
Approximate Clustering on Distributed Data
Streams

Qi Zhang #1, Jinze Liu 2, Wei Wang #3

#Department of Computer Science, University of North Carolina, Chapel Hill
Chapel Hill, NC 27599-3175, USA

1zhangq@cs.unc.edu
3weiwang@cs.unc.edu

*Department of Computer Science, University of Kentucky
Lexington, KY 40506-0046, USA

2liuj@netlab.uky.edu

Abstract- We investigate the problem of clustering on dis-
tributed data streams. In particular, we consider the k-median
clustering on stream data arriving at distributed sites which
communicate through a routing tree. Distributed clustering on
high speed data streams is a challenging task due to limited
communication capacity, storage space, and computing power at
each site. In this paper, we propose a suite of algorithms for com-
puting (1 + £)-approximate k-median clustering over distributed
data streams under three different topology settings: topology-
oblivious, height-aware, and path-aware. Our algorithms reduce
the maximum per node transmission to polylog N (opposed to
Q(N) for transmitting the raw data). We have simulated our
algorithms on a distributed stream system with both real and
synthetic datasets composed of millions of data. In practice, our
algorithms are able to reduce the data transmission to a small
fraction of the original data. Moreover, our results indicate that
the algorithms are scalable with respect to the data volume,
approximation factor, and the number of sites.

I. INTRODUCTION

Distributed data stream applications perform continuous,
on-the-fly computations over geographically dispersed data
streams, such as sensor-based applications, traffic manage-
ment, network monitoring, location-tracking services, etc. Var-
ious tasks of continuous query and monitoring in distributed
setting have been developed, including database queries [8],
[6], [21], [10], monitoring simple statistics [7], [18], [22],
event detection [2], [3], [25], etc. In this paper, we address
the problem of clustering over distributed data streams. Par-
ticularly, we consider the problem of performing k-median
clustering continuously in a distributed stream environment.

Consider a set of distributed sites, which push the data
towards the base site periodically. We refer to each such period
as an update epoch. Assume that all the sites communicate
according to a routing tree rooted at the base site. The goal is
to perform clustering on the data collected from all the sites.
The clustering result is continuously updated at the root for
each update epoch. Here we assume that the epoch is long
enough so that all the data of one epoch is able to arrive at
the root before next epoch ends.

Clustering over distributed streams is a challenging task.
Difficulties lie in various issues: 1) Communication. Dis-

tributed stream system continuously produces large volume of
data, which imposes prohibitive communication load if all the
data are transferred to the root for centralized computation.
In-network aggregation [19] is one of the techniques [21],
[19], [24], [23] that push processing operators down into the
network to reduce data transmission. It computes a local sum-
mary at each site and merges and summarizes further at each
internal site towards the root. However, this approach cannot
be immediately adopted to solve the problem of k-median
clustering. The k-median clustering is known as a holistic
computation [19], which cannot be readily decomposed into
computations on data partitions. More specifically, the k-
median clustering of the entire dataset cannot be accurately
computed from the k-median centers of individual partitions.
In order to get the exact answer, all the data need to be
transmitted to a central site before the k-median clustering
is performed. 2) Latency. Another approach to solve the k-
median problem is to treat it as an iterative optimization
problem. For each iteration, statistics [11] are computed and
transmitted back and forth between the root and each site. The
induced latency is unbearable for stream-based applications.
3) Clustering quality. Clustering quality is another concern if
we want to trade accuracy for reduced communication. In this
case, it is necessary that the error of the k-median solution
is bounded. The bounded approximate in-network aggregation
also raises new issues such as error propagation and topology
sensitivity.

In this paper, we consider approximate in-network aggre-
gation schemes for (1 + E)-approximate k-median clustering
over distributed data streams. We propose a suite of algorithms
for both topology-insensitive and network-aware cases. Our
contributions are as follows:

For topology-insensitive case, we employ a multi-level
structure of E-kernel of k-median (E-coreset [16]) as the
local summary, and propose algorithms for constructing
and merging local summaries. We prove that the size of
the multi-level summary is a polylog function of the data
volume and it guarantees a (1+E)-approximate clustering.

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 1131 ICDE 2008

. For network-aware cases, we propose height-aware and
path-aware algorithms that utilize the topology informa-
tion to achieve aggressive reduction of data communica-
tion.

