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Abstract—In a sponsored search market, the problem of
measuring the intensity of competition among advertisers is
increasingly gaining prominence today. Usually, search providers
want to monitor the advertiser communities that share common
bidding keywords, so that they can intervene when competition
slackens. However, to the best of our knowledge, not much re-
search has been conducted in identifying advertiser communities
and understanding competition within these communities. In this
paper we introduce a novel approach to detect competitive com-
munities in a weighted bi-partite network formed by advertisers
and their bidding keywords. The proposed approach is based
on an advertiser vertex metric called intensity score, which takes
the following two factors into consideration: the competitors that
bid on the same keywords, and the advertisers’ consumption
proportion within the community. Evidence shows that when
market competition rises, the revenue for a search provider
also increases. Our community detection algorithm Max-Intensity
is designed to detect communities which have the maximum
intensity score. In this paper, we conduct experiments and validate
the performance of Max-Intensity on sponsored search advertising
data. Compared to baseline methods, the communities detected by
our algorithm have low Herfindahl-Hirschman index (HHI) and
comprehensive concentration index (CCI), which demonstrates
that the communities given by Max-Intensity can capture the
structure of the competitive communities.

I. INTRODUCTION

Search providers often divide the entire sponsored search
market into different areas of business interests. Each such
area, like healthcare, education, food and nutrition, etc. is
formally known as a sector. Each sector has a wide spectrum of
sponsored keywords that different advertisers bid on through
keyword auctions. However, advertisers are eventually charged
only when their sponsored ads are clicked by a user [1].
Typically, advertisers open their accounts with the search
provider(s) and bid for a set of keywords which they consider
to be relevant to their products [2]. Different advertisers,
bidding on the same set of keywords, compete against each
other for their ad slot in the search results. Thus, the search
engine providers often ask themselves “how is the best way
to measure the competition among different advertisers in
each sector?”. This is a very important question from the
search providers’ perspective, as understanding the intensity of
competition among different advertisers can help them monitor
a sector better, and if necessary, implement changes in their
current policy to increase their revenue.

In traditional retail markets, market concentration measures
which are based on firms’ profits or market shares [3]–[5] are
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Fig. 1: Weighted advertiser-keyword bipartite graph

used to estimate the competition. We can extend this notion to
the sponsored search market as well, where we can view the
fraction of the total “user clicks” that an advertiser gets on its
sponsored ads as its corresponding market share in the sector.
The fundamental principles of economic theory suggest that
as market competition rises, the revenue for search providers
should also increase [6]. This is easily verifiable from our
results in Section II. However, analyzing market competition
at the sector level over time may not always give adequate
insights. For example, if the competition for a sector remains
stagnant or increases over time, it does not necessarily mean
that the competition among advertisers for different keywords
will follow a similar trend. Even in such cases, there will
be pockets of advertisers, fiercely competing against each
other for certain keywords, thereby contributing towards a
higher search engine revenue. Likewise, a low competition
for an entire sector does not indicate that all keywords within
that sector are experiencing high competition. There can be
several groups of keywords which are not fairing well in the
market and are hardly sought out by the advertisers. Thus, our
primary motivation is to detect small meaningful communities
of advertisers, competing against each other, within a sector.
These communities offer an appropriate microscopic view that
will allow us to extract relevant insights like finding core and
fringe competitors of advertisers, studying how the competition
evolves, etc.

Traditional community detection algorithms [7]–[10], run-
ning on network graphs, allow us to discover groups of tightly
connected vertices and their inter-relationships. In order to
run these community detection methods, we modeled our
sponsored search market as a bi-partite advertiser-keyword



network, as shown in Figure 1 (described in detail in Sec-
tion III). However, recent studies in community detection
mainly focus either on improving the existing modularity-
based methods [11], [12], or proposing new metrics to better
estimate the community structure [13]. But, for our advertiser-
keyword network, we need to detect communities based on
their internal competition with each other. Therefore, in this
paper, we first introduce a novel scoring function called
intensity score to measure the competitiveness of an advertiser.
Thereafter, we propose a community detection algorithm Max-
Intensity which detects highly competitive communities by
maximizing the total intensity score within each community.

The principal contributions of this paper are summarized
as follows:

1) We propose a new metric intensity score to represent the
competition in an advertiser-keyword network (modeled
as a weighted bi-partite graph).

2) Our proposed Max-Intensity algorithm, based on intensity
score, detects competitive communities within a sector.
To the best of our knowledge, this is the first competition
based algorithm proposed in the literature.

3) We extend the concepts of market concentration measures
from retail markets to calculate the competition in a
sponsored search marketplace.

The rest of the paper is organized as follows. Section II
shows the strong correlation between market competition and
search provider revenue, and also explains the motivation to
measure the competition within a sector. Section III describes
our data model and the concepts that lead to the formula-
tion of intensity score. Section IV presents the community
detection algorithm Max-Intensity, followed by experimental
results described in Section V. The survey of the related work
is presented in Section VI. Finally, we conclude in Section VII.

