastPHASE is a publicly available Bayesian algorithm that is

widely used for phasing human genotypes. In addition to

phasing, it provides an option for imputing missing calls.

FastPHASE is a speed improvement over the original PHASE

algorithm (Stephens et al., 2001), which is widely regarded as

the most accurate phasing algorithm (Marchini et al., 2006).
All comparative analyses were performed on identical

datasets for all methods reported.

3.1 Test data

We compared imputation methods using two test datasets.
The first dataset was extracted from a set of combined SNPs

from the 140 k Broad/MIT mouse dataset (Wade and Daly,

2005) and the 10 k GNF mouse dataset. This merged dataset
has 156 798 SNPs, 46 mouse strains and 4.2% missing genotype

calls. We refer it as the 150 k set throughout the rest of

this article. The second dataset used was extracted from the
Perlegen 8.3 million SNP set, which provides high-resolution

map of 16 common mouse strains with 11.1% missing calls.

We refer to it as the Perlegen dataset, and it is available at
http://mouse.perlegen.com.
To make these datasets a practical size for our competitor’s

imputation methods, we chose a subset of SNPs from each

dataset to run comparisons. We first found the 1024
consecutive markers with the fewest number of missing calls

from each dataset (this was easily accomplished using a variant

of our MAA data structure). We randomly inserted missed calls
to make five simulated sets with each of the following

percentages of unknowns: 5, 10, 15, 20 and 25%, and preserved
the original values for comparison. Note that the actual missed

calls were left in the ground truth datasets and the simulated

unknowns were added to reach a desired percentage. These sets
were imputed using each method, and the results were

compared with the ground truth at points where the simulated

missed calls were inserted. We averaged the accuracies for each
of the five sets having the same percentage of missed calls.

3.2 Accuracy comparisons

We compared the accuracy of our method, NPUTE, with
fastPHASE, majority allele imputation and KNN. The results

of the comparison are shown in Figure 2 for a 1024 marker
block from the 150 k set. In terms of imputation accuracy,

NPUTE is competitive with fastPHASE, and it outperforms

both majority allele and KNN imputation methods.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500

Number of SNPs

R
u

n
ti

m
e

(s
)

NPUTE
fastPHASE

Fig. 4. Imputation runtime by data block size (150 k). Imputation

runtime was determined for random 256, 512, 1024 and 2058 marker

blocks of the 150 k set for NPUTE and fastPHASE. The runtimes for

both methods grow linearly with datasets of increasing size. NPUTE

ran faster than fastPHASE for datasets of all sizes.

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500

Number of Markers

R
u

n
ti

m
e

(s
)

NPUTE
fastPHASE

Fig. 5. Imputation runtime by data block size (Perlegen). Imputation

runtime was determined in the same manner as in Figure 4 using blocks

from the Perlegen set. As on the 150 k set, linear growth is visible, and

NPUTE ran faster than fastPHASE for all datasets. The shorter impute

times on the Perlegen set are due to the smaller S (16 in Perlegen,

45 in 150 k) with a constant M.

A.Roberts et al.

i404

http://mouse.perlegen.com

As expected, the imputation accuracy falls off for all methods

as the miss rate increases. For KNN, k¼ 3 is shown because it

had the best performance. Our method (NPUTE) and

fastPHASE are clear winners, with fastPHASE doing slightly

(50.5%) better. Figure 3 shows the results for just NPUTE and

fastPHASE on a 1024 marker block from the Perlegen set.

Again, the two methods are essentialy equivalent in their

average accuracy.

3.3 Speed comparisons

For speed comparison we ran NPUTE and fastPHASE on

5 random, consecutive blocks of 256, 512, 1024 and

2048 markers taken from the 150 k and Perlegen datasets,

giving 40 sets in total. We ran both algorithms on a 3GHz

Pentium 4 CPU with 1GB of RAM. We did not compare the

majority and KNN methods since they were unoptimized and

derived from the same code base as NPUTE. The runtime

results for the blocks from the 150 k and Perlegen sets are

reported in Figures 4 and 5, respectively. NPUTE is typically

more than 10 times faster than fastPHASE on these sets with

comparable accuracy.

3.4 Full genome imputation

The speed of our method enables us to impute full genome

datasets such as the 150 k and 8.3 million SNP (Perlegen)

datasets.

3.3.1 Speed and accuracy results for global window Figure 6
shows the estimated accuracy of NPUTE over the entire 150 k

dataset for each window size. We are able to prune our optimal

window search after the clear descent in the accuracy curve is

seen following L¼ 11. Our estimated accuracy at this optimal

point is 97.2%. For comparison, KNN with k¼ 3 has an

estimated accuracy of 81.5%. The average time to test each

window in this large set is 7.5min and in comparison to the

search, actual imputation time is negligible. Extrapolating from

fastPHASE’s performance on small blocks of the 150 k set,

we estimate it would take �164 h to impute the full set.
We have also estimated our imputation on the Perlegen

dataset, the results for which can be seen in Figure 7.