. We perform experiments on both synthetic and real data
sets to demonstrate the performance of the algorithms in
terms of communication reduction, clustering quality and
scalability.

The rest part of the paper is organized as follows. Section
II reviews the related work. Section III introduces the pre-
liminaries and background. Section VI discusses the detailed
algorithms for topology-oblivious, height-aware, and path-
aware cases. In Section V, we report the experimental results.
Section VI concludes the paper.

II. RELATED WORK

In this section, we briefly review the related work in dis-
tributed clustering, approximate in-network aggregation, and
stream clustering. We also review the notion of coreset, which
is the E-kernel for k-median clustering.

A. Distributed Clustering

Distributed clustering needs to address the problem of
balancing between communication and precision. Forman and
Zhang [11] proposed a technique to exactly compute several
iterative center-based data clustering algorithms including k-
means for distributed database applications. It sends sufficient
statistics instead of the raw data to a central site. However,
this approach involves each site in every iteration of k-means
and transfers data back and forth, which is infeasible for
stream applications. Januzaj et al. [17] proposed a distributed
density-based clustering algorithm. The algorithm clusters
the data locally at each site and computes the aggregation
(representatives for local clusters) for the local site. All the
aggregations are sent to the global server site where the global
clustering is carried out. Their algorithm considers the flat two-
tier topology instead of tree topology, and it does not provide
a bound of the clustering quality.

B. Approximate In-network Aggregation

Bounded-error approximation is a desired property to have
when trading accuracy for communication requirement. Cos-
dine et al. [9] proposed an approximate in-network aggregation
scheme for sensor databases. They provided an algorithm
for approximate duplicate-sensitive aggregates across dis-
tributed datasets, such as SUM. Their algorithm employs small
duplicate-insensitive sketches for SUM which is generalized
from similar technique for approximating COUNT. Greenwald
and Khanna [14] proposed an algorithm for power-preserving
computation of order statistics such as quantile. They proposed
a scheme for computing E-approximate quantile over the
sensor network routing tree, where each sensor transmits only
O(log2 n/E) data points opposed to the worst case of Q(n).

C. Clustering Single Stream
A lot of work has been reported for clustering over a

single stream[4], [5], [20], [16], [12]. The proposed algo-
rithms perform continuous online clustering with small-space
requirement. Guha et al. [12] proposed a constant factor
approximation algorithms for k-median clustering on a single
data stream. Their algorithm requires 0(n') space with an
approximation factor of 2°(,). Aggarwal et al. [4] proposed
an algorithm which considers both online statistical data
collection and offline analysis, compared with the one-pass
clustering algorithms.

D. Coreset and Streaming k-median
A coreset is a small subset of points that approximates the

original set with respect to some tasks (such as k-median,
k-means, etc) [15]. Several coreset construction algorithms
have been proposed for k-median and k-means clustering
[15], [16], [13]. In [13], a coreset construction algorithm
for streaming (1 +) -approximate k-median and k-means is
proposed. The coreset is computed using a QuadTree, and its
space requirement is polylog in size of the data stream and
the range of the data values. Har-Peled and Mazumdar [16]
proposed another coreset construction algorithm for (1 + E)-
approximate k-median and k-means, where the coreset takes
polylog space. These two coreset-based streaming k-median
algorithms achieve a better space-bound than Guha's algorithm
[12] mentioned earlier. All of these algorithms consider the
clustering over a single stream. In our paper, we study the
stream clustering problem in a distributed setting.

III. PRELIMINARIES AND BACKGROUND

A. Problem Definition
Let d(p, c) denote the Euclidean distance between any

two points p and c. The goal of k-median clustering is to
find a set C of k points representing the k cluster centers,
which minimize the k-median cost of dataset P. Here the
k-median cost is defined as Cost(P, C) = Epp d(p, C),
where d(p, C) = minccc d(p, c). If P is a weighted data
set with pi C P of weight wi, then the weighted k-median
of P is defined as the cluster center set C which minimizes
Cost(P, C) = EP, P wid(pi, C).

Definition 3.1: (1 + E)-APPROXIMATE K-MEDIAN OF DATA
SET P. Let C denote the k-median center set. Then C'
is defined as a (1 + E)-approximate k-median center set if
Cost(P, C') < (1 + E)Cost(P, C).