For reproducible research, we make all of our code avail-
able online.1

II. PRELIMINARIES

Market concentration measures are commonly used in retail
markets to estimate the competition among the stakeholders.
One such popular measure is the Herfindahl-Hirschman index
(HHI) [4], which is widely regarded by economists as an
excellent indicator for market competition. HHI for a market
having N firms is calculated as,

HHI =
N∑
i=1

s2i (1)

where si is the market share of firm i in the market, and N
is the number of firms. Thus, in a market with two firms each
having 50% market share, the HHI will be 0.52 + 0.52 = 0.5.

Another alternative market concentration measure com-
monly used for estimating competition is the comprehensive
concentration index (CCI) [5]. CCI for a market having N
firms is calculated as,

CCI = s1 +

N∑
i=2

s2i × (2− si) (2)

1https://github.com/ucla-scai/Max-Intensity

where s1 is the market share of the largest competitor. Thus,
in a market with two competitors having shares of 40% and
60%, the CCI will be 0.6+0.42×(2−0.4) = 0.856. CCI puts
greater weight on the share of the largest firm as compared
to HHI. But typically, a low value of HHI or CCI indicates
high market competition, whereas a high HHI or CCI would
practically indicate a monopoly. We use both HHI and CCI
metrics to validate our results.

In order to apply HHI and CCI in the context of a sponsored
search marketplace, we can consider “user clicks” as sales
for an advertiser and the fraction of total clicks garnered by
the advertiser on its sponsored ads as its market share. With
these considerations, we calculate Spearman’s rank correlation
coefficient between HHI and the search engine revenue over
seven weeks for different sectors. The results are summarized
in Table I. For each sector, we average the user clicks and
advertisers’ consumption each week, and then calculate HHI
of each sector (sector is a “market” here). It is evident from the
table that there is a very strong negative correlation between
the HHI for a sector and the revenue the search engine obtained
from that sector. This indicates that an increase or decrease in
the market competition can lead to a corresponding rise or
drop in the search provider’s revenue as well. Therefore, it is
critical that search engine providers identify scenarios where
market competition is becoming stagnant or decreasing so that
it can come up with remedial strategies [3], such as free token
distributions to intensify the competition.

However, sector level analysis offers a very broad macro-
scopic view. It is difficult to gain relevant insights into the
market competition at the sector level. For example, a low
HHI value does not suggest that all keywords within that
sector are facing high competition, and vice versa. Thus, it
is much more useful for search providers to find different
pockets of advertisers and their corresponding keywords within
a sector and track their competition over time. Our proposed
community detection algorithm Max-Intensity identifies these
competitive advertiser communities and their corresponding
bidding keywords.

III. DATA MODELING AND DEFINITIONS

In this section, we first describe our data model and the
intuition behind it. Then we formally define the intensity score
and evaluate its boundary conditions.

A. Data Modeling

In order to deploy the community detection algorithms,
we need to model the sponsored search market as a graph.
In our model, we consider both keywords and advertisers
as vertices. In this keyword-advertiser graph, an edge exists
between a keyword and an advertiser, if the advertiser bids
for that keyword and has paid some remuneration to the
search provider for it. If an edge exists between an advertiser
and a keyword, we say that the advertiser “consumed” the
keyword and the corresponding “consumption” is measured by
the amount paid by the advertiser to the search provider for that
keyword. Since, in our model, there cannot be any advertiser-
advertiser or keyword-keyword edges, we essentially have a bi-
partite graph. However, all keywords are not equally important



TABLE I: Market competition versus search provider revenue

Sector Criteria Weekly Averaged Data Correlation

Instruments HHI 0.0006 0.0007 0.0007 0.0008 0.0019 0.0017 0.0006 -0.9611Revenue 6,059,822 5,876,791 5,494,558 4,614,660 1,593,922 625,657 5,196,103

Finishing Materials HHI 0.0009 0.0010 0.0012 0.0025 0.0027 0.0035 0.0011 -0.9417Revenue 7,438,719 7,143,498 6,151,826 4,988,395 2,103,629 1,740,237 6,392,471

Industrial Chemicals HHI 0.0010 0.0011 0.0011 0.0014 0.0018 0.0026 0.0012 -0.9533Revenue 3,175,138 3,042,216 2,862,213 2,347,107 951,526 574,986 2,760,362

Machinery & Equipments HHI 0.0003 0.0004 0.0004 0.0005 0.0008 0.0009 0.0004 -0.9976Revenue 5,397,096 5,196,760 4,721,726 3,909,659 1,363,837 789,953 4,650,112

Metallic Materials HHI 0.0004 0.0004 0.0005 0.0006 0.0011 0.0016 0.0006 -0.9415Revenue 3,441,036 3,330,836 2,920,052 2,177,350 701,702 433,938 3,024,788

Specialty Hospital HHI 0.0006 0.0006 0.0006 0.0007 0.0010 0.0014 0.0007 -0.9580Revenue 81,584,689 79,453,651 76,563,899 66,196,751 34,401,222 23,445,646 71,740,014

to an advertiser. Therefore, we assign weights to the advertiser-
keyword edge according to the remuneration the advertiser
pays to the search provider for that keyword.

There is a significant drawback if we treat only advertisers
as vertices in the graph. This is because the edges can be
established between two advertisers vertices, if there is at
least one mutual keyword that both these advertisers have
consumed. In this case, there will be too many cliques which
may not be meaningful communities. For example, consider
a network where five advertisers share a common keyword,
two among them share two additional keywords while the
remaining three share only one additional keyword. These
five advertisers in this model form a clique. However, even
if these five advertisers had just one common keyword, they
would still have formed a clique. Thus we will end up having
too many redundant cliques that goes against the definition
of communities (less external connections and more internal
connections).