Again, we have pruned the window search after the peak to

save time. The average time to test each window in this set is

135min and the full imputation including the window search of

20 sizes runs in �45 h. The estimated imputation accuracy for

the optimal window (L¼ 16) is 94.4%. For comparison, KNN

with k¼ 3 imputes is estimated to impute the dataset with

85.6% accuracy. Extrapolating from fastPHASE’s performance

on smaller blocks from the Perlegen set, we estimate it would

take �88 days to impute the same data.

3.3.2 Speed and accuracy results for chromosome
windows We may also choose to search for an optimal

window for each chromosome instead of globally. Figures 6

and 7 show the window search results for all chromosomes

of 150 k and Perlegen, respectively. While the optimal window

size tends to vary only slightly between chromosomes, the

number of additional correct calls above the global method is in

the thousands for Perlegen. Because the time requirements

are the same, imputing the chromosomes separately is

recommended.

3.3.2 Confidence score analysis Using the 150 k and

Perelegen datasets, we have been able to derive a confidence

score that is applicable across datasets. For each imputation

call, we take the number of mismatches m in the window

between the haplotype being imputed and the haplotype used

for the imputation. This is referred to as the minimum

mismatch score. We divide m by 2L to normalize the score so

that it is between 1 and 0. These normalized score for each

imputed value can then be reported as our confidence in the

96.0%

96.5%

97.0%

97.5%

98.0%

5 10 15 20 25 30 35 40 45 50

L

A
cc

u
ra

cy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
X
All

Fig. 6. Estimated accuracy for global and per-chromosome windows

(150 k). NPUTE’s global performance peaks at L¼ 11 (�350KB on

average), with an estimated accuracy of 97.2%. The peak allows us to

prune the search space. The optimal L varies from 10–15 by

chromosome in the dataset, and using optimal chromosome Ls yields

an improvement of hundreds of calls.

93.0%

93.5%

94.0%

94.5%

95.0%

95.5%

96.0%

96.5%

97.0%

0 5 10 15 20 25 30

L

A
cc

u
ra

cy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
X
All

Fig. 7. Estimated Accuracy for global and per-chromosome windows

(Perlegen). Global performance peaks at L¼ 16 (�10KB on avg.), with

an estimated accuracy of 94.5%. The search space is pruned earlier due

to the higher search costs but does not result in a loss of accuracy.

Optimal L varies from 14–20 for different chromosomes. Chromosome

windows improve accuracy in over 2K calls. Smoother curves are due

to denser markers.

Inferring missing genotypes in large SNP panels

i405

calls we have made. Figure 8 shows the accuracy of NPUTE

based on this confidence score in both the Perlegen and 150 k

datasets. For the 150 k set, there are so few data points for

confidence scores less than 0.5 that the accuracies are random

on the right half of the graph. Nevertheless, the results for

both sets show that this confidence score is a good predictor

of imputation accuracy.

4 DISCUSSION

We have presented a conceptually simple, yet extremely

effective approach for imputing ‘no-call’ genotypes. At its

core, our method finds the most similar haplotype and uses it to

infer the missing data. In regions of high LD, and when given a

sufficient sample size, it is not surprising that a method like

ours would be effective. A key strength of our approach is its

ability to search over sliding widows of arbitrary sizes.

This allows us to exhaustively test all window sizes, and to

tune the search windows on a per-chromosome, or chromo-

somal region basis.
A data structure called the MAA enables the efficient

window searches required by our approach. The MAA is also

extremely versatile. We have made small modifications to it

that allow quick scanning for contiguous SNP windows with

the fewest missed calls, as well as finding the longest contiguous

matching interval for every haplotype pair indexed by SNP

position.

Our method is not dependent on any low-level optimizations

or hardware-dependent optimizations. In fact, it is entirely

implemented using an interpreted language (Python).
One can easily imagine small tweaks to further improve upon

our imputation accuracy, such as allowing for non-symmetric

windows, or selecting windows on the basis of haplotype

blocks, which are found as a preprocess. We can also limit

imputation to sites with high confidence, as estimated by the

mismatch score, for tools that are able to tolerate missing calls.

This also suggests the possibility of an iterative approach

that imputes highest confidence no-calls, updates the MAA,

and repeats until every site is imputed.
Another application of the confidence score is to use NPUTE

for multiple imputation, as proposed by Rubin (1977). A biased

coin with probability determined by the confidence score is

flipped at each missed genotype to generate multiple imputed

datasets with random variation. These sets can then be

analyzed and combined by an MI method.
Our algorithm scales in both time and space as O(M S2),

where M is the number of markers and S the number of

samples. This can be problematic for datasets with a large S.