Consider a set of sites {Si} which communicate according
to a routing tree'. Suppose that during each update epoch e,
site Si receives a stream of data Pi le. There are two problems
we consider: (1) how to compute the (1 + E)-approximate k-
median on the set of data Ui(Pj e), where e* is the latest
update epoch; and (2) how to compute the (1 +)-approximate
k-median on all data received in past epochs. We shall see
later that the solutions to both problems are similar except that

'Each site is a node in the routing tree. In the following discussion, we
will use the terms site and node interchangeably.

1132

the root may perform some additional operations to solve the
second problem. Therefore, we will focus on the first problem
and discuss how the proposed algorithms can be modified to
solve the second problem.
We define the first problem as below:
Definition 3.2: (1 + E)-APPROXIMATE K-MEDIAN OVER

DISTRIBUTED STREAM SET {Si} DURING EPOCH e. The
(1 + E)-approximate clustering of distributed stream set {Si}
during epoch e is defined as the (1 +)-approximate k-median
over all the data received at all the sites during epoch e, which
is Uij(Pi e)-

In the following discussion, we will simply use Pi or P
to represent streams, assuming that we consider the streams
during one epoch.

B. Local Summary Structure

Our algorithms employ approximate in-network aggregation
schemes. Basically, each site computes a local summary and
sends it to its parent. For internal nodes, the local summary
is merged with the summaries received from children and
another local summary operation is performed on the merged
set before the summary is sent to the parent. When all the
summaries reach the root, a k-median clustering procedure is
performed at the root to get the (1 + E)-approximate clustering
of the whole data.
An important element of the algorithm is the summary

structure. A desirable summary structure SM should satisfy
the following properties:

. Property I: distributive (or decomposable): The sum-
mary of a set P can be computed from the sum-
maries of its partitions. For example, SM(P) = f(SM
(P1), SM(P2)), where P = Pi U P2 and f is the
function to combine the partition summaries.

. Property II: compact: the summary should have a much
smaller size than the original data.

. Property III: error bound: the summary can deliver a k-
median solution with bounded error, where the k-median
solution on the summary guarantees a (1+E)-approximate
k-median solution on the original data. Here E is the
approximation factor associated with the summary.

. Property IV: error accumulation: the summary of the
summary of data set P should still be a summary of P,
only with a looser approximation factor due to error accu-
mulation. Formally, SM 1(SM 2(P)) = SM9(E1,E2)(P),
where g(l , 2) is a function to accumulate the error
which satisfies g(El 2) > El and g(El, 2) > E2.

The summary structure and the algorithms for constructing
and merging this type of summaries are presented in Section
VI.

C. Topology Dependence
The amount of accumulated error of in-network aggregation

is determined by the number of merges, compressions and
propagations of the local summaries occurring at each node
in the network. Therefore, the approximation factor of the

summary is highly dependent on the network topology. In
this paper, we provide three algorithms that utilize different
topology knowledge for optimizing the data transmission.

. Topology-oblivious algorithm We propose a topology-
oblivious algorithm without any prior knowledge of the
tree topologies. Our algorithm computes a local summary
structure of size O(log3 N log N) which maintains
the same error bound at each node. In this topology-
oblivious algorithm, only the merging operation performs
at the internal node.

. Height-aware algorithm In this case, we assume that
the height of tree is known. We present an improved
algorithm which reduces communication compared with
the topology-oblivious algorithm.

. Path-aware algorithm The height of the subtrees in a
tree topology may vary significantly. Given the same
approximation bound, the communication load at each
node uniformly determined by the height of the entire tree
may not be optimal. The path-aware algorithm adaptively
computes the communication load for each node accord-
ing to the height of its subtree. This approach minimizes
the communication per node while still ensuring the
same overall additive error bound. The algorithm is well-
suited for reducing communication for unbalanced tree
topologies.

IV. ALGORITHM
In this section, we describe in detail the algorithms for

computing (1 + E)-approximate k-median over the distributed
stream considering the different cases of topology dependency.
We consider that sensors are organized into a routing tree.
Specifically, we explain the design of local summary structure
at each node, the construction and merging algorithms for
summaries, and the error propagation schemes for the network-
aware cases. In addition, we formally prove the error bound
for the clustering result and the bound for max per node
transmission.