We now formally denote the weighted bi-partite advertiser-
keyword graph by G(A,K,E), where A is the set of adver-
tisers, K is the set of keywords and E is the weighted edge
set such that A∩K = ∅ and E ⊆ V ×K. Let wij denote the
weight of an edge between vertex i ∈ A and vertex j ∈ K.
In the context of our model, wij > 0 is the proportion of the
money that advertiser i spent on keyword j. Thus we have

wij = csmij ×
1∑ni

k=1 csmik
(3)

where csmij (shown with red numbers in Figure 1) represents
the consumption of advertiser i on keyword j and ni is the
total number of keywords consumed by advertiser i.

B. Competition Coefficient

Community detection methods [14] partition vertices in a
graph into set of groups, also called communities, based on
their inter-relationships. Let the subgraph C(AC ,KC , EC) of
an advertiser-keyword graph G(A,K,E) be such a community.
In order to measure the degree to which advertisers within
a community tend to compete with each other, we propose
a competition coefficient based on the internal competition
within a community.

Definition 1 (Homogeneous Neighborhood). For a given ver-
tex u ∈ AC ∪KC in a bipartite subgraph C, we define its ho-
mogeneous neighbor set as N(u) = {v|(u, t) ∈ EC ∧ (t, v) ∈
EC , t 6= ∅, u 6= v}, which is a collection of homogeneous
vertices.

Definition 2 (Competition Coefficient). In a given bipartite
subgraph C(AC ,KC , EC), the competition coefficient of an
advertiser vertex i ∈ AC is defined as follows:

cci =

{ ∑
j

∑
k wjk

|N(i)| , if N(i) 6= ∅
0 if N(i) = ∅

(4)

where j ∈ N(i), k ∈ KC , wik > 0 and wjk > 0.

Leveraging the concept of clustering coefficient in graph
theory [15], we propose the competition coefficient to factor
the competition an advertiser vertex will face in a bipartite
graph. The definition shows that competition coefficient is the
sum of the weighted edges of all the competitors that are
bidding on the same keywords as the advertiser, normalized
by its number of competitors. Consider the example given in
Figure 1, the competition coefficient of vertex HTC in the
community is ccHTC = 0.7+0.1+0.6+0.4

3 = 0.6.

From this definition we can obtain that cci ∈ [0, 1]. The
maximum value of 1 is obtained when all the homogeneous
neighbors spend all their money on the same keywords that
are bid on by advertiser i. The lower bound of competition
coefficient is 0, which is obtained when no competitors exist
(N(i) = ∅).

Theorem 1. Given a community C(AC ,KC , EC), advertiser
i ∈ AC , cci = ϕ. If a new competitor j is introduced in this
community, the competition coefficient will increase if and only
if ∑

wik>0

wjk > ϕ. (5)

Proof: Let,
∑
l

∑
k wlk = α, where l ∈ N(i), k ∈ KC .

We have ϕ = cci =
∑

l

∑
k wlk

|N(i)| = α
|N(i)| . After adding a new

competitor j, ϕ′ =
α+

∑
wik>0 wjk

|N(i)|+1 . If the competition coeffi-

cient increases, ϕ′ > ϕ, then
α+

∑
wik>0 wjk

|N(i)|+1 > α
|N(i)| . Thus we

can get
∑
wik>0 wjk >

α
|N(i)|×(|N(i)|+1)−α = α

|N(i)| = ϕ.

C. Intensity Score

Based on the competition coefficient, we formulate the
intensity score for an advertiser vertex. We assume that if
the proportion of advertiser consumption for a keyword is
high, then the advertiser’s competitive capacity to this keyword
is also high. To measure the intensity score of an advertiser
within a community, we use the following two criteria:



1) The internal consumption proportion
∑
i∈AC∧j∈KC

wij
of the advertiser i inside community C should be more
than the maximum consumption proportion to a single
external community maxC′

∑
i∈AC∧j′∈KC′ wij′ . This cri-

teria is represented in the intensity computation as the
difference between the internal consumption proportion
and the maximum external community consumption pro-
portion

∑
i∈AC∧j∈KC

wij − maxC′
∑
i∈AC∧j′∈KC′ wij′ ,

where C ′ represents the external communities (more
details in case study 1 of Section IV-C). This value will
be between −1 when there are no competitors inside the
community, and 1 when there are no competitors outside
the community. This criteria emphasizes that a vertex is
likely to be within a community if its sum of consumption
proportions (edges) within the community is large (see
Theorem 1).

2) Within a specific community, if the competition intensity
is high, then the homogeneous neighbors of the advertiser
vertex i should spend more money on the same keywords
as i. In this case, its competition coefficient, cci, should
be high. (more details in case study 2 of Section IV-C).
This value ranges from 0 (not competitive) to 1 (full
competition).