The dynamic construction of the window vector described in

Section 2.1.4 reduces the memory requirement from M to the

largest window size, but it is not helpful for datasets with

many samples.
For these datasets, we have developed a variant of the

MAA. Rather than constructing mismatch vectors based on all

pairs, we instead select a subset of k-representative samples

(on a chromosome basis) and then find the number of

mismatches between each sample and these k-representatives.

This results in a mismatch vector of length k S, rather than

S(S�1)/2. We select these representatives using a k-medoid

clustering approach. This reduces the space and time

complexity of our imputation method to O(M k S) with a

minimal effect on the imputation accuracy. For example, on the

150 k dataset, selecting k to be 8 out of 46, this method only

reduces the imputation accuracy from 97.2 to 94.5%.

Another application for our algorithm besides imputation is

in genotype quality control. We have noted that some of our

highest confidence calls can disagree with the data as given.

Such discrepancies might imply genotyping errors rather than

imputation errors. Our confidence measure can be used to

assign a quality score to all values in a dataset. Low quality

calls could then be resequenced in order to improve the

integrity of the data. Undoubtedly, even some of our highest

confidence calls will be incorrect but our algorithm may be able

to point out areas where additional verification will be useful.

ACKNOWLEDGEMENTS

We thank all members of the UNC Computational Genetics

working group for discussion of our project and Lynda Yang

for help running experiments. We thank the Stephens lab for

access to fastPHASE used in the evaluations for this article.

Generous grants provided by EPA STAR RD832720, NIH

U01CA105417, and NSF IIS 0448392 funded parts of this

research.

Conflict of Interest: none declared.

REFERENCES

Dai,J.Y. et al. (2006) Imputation methods to improve inference in SNP

association studies. Genet. Epidemiol., 30, 690–702.

Eskin,E. et al. (2003) Efficient reconstruction of haplotype structure via perfect

phylogeny. J. Bioinform. Comput. Biol., 1, 1–20.

Huentelman,M. et al. (2005) SNiPer: improved SNP genotype calling for

Affymetrix 10K GeneChip microarray data. BMC Genomics, 6, 149.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

00.10.20.30.40.50.60.70.80.91

Confidence

A
cc

u
ra

cy

150 K, L=11
Perlegen Chr 1, L=17

Fig. 8. Estimated accuracy by confidence score on 150k and Perlegen

sets. The normalized minimum mismatch confidence score is a good

predictor of imputation accuracy. The random distribution of points

for confidence scores less than 0.5 on the 150 k set is due to their

sparseness.

A.Roberts et al.

i406

Kang,S.J. et al. (2004) Tradeoff between no-call reduction in genotyping error

rate and loss of sample size for genetic case/control association studies.

Pac. Symp. Biocomput., 9, 116–127.

Lin,S. et al. (2002) Haplotype inference in random population samples.

Am. J. Hum. Genet., 71, 1129–1137.

Marchini,J. et al. (2006) A comparison of phasing algorithms for trios and

unrelated individuals. Am. J. Hum. Genet., 78, 437–450.

Niu,T. et al. (2002) Bayesian haplotype inference for multiple linked single-

nucleotide polymorphisms. Am. J. Hum. Genet., 70, 157–169.

Qin,Z.S. et al. (2002) Partition-ligation-expectation maximization algorithm

for haplotype inference with single nucleotide polymorphisms. Am. J. Hum.

Genet., 71, 1242–1247.

Rubin,D.B. (1977) Formalizing subjective notions about the effect of

nonrespondents in sample surveys. J. Am. Stat. Assoc., 72, 538–543.

Scheet,P. and Stephens,M. (2006) A fast and flexible statistical model for

large-scale population genotype data: applications to inferring

missing genotypes and haplotypic phase. Am. J. Hum. Genet., 78, 29–644.

Stephens,M. et al. (2001) A new statistical method for haplotype reconstruction

from population data. Am. J. Hum. Genet., 68, 978–989.

Su,S. et al. (2005) Inference of missing SNPs and information quantity

measurements for haplotype blocks. Bioinformatics, 21, 2001–2007.

Threadgill,D.W. et al. (2002) Genetic dissection of complex and quantitative

traits: from fantasy to reality via a community effort. Mamm. Genome, 13,

175–178.

Troyanskaya,O. et al. (2001) Missing value estimation methods for DNA

microarrays. Bioinformatics, 17, 520–525.

Wade,C.M. and Daly,M.J. (2005) Genetic variation in laboratory mice.

Nat. Genet., 37, 1175–1180.

Wang,Y. and Dudoit,S. (2004) Quantification and visualization of LD patterns

and identification of haplotype blocks (2004). U.C. Berkeley Division of

Biostatistics Working Paper Series, Working Paper 150.

Xie,Q. et al. (2005) Decision forest analysis of 61 single nucleotide polymorphisms

in a case-control study of esophageal cancer; a novel method. BMC

Bioinformatics, 6, S4.

Inferring missing genotypes in large SNP panels

i407