A. Topology-oblivious Algorithm
This algorithm is designed for the scenario where the tree

structure is unknown, i.e., the size and the height of the
routing tree is unknown. The algorithm computes (1 + E)-
approximate k-median clustering with reduced maximum per-
node transmission of O(k log3 N log N).
The algorithm follows the in-network aggregation scheme.

The key component is the construction and merging of sum-
mary structure.

1) Local Summary at Each Node: We use a level-wise
structure of k-median's E-coreset as the local summary at each
site.
The E-coreset is an E-kernel defined on a point set P for

certain geometric problems [1]. For k-median problem, the
E-coreset C is defined as follows:

Definition 4.1: E-CORESET OF DATASET P. Let P be a
weighted set of n points. A weighted point set C is an E-
coreset for the k-median problem, if for every set Ctr of k

1133

centers:

(1 -)Cost(P, Ctr) < Cost(C, Ctr) < (1 + E)Cost(P, Ctr)
Here C is usually a much smaller set than P, and each point

p C P is uniquely represented by a point c C C, where c's
weight is defined as the sum of the weights of the points in
P it represents.
The E-coreset is a good candidate for the local summary

since it satisfies all requirements of the summary: 1) coreset
is distributive. If C1 and C2 are the E-coresets for two disjoint
sets of points Pi and P2 respectively, then Ci U C2 is an
E-coreset for P1 U P2. 2) coreset only has size O(klogN),
where N is the size of P. 3) A (1 + E)-approximate k-median
solution of P can be obtained by computing the exact k-
median solution on its E-coreset. 4) The E1-coreset of the E2-
coreset of P is an (El + E2)-coreset of P, which means

Coreset l (Coreset l (P)) = Coreset l+12 (P)

Algorithm 1 CompEHSummary(P, E)
Input P: the original data stream; E: the required error bound

1: Po <- P, P Set '- {Po}
2: Arrange Po into blocks B1, . . ., Bj, ... of equal size B
3: P1 <- (

4: Compute AiE-coreset Cj on each block Bj, add CX into P1
5: P Set =P Set U{Pi}
6:
7:

8:
9:

10:
11:
12:

13:
14:

I=11
while P1 contains more than one coreset, P {{C },jC
1,... ,Ji,J1 > 1 do

if -,(Pi+, c P Set) then
P+1j <- P Set = P SetU{Pl+±}

end if
Merge Cl and Cl+ , where j = 1, 3,..., and j < Jh
Compute Ai±i+-coreset C[+1 on each Cl U Cl+±, and add

I 21+1

end while

1=3

1=2

1=1

Fig. 1. EH summary at a site: This figure highlights the multi-level structure
of our EH-summary. The incoming data is buffered in equi-sized blocks B1,
B2,...,Bj,..., each of size O(k). We compute the coreset Cl for eachJ
block Bj and send it to level 1 = 1. At each level 1 > 0, whenever two
coresets Cj, Cl come in, we merge and compute another coreset C 1+1

J j+l [jT2e
on C0 U C1>+ and send to level 1 + 1. There are at most log -kNl, levels.

EH-Summary
At each site, we create an EH-summary which is a multi-

level structure of coresets over the stream. EH-summary
is constructed in the similar fashion to that of building an
online exponential histogram. Assume that the stream arriving
at a site is P. Whenever a block of B data points comes,
we perform a coreset computation and append the points in
the coreset to the stream one level above. Fig.1 illustrates
the process of the algorithm. Bj represents the jth block
of the original stream data P. Whenever block Bj is filled
up and the coreset Cl of Bj is computed, Cl is added to
the stream at level I 1. For all levels I > 1, whenever
two coresets Cj, Cj+1 come in, we merge them and compute
another coreset C121 on top of the merged set and send to
level I + 1. This process propagates until at level L, where
there is only one coreset. Here we take block size B = O(k)
Let P, denote the stream at level 1, P_Set denote the set of

streams at all levels. The algorithm is shown in Algorithm 1:
The algorithm generates a set of streams at different levels

P Set = {P1}, I = 0, 1, ... , L, where Po is the original data
stream P. The computation propagates from the lowest level
Po, towards higher levels PR, I > 0 until at level L, there are

less than two coresets. At any level 1, we compute AE1+1
(1±1) ± 3-coresets and sent them to level I + 1.
Note that in Fig.l, a coreset Cl at level I represents aJ

sequence of 21-1 consecutive blocks in the original stream
{B(j1)21-1±1..., Bj21 - 1}, with an approximation factor of

Z i\A. For example, coreset C3 at level 3 covers the blocks
{B1, B2, B3, B4}, C3 at level 2 covers the blocks {B5, B6}
in P. We denote the union of the original data blocks in P
covered by Cl as CoverInterval(Ct). The following lemma
can be derived:
Lemma 4.1: Each Cl is an El-coreset ofi ~~~2CoverInterval(Cl) where El = £- E.