We aggregate these two criteria to formulate intensity score
Ii of an advertiser vertex i in community C(AC ,KC , EC) as
follows:

Ii = cci + λ

 ∑
i∈AC∧j∈KC

wij −max
C′

∑
i∈AC∧j′∈KC′

wij′


(6)

where λ ≥ 0 is a tuning parameter. We test different values for
λ in our experiments. Base on this formulation, the intensity
score for HTC in Figure 1 is IHTC = ccHTC+λ(0.3+0.5−
0.2) = 1.2 (we choose λ = 1 here).

The intuition behind this intensity measure is based on
our observations that an advertiser vertex with high intensity
score has lots of competitors within its community, and its
internal consumption proportion is higher than the maximum
consumption proportion to any single external community.

D. Boundary Conditions of Competition Intensity

For vertices that do not have any external connections, Ii is
equal to the sum of internal coefficient and λ (i.e. Ii = cci+λ).
Ii attains its maximum value of 1+λ when advertiser i has no
external connections and faces full competition (all competitors
spend all their money on the same keywords as advertiser i)
inside the community. The theoretical lower bound of Ii is
−λ, which is obtained when the competitors of advertiser i
are only from outside of the community. For example, this is
possible for singleton advertiser community which has only
external connections. Therefore, for every advertiser vertex i,
Ii ∈ [−λ, λ+ 1].

The intensity score of the community C(A,K,E) is given
by IC =

∑
i∈AC

1
|A|Ii, IC ∈ [−λ, λ+ 1]. IC will be closer to

λ + 1 as more vertices inside the community high intensity
score. This can happen only when the community has a
strong internal structure without any external connections to
its vertices and all the keywords inside the community are bid

by all the advertisers. If C is a singleton community which has
only one advertiser and has only external connections, then
IC = −λ.

IV. PROPOSED APPROACH

In this section, we present the formal definition of competi-
tion community detection problem, and develop a community
detection algorithm called Max-Intensity that identifies com-
munities by maximizing their intensity scores.

A. Objective

Our objective is to deal with the following problem: given
a weighted bipartite graph G(A,K,E), partition the vertices
of G into subsets so as to maximize the intensity score in each
detected community. The goal function is,

fobj = max
∑
AC⊆G

∑
i∈AC

Ii (7)

where C(AC ,KC , EC) is the detected community. An edge
between A and K in G(A,K,E) amounts to an advertiser
a ∈ A bidding on a particular keyword k ∈ K. The weight of
an edge Wa,k represents the consumption of that particular bid
normalized by total consumption for the advertiser. With this
input set then the algorithm is set to iteratively assign keyword
and advertiser vertices to communities in order to increase the
overall intensity of the network.

B. Community Detection with Max-Intensity

Similar to finding subgraphs of a given size with some
fitness measures larger than a threshold [14], our problem is
also NP-complete. Therefore, we utilize a heuristic approach
which strives to obtain a high value of intensity. To achieve this
desiderata, the algorithm iterates through the entire advertiser
set and tests the assignment of an advertiser to each of it’s
neighboring communities against no assignment at all. The
advertiser is then assigned to the community which results
in the highest intensity for the graph overall (pseudocode in
Algorithm 1). After each assignment outside of an advertiser’s
current community, and initially, each keyword is assigned to
the community which has the highest average intensity score,
as shown in Algorithm 2. An iteration limit is set so as to avoid
infinite looping in the event that the assignment of vertices
oscillate. By iteratively assigning the advertiser and keyword
vertices the algorithm will approach a network with a good
intensity score.

C. Case Study

In this section, we study the behavior of Max-Intensity
algorithm with two simple cases.

Case 1: In this case, we test the advertiser assignment
regarding the consumption proportion. The initial choice of
vertices in the graph is arbitrary but suppose without loss of
generality the vertices are chosen in order (i.e. A1, A2, ..., A5).
Initially each vertex is assigned to it’s seed community
(C1, C2, ..., C5). The intensity score of an advertiser vertex in
it’s seed community is −λ due to hitting the lower boundary
condition (Section III-D). Then the keywords are assigned to
the community with the highest average intensity score. Again



Algorithm 1 Max Intensity
Input: A weighted bipartite graph G.
Output: Intensity of advertisers in G; Detected communities

procedure MAX_INTENSITY(G(A,K,E), λ)
Each vertex is assigned to its seed community
Assign_Keywords(K)
Sum← −λ× |A|
Old_Sum← −1
do
Old_Sum← Sum
Sum← 0
for a ∈ A do
cur_i← Intensity(a)
if cur_i == λ+ 1 then
Sum← Sum+ cur_i
continue

end if
cur_i_neig ← 0
for l ∈ Neig(Neig(a)) do
cur_i_neig ← cur_i_neig + Intensity(l)

end for

for C ∈ Comm(Neig(a)) do
Move a to community C
n_i← Intensity(a)
n_i_neig ← 0
for l ∈ Neig(Neig(a)) do
n_i_neig ← n_i_neig + Intensity(l)

end for
if (cur_i < n_i) and (cur_i_neig < n_i_neig) then
cur_i← n_i
Assign_Keywords(K)

else
replace a to its original community

end if
end for
Sum← Sum+ cur_i

end for
while not stopping criterion and Sum 6= Old_Sum
Advertiser_intensity = Sum/|A|
return Advertiser_intensity

end procedure

Algorithm 2 Assign Keywords
Input: A partite set of keywords K.
Output: Assigned communities of K