According to the distributive and error accumulation properties
of coreset, Cl is an El-coreset of CoverInterval(Ct), where

1~~~~~~~~~

11= £

1

-E E+0Z 3

+ dx
33 3 j1 V/

2
E£- £E.3V;

(1)

Consider any coreset Cl at level 1. If Cl11 C P,+±,
we have CoverInterval(Cl) C Cover]nterval(Cl+j21)'
since C 1+1 is a coreset computed on either Cl U Cl 1 or[j/2] 1

clj 1U Cj. Formally, we claim that Cl is an obsolete coreset
if C-J/21 C P,+±, and an active coreset otherwise. In Fig.1,
for example, the only three active coresets are C3, C2, and
C7. All the remaining coresets are obsolete coresets. Note that
there could be at most one active coreset at each level.

Therefore, we define the EH-summary as follows:
Definition 4.2: EH-suMMARY. An EH-summary of a

1134

stream P is the set of active coresets at all levels (generated by
Algorithm 1). EHSummary(P) {C0,,.. k

CL}, where Clk is the active coreset at level Ik, Co is the
newest block in the original stream which is not full, and L
is the maximum level generated by Algorithm 1.
The EH-summary covers the whole data stream P. Each Clk
in the EH-summary covers a disjoint subset of consecutive
complete blocks in P, specifically, Clk is an (£- 32fE)
coreset of CoverInterval(Clk) (Lemma 4.1). We have

CoverInterval(Clkl) n CoverInterval(C1k2) = (1

and

(U CoverInterval(C&k)) U P.
ik

In Fig. 1, for example, the EH-summary is {B8, C7, C32, C1}.
1 at level 3 covers the blocks B1, B2, B3, and B4. C3 covers

B5 and B6. C7 covers B7. Together with B8, they cover the
whole data stream.
Lemma 4.2: The union of coresets (Ulk Cklk) U C in EH-

summary EH = {CO,Cl1,...Clk,...ClK}, IK = L, is an (E-
32/E)-coreset of P.

According to Lemma 4.1, each Clk is an (E 3 E)
coreset of CoverInterval(Cl). Since 2 E

max(E 2 =E), each Clk is also an (E 32)-coreset
of CoverInterval (Clk). Therefore, according to distribu-
tive property, (UlkCk) U C0 is an (E 2 E)-coreset of
CoverInterval(Clk) U P.

2) Merging EH-Summary at Intermediate Nodes: For any
internal node, we need to combine the local EH-summary
with any EH-summary it receives from its children. Con-
sider two EH-summaries EH = {C°, C , Ck, ,CL },
EH* {C*?.C$1 C$k. }. Denote the combined
EH-summary as EHall Intuitively, the combination of EH
and EH* can proceed as follows: 1) At level 0, combine C0
and C*°, denote it as C&11. If Ca°1 > B, arrange Ca°1 into
blocks B, and Br, where B, is a complete block of size B,
and Br is the remaining part. Compute an AE1 -coreset AC'
over B0, and send it to level 1. Set Co11 to be Br and add it to
EHall. 2) For any level I > 1, start from level 1. a) If both EH
and EH* contain coresets on level 1, merge the two coresets,
compute another coreset ACl±l on top of it, and send to levelCall
I + 1. Additionally, if there is a non-empty ACallC sent by the
level I- 1, add ACa11 into EHall as the coreset at level 1.
b) If only one of EH and EH* contains coreset on level 1,
assume it is EH with Cl. If there is a non-empty AC'11 sent
by the lower level, we compute another coreset ACl±l on topCall
of Cl U AC'11 and send it to next level. Otherwise, add Cl
into EHal1 as the coreset at level 1. c) Finally, if neither EH
nor EH* contains coreset on level 1, and there is a non-empty
ACa1l sent by the lower level, we add ACall into EHall as
the coreset at level 1. The algorithm is shown in Algorithm 2.