procedure ASSIGN_KEYWORDS(K)
for all k ∈ K do
max_i← −∞
for C ∈ Comm(Neig(k)) do
cur_i← 0
A← { a | (a ∈ Neig(k)) ∧ (a is a memeber of C) }
for a ∈ A do
cur_i← cur_i+ Intensity(a)

end for
cur_i← cur_i

|V |
if cur_i > max_i then
max_i← cur_i
Move k to community C

end if
end for

end for
end procedure

without loss of generality assume ties are assigned to the lower
ordered vertex (i.e A1 < A2 < ..., A5). There are other
intutive choices to make in breaking ties, such as assigning
the keyword to the advertiser with a higher weight, but for
simplicity we will just use this basic ordering. After initializa-
tion, each advertiser is assigned to a distinct community with
K1 and K2 assigned to A1’s community (C1), K3 assigned
to A3’s community (C3) and K4 assigned to A4’s community
(C4). C2 and C5 are still singleton communities with A2 and
A5 respectively. The algorithm begins the iteration, choosing
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Fig. 2: Case study 1: Advertiser assignment regarding the
consumption proportion (results generated from Max-Intensity)

A1 first. The intensity score will be calculated at this vertex
and is given to be 1 because all attached keywords are within
the same community. Next A1 will stay in C1 since all other
assignments will lead to a minimum score. This is because
all attached keywords are in C1, so an assignment to another
community will lead to ccA1 = 0 (N(A1) = ∅). The intensity
score thus becomes −λ, the leftmost bound. The next vertex
chosen will be A2. The initial score for A2 is −1 because that
is the maximum weight of the leaving edges to C1. Once A2
is placed into C1 then the intensity will increase and A2 will
stay in C1. This will result in a call to Assign_Keywords(K)
will place K3 into C4. A3 is next and will follow the same
steps as A2, this time choosing C4. A4 will stay in C4 by the
same reasoning as A1. The final advertiser, A5 is placed into
C4 because it will increase the intensity score of the graph,
ending the current iteration. The next iteration begins selecting
the advertisers in order. A1 and A2 will remain in C1 since
all of their keywords are contained in C1. A3, which at this
time is in C4, has the choice to stay or move to C1. Since the
intensity is higher for both A3 and A3’s neighbors to switch,
A3 will be placed in C1. The remaining two advertisers will
stay in their current communities. Since there are no other
options, the algorithm will terminate and the result is shown
in Figure 2.
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Fig. 3: Case study 2: Advertiser assignment regarding the
competitors in the same community (results generated from
Max-Intensity)

Case 2: In this case, we test the advertiser assignment
regarding the competitors in the same community. The iteration
will proceed as in Case 1 for the first iteration. On the
second iteration, as in Case 1, A1 and A2 will stay in their
communities. Once the vertex A3 is taken, the vertex will stay
in it’s own community rather than adding it to C1 which will
not increase the intensity of A3. The algorithm will proceed



and will not change the communities of A4 and A5. This
leaves the network partitioned into two communities as shown
in Figure 3.

D. Effectiveness Analysis

To help in analyzing the complexity of the algorithm, the
shorthand notation that is presented along with a description
in Table II will be used.

TABLE II: Notations used in effectiveness analysis

Notation Description

|V | number of vertices in G
|A| number of advertiser vertices in V
|K| number of keyword vertices in V
|E| number of edges in G
|C| number of communities in G
M max iteration

Since the algorithm runs in a max total of M times in
the worst case this factor is run for each vertex assignment
iteration. In the vertex assignment iteration the most dominate
time factor comes from iterating through all the communities
in the keyword edge set neighbors of an advertiser. This
additional factor of |C| will be multiplied to the intensity
calculation of the neighbors of the adjoining advertisers of
the keyword. This cost will be dominated by a move to
a new community which will call the Assign_Keywords
subroutine. Since the Assign_Keywords subroutine iterates
over all keywords this factor of |K| will be multiplied by
the run through all communities multiplied by the intensity
score of each advertiser neighbor. This total cost so far is
O(M × |K| × |C| × |A| × |C| × cost(i)), where cost(i) is
the cost of intensity score calculation which is dominated by
the cost associated with calculating the competition coefficient
and in the worst case is |K| × |A| giving a total worst case
running time of O(M ×|K|× |C|× |A|× |C|× |K|× |A|)⇒
O(M × |K|2 × |C|2 × |A|2). Although this running time is
slow in the worst case, actual running times are much faster.
This is due to the time complexity reaching its worst case only
when an assignment to a new community is made which has
the effect of reducing |K|, |C|, |A| in subsequent iterations.

V. EVALUATION

In this section, we provide a brief overview of our spon-
sored search advertising dataset collected from one search
provider, the comparative methods and the evaluation metrics
that we used in our experiments, and finally the performance
analysis of our Max-Intensity algorithm.

A. Dataset Description

We conducted all our experiments on actual sponsored
search advertising data collected for a period of two months.
These datasets are structured and capture information about
different advertisers in different sectors consuming various
keywords. The overall data is available at two different
granularities–one at the keyword level and the other at the ad-
vertiser level. Each of these datasets are described in Table III.

This data has been curated and anonymized to ensure
business secrets and privacy information are not publicly

TABLE III: Sponsored search advertising dataset description

Dataset Attribute Description

uid advertiser’s id
Keyword Level kid bidding keyword’s id

csp total advertiser’s consumption on this keyword
uid_sid advertiser’s id and sector’s id

Advertiser Level clk total user clicks
csp total consumption for the advertiser in this sector

available. For example, we do not know the exact keywords,
but instead we have the keyword ids. This, however, does
not concern us, since our model and community detection
methodology do not require this information. Table IV shows
the average statistics for daily sponsored search advertising
dataset.

TABLE IV: Daily sponsored search advertising dataset statis-
tics

Network Dataset Average Statistics

|V | advertisers ≈ 200, 000
keywords ≈ 2, 000, 000

|E| consumption records ≈ 6, 000, 000

There are about 200 sectors in this dataset like IT, elec-
tronics, food, nourishment, etc. Figure 4 shows the advertiser
distribution among all sectors. In our experiment, we selected
the top four popular sectors.
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Fig. 4: Advertiser distribution among all sectors

Pre-processing. Given the nature of the dataset, modeling of
the data can result in a set of highly disconnected and sparse
subgraphs which act as noise in the mining analysis. This
is due to sets of keywords being exclusively bid on by a
small set of advertisers. Therefore, prior to constructing the
advertiser-keyword graph, we pre-process the input to reduce
the noise. We filter out the noise by building a set of trees
using breadth-first search (BFS) [16] over the entire vertex
set of the graph and then considering only those trees whose
depth and vertex set size are above user-defined threshold. We
demonstrate the filtering process through an example shown in
Figure 5 and Figure 6. It is apparent from the figures that the
strongly connected clusters in our advertiser-keyword graph
are retained, while those subgraphs, which act as outliers, are
removed.



Fig. 5: Input graph before filtering (red vertex represents
advertiser, grey vertex represents keyword)

Fig. 6: Input graph after filtering (red vertex represents adver-
tiser, grey vertex represents keyword)

B. Comparative Methods and Evaluation Metrics

In this subsection, we consider the canonical community
detection algorithms as well as recent state-of-the-art algo-
rithms. We then evaluate the quality of the detected communi-
ties by calculating their Herfindahl-Hirschman index (HHI) [4]
and comprehensive concentration index (CCI) [5].

Comparative Methods. The comparative methods we use
in this paper are summarized as follows.

1) Information Maps [8]: Information Maps (denoted as In-
fomap) is an information theoretic community detection
approach that can be used with weighted and directed
networks.

2) Multilevel [10]: Multilevel is a heuristic method based
on modularity optimization that finds high modularity

partitions of large networks in short time and discovers a
hierarchical community structure for the network.

3) Leading Eigenvector [9]: The Leading Eigenvector
method (denoted as Eigen) leverages a modularity matrix
to maximize the modules in a network.

4) Max Permanence [13]: Max Permanence (denoted as
Max-Permanence) detects the community structure by
maximizing permanence score, a new vertex-based metric
that can quantitatively give an estimate of the community-
like structure of the network.

5) Bi-partite Permanence: This (denoted as Bi-Permanence)
is a modified version of Max-Permanence [13] that detects
the communities in a bipartite graph. Here, the modifica-
tion is made to the permanence scoring function, keeping
in mind the bi-partite nature of the graph, so that the score
is evaluated at the neighbors of the vertex instead of at
the vertex itself. In this case, the clustering coefficient for
a vertex v becomes a function of v’s neighbors’ edges
and of v’s neighbors, both of which are located inside
the community where v is assigned. The same boundary
conditions of Permanence can also be applied to Bi-
Permanence.

We used the python-igraph package for executing the
canonical algorithms viz. Infomap, Multilevel and Leading
Eigenvector, while we implemented Max-Permanence, Bi-
Permanence and Max-Intensity algorithms in C#.

Evaluation Metrics. HHI and CCI will be used as evalu-
ation metrics in this paper. According to the definition of HHI
and CCI mentioned in Section II, smaller index scores indicate
more competitive communities.

C. Experimental Results

In this section, we first evaluate the competitiveness of the
communities detected from different algorithms by comparing
their HHI and CCI scores. Then we test the performance of
our Max-Intensity algorithm for different λ values. Lastly, we
examine the computational complexity of our Max-Intensity
algorithm.

Community Competitiveness Evaluation. To compare the
competitiveness of communities detected by different algo-
rithms, we run our experiments on one month dataset for the
four sectors mentioned previously. Here we choose λ = 1 for
all our experiments.

Figure 7 shows the cumulative proportion of communities
against different HHI and CCI values for various algorithms
averaged across four sectors. In this figure, x-axis repre-
sents the HHI (above) and CCI (below) values while y-axis
represents the cumulative community proportion accordingly
(averaged over four sectors). For example, a point (0.4, 0.6)
on the curve means 60% of all the detected communities
by a certain method has HHI or CCI ≤ 0.4. According to
the definitions, smaller HHI and CCI values indicate more
competitive communities. We can see from the figure that the
cumulative proportion of competitive communities detected by
our algorithm Max-Intensity is significantly higher than other
methods, particularly for lower HHI or CCI values (left of the
vertical line, HHI=0.4 or CCI=0.4). The nature of the curves
for Max-Intensity, Bi-Permanence, Max-Permanence and In-
fomap are very similar. However, the curves corresponding to
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Fig. 7: Cumulative proportion of competition communities
detected by each method

Multilevel and Eigen rise steeply from moderate HHI values
and ends abruptly. This is because, both these methods detect
very few communities, each with a large number of community
members, which fail to capture the actual competition in the
marketplace. In other words, both Multilevel and Eigen cannot
detect either intense competitive communities or communities
without significant competition, instead they merge smaller
community structures to get an overall moderate HHI. This
is primarily because modularity-based community detection al-
gorithms (like Multilevel or Eigen) suffer from resolution limit
problems and end up selecting very few but large communities.
This is conclusively shown in table V.

TABLE V: Community number and average HHI/CCI of each
method

Methods #Comminities Average HHI Average CCI

Infomap 164 0.4542 0.7100
Multilevel 31 0.4730 0.7439

Eigen 23 0.4278 0.6868
Max-Permanence 271 0.4050 0.6292
Bi-Permanence 237 0.4008 0.6264
Max-Intensity 186 0.3488 0.5725

Average 152 0.4183 0.6615

Table V displays the average number of communities
detected by each method and their corresponding average HHI
and average CCI values (across all the communities). As shown
in the table, Max-Intensity achieves the lowest average HHI
and average CCI values.

We also tabulate the cumulative proportion of competitive
communities under different HHI and CCI thresholds with
their respective standard deviations from 0.1 to 0.4 with an
interval of 0.1 in Table VI. We can observe from the table that,
when HHI ≤ 0.1, the cumulative proportion of communities
detected by Max-Intensity is 1.5 to 10 times higher than its
closest competitors namely Infomap, Max-Permanence and
Bi-Permanence. Similarly, when CCI ≤ 0.1, the cumulative

proportion of communities detected by Max-Intensity is 1.8 to
20.5 times higher.

Parameter Analysis. The intensity score defined by For-
mula (6) is dependent on the parameter λ. The value of
λ decides the relative importance between the competition
coefficient and the difference between advertiser’s consump-
tion within the community and outside. If the value of the
latter difference is high, it implies that the advertiser has
less capacity to compete outside this community. By varying
the parameter λ, we want to examine which component of
the intensity score is more important to identify competitive
communities in the sponsored search market. The special case
of λ = 1 indicates that both these components are equally
important. We choose different values of λ from 0.001 to
20 and compute the corresponding average HHI and CCI
values. The results are summarized in Figure 8. It is evident
from the figure that with λ < 1, we get more competitive
communities (with low HHI and CCI values). However, the
curves corresponding to λ < 1 follow a broad “U” pattern.
This means that as λ increases from 0 to 1, the average HHI
or CCI decreases till it attains its optimal value, after which it
starts increasing. In this case, we found that λ = 0.1 gave the
best HHI and CCI values. Likewise, for λ ≥ 1, the average
HHI or CCI values sharply increase. Thus, we can infer that
the competition coefficient is significantly more important in
the definition of the intensity score.

6
0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20

H
H
I

0.38

0.4

0.42

0.44

C
C
I

0.55

0.6

0.65

0.7

Fig. 8: Average HHI and CCI for different λ

Computational Analysis. Lastly, we examine the computa-
tional time for Max-Intensity and compare it with the Bi-
Permanence algorithm which has the second best performance
in competitive community detection results, as shown in Fig-
ure 7. In this experiment, we ran the algorithms on different
graphs with varying number of edges. The running times of
the algorithms averaged over 10 iterations are plotted against
the number of edges in Figure 9. The results show that the
running time of Bi-Permanence is only marginally faster than
our Max-Intensity algorithm, since these two algorithms have
similar time complexity. However, our method Max-Intensity
can detect more competitive communities than Bi-Permanence.

VI. RELATED WORK

In this section, we will highlight the literature that related
to this paper. We discuss these in terms of community detection



TABLE VI: Cumulative proportion of competition communities under different HHI/CCI threshold

Methods HHI CCI
≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4 ≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4

Infomap 1.62%±0.0060 4.55%±0.0147 17.02%±0.0242 39.43%±0.0688 0.15%±0.0031 1.00%±0.0047 1.47%±0.0031 4.09%±0.0071
Multilevel 0.00%±0.0000 0.00%±0.0000 0.00%±0.0000 10.88%±0.0655 0.00%±0.0000 0.00%±0.0000 0.00%±0.0000 0.00%±0.0000

Eigen 0.00%±0.0000 1.76%±0.0214 2.85%±0.0205 25.83%±0.0640 0.00%±0.0000 0.00%±0.0000 0.68%±0.0135 1.76%±0.0214
Max-Permanence 4.36%±0.0128 15.58%±0.0269 32.60%±0.0339 48.25%±0.0322 0.40%±0.0050 1.35%±0.0062 5.18%±0.0192 13.79%±0.0214
Bi-Permanence 10.45%±0.0175 19.93%±0.0355 34.80%±0.0340 53.21%±0.0417 1.73%±0.0051 5.64%±0.0143 12.16%±0.0140 19.12%±0.0392
Max-Intensity 16.02%±0.0218 27.44%±0.0188 41.88%±0.0111 59.52%±0.0170 3.07%±0.0037 8.41%±0.0071 15.07%±0.0116 24.00%±0.0250

Average 5.41% 11.54% 21.52% 39.52% 0.89% 2.73% 5.76% 10.46%
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and competition measure which are mentioned in this paper.

A. Community Detection

Traditional methods involve clustering or partitioning the
graph in a way as to discover communities. Often they require
parameters which must be specified a priori, such as k-means
clustering [17], or are highly dependent on a defined simi-
larity measure as in hierarchical clustering [18]. Hierarchical
clustering, which also has the advantage of detecting the
hierarchical structure of communities, can be split into two
categories: agglomerative, and divisive algorithms. Agglom-
erative algorithms are a bottom up approach where clusters
are merged together using a similarity metric in a series of
iterations. The approach of divisive algorithms is top down
starting with large clusters and then iteratively breaking them
apart. A well known and widely used community detection
metric is modularity [7], which is a comparison of edges inside
a cluster to the expected number of randomly distributed edges.
Methods using this quality function attempt to maximize mod-
ularity of partitions in a graph. Since obtaining the maximal
modularity has been shown to be a NP-Complete problem [19],
approximation techniques must be used. This set of techniques
include greedy, simulated annealing, extremal optimization,
and spectral optimization techniques. Although the techniques
can be quite good at estimating the maximal modularity, the
metric may suffer some shortcomings in detecting “good” par-
titions [20]. Other methods such as spin models, random walks,
and synchronizing can be described as a set of stochastic
algorithms, and can be used for detecting communities. Spin
models originated in statistical mechanics [21], and consist
of a system of spins in different states. By applying these
spin variables to vertices of a graph then clusters of the graph
can be discovered by identifying like-valued spin clusters. In

random walks [22] it is likely that a random walker will spend
more time inside a community than crossing between different
communities. One approach which exploits this assumption
to find communities is to define a distance measure based
on random walks [23] and then finding “close” vertices. The
application to community detection involves placing oscillators
at vertices, which are initially in random phases, and detecting
which oscillators synchronize first [24].

To address the resolution limit problem of Modularity-
based methods [7], recently Duan et al. proposed an approach
to incorporate correlation analysis into the modularity-based
method by subtly reformatting their math formulas and objec-
tive functions [12]. Recent studies also include Permanence,
a vertex-based metric proposed to identify the community
structures in the graph [13], aiming at estimating the internal
and external connectivity of the vertex to individual commu-
nities. Another approach based on heat kernel is to compute
this graph diffusion and use that to study the communities
that it produces [11]. Besides, to identify the members of
an potential but unlabeled community in large-scale social
network, one can apply seed expansion to find remaining
community members outside current dataset given sample
community members [25].

B. Competition Measure

Sponsored search accounts for the overwhelming majority
of income for search provider [1], [2], [26]. A better un-
derstanding about the bidding behavior of the advertisers in
a search market plays an important role. Also, in order to
test the policy effectiveness such as sending coupon codes to
advertisers, search providers may want to measure the compe-
tition among them so that it can intervene when competition
slackens. In sponsored search market, there is no particular
measure that used to solve this issue. But here we can view the
fraction of “user clicks” of each advertiser as its market share
then deploy the traditional measures that used in competition
analysis between companies.

Competition measures like price cost margin (PCM),
Herfindahl-Hirschman index (HHI) and comprehensive con-
centration index (CCI) [3]–[5], [27], [28] are widely applied
in technology management and related areas. However, the
theoretical foundations of PCM as a competition measure
are not robust [29], [30]. In order to assist the economic
policy and research, a new measure is introduced based on
firms’ profit [3], which is showed to be more robust than
PCM. Another robust competition measure relative profits (RP)
shows that more intense competition increases the profits of a
firm relative to a less efficient firm [31].



VII. CONCLUSION

In this paper, we developed a novel approach Max-Intensity
to detect competitive communities for weighted bi-partite net-
work formed by advertisers and their bidding keywords. This
approach iteratively assigns keyword and advertiser vertices to
communities in order to increase the overall intensity score
of the network. The intensity score we proposed in this
paper takes into consideration two factors: the competitors
that bid the same keywords and the advertisers’ consumption
proportion within the community. We compared our algorithms
with canonical community detection methods like Infomap [8],
Multilevel [10] and Eigen [9], and the recent state-of-the-art
methods like Max-Permanence [13] as well as the bipartite
version of it (Bi-Permanence). We then used HHI and CCI
as evaluation metrics to measure the competition within the
detected communities. Compared to these baseline methods,
the communities detected by Max-Intensity algorithm have
the lowest HHI and CCI values, thereby demonstrating that
our Max-Intensity identifies more competitive communities. In
summary, this paper

1) proposes a new weighted bi-partite graph metric, intensity
score, which captures the competition of the advertiser-
keyword network better.

2) introduces a novel algorithm, Max-Intensity, based on
intensity score, that detects advertiser communities with
high competition.

3) applies the existing concepts of market concentration
measures from retail markets to evaluate the competition
among advertisers in sponsored search market.

Our future work is to extend the Max-Intensity algorithm
to detect overlapping communities and further analyze the
evolving patterns within the communities in each sector.
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