3) Compute k-Median at the Root: At the root node, we
have an EH-summary for all the data during the last epoch
e, Pe. Let the EH-summary at the root be EHroot =

{CO, Cll, ,Clk,. ,CCL}, where (Ul Clk) U CO is an EL-
coreset of Pe, and EL < E, according to Lemma 4.2. Therefore,
we can compute a (1 + E)-approximate k-median of Pe by
computing the exact k-median on (UlClk) U C0, using the
algorithm in [16].

So far we have shown how to compute the (1 + £)-
approximate k-median clustering for only one update epoch.
If the we want to continuously maintain the k-median clus-
tering on data received in all previous epochs, we need to
maintain an EH-summary at the root that covers all previous
epochs. Let EH"'t denote the EH-summary for all past
epochs. We can incrementally update it by merging with
the EH-summary EHroot for epoch e, using Algorithm 2.
EH"'t <- CombineEHSummary(EH Ja, EHroot). This
summary is efficient, with guaranteed approximation and can
be incrementally maintained. Performing the exact k-median
clustering on this summary will always produce a (1 +))-
approximate k-median clustering.

4) Overall Analysis: The transmission cost for the
topology-oblivious algorithm can be derived as follows. For
each site, we transfer the EH-summary instead of the orig-
inal stream data. Assume that the EH-summary is EH =

{CO° Cll Clk, . . ., CL}. The size of EH depends on
the size of coreset Clk at each level Ik, and the number of
levels. The size of any Clk is no more than O(k log N)

Elk

O(klkV log N), which is bounded by O(k log2 N logN),
since Itk < log N. Totally, there are no more than logN levels.
Therefore, the EH-summary size is O(k log3 N log N).
Overall, the communication for all the sites is no more than the
number of sites times the max per node transmission bound.

B. Height-aware algorithm
In this section, we assume that the height of the tree h

is known. We propose a height-aware algorithm to further
reduce the transmission size. The basic idea of the algorithm
is to compute a coreset on top of the EH-summary and
use it as the local summary for transmission. Each internal
node computes another coreset after merging all the coresets
from the children with the local coreset. We incorporate both
local coreset computation and coreset combination into the
algorithm shown in Algorithm 3:

Theorem 4.1: The coreset CT computed at the root node
using Algorithm 3 is an E-coreset of the data received over all
streams.
At any node, let EH {CO,.Cl... Clk,..., CL} be the

EH-summary after the first step of Algorithm 3. According
to Lemma 4.2, (Ulk Cik) U C° is an (2 E31)-coreset of P,
since EL <. In Step 2, we compute a

1 -coreset CEH on EH, which makes CEH an 2-coreset
of P. Whenever we move up from a node to its parent in the
tree, the combination of coresets in Steps 3 and 4 increases
the error of coreset by ' . Since the total height is h, the final

1135

Algorithm 2 CombineEHSummary(EH,EH*)
1: EHail D, 1I 0
2: Co1<C0U Co
3: if C,ll > B then
4: Divide Ca0lt into block B, of size B and set the remaining

part to be Co,,. Add C2all into EHall
5: Compute A\c1-coreset ACO', over Bc
6: else
7: Add Call into EHall
8: A('llJ =
9: end if

10: for l= to L do
11: ACl+' = (

12: if ClCEH and ClCEH* then
13: Compute AC1+j1 as the Ai±i+-coreset over Cl J C*
14: if ACa11 :7& then
15: Cl1ll AC111, add C'll into EHail.
16: end if
17: else
18: if AC117&@ then
19: if C1 CEH then
20: Compute ACl+l as the Ai±+1-coreset over

01
~~~~all

21: else
22: if C1 cEH then
23: Compute AC+ll as the AE1+1-coreset over

C* U AO1
24: else
25: Cl11 - AC 11, add C111 into EHall
26: end if
27: end if
28: else
29: if Cl CEH then
30: C,al Cl, add CO'll into EHall
31: else
32: if Cl cEH then
33: C1 - C*, add Cl11 into EHall
34: end if
35: end if
36: end if
37: end if
38: end for

coreset CT at root will be a E-coreset of P (2 + 2-h =E). In
this algorithm, we only need to know the height of the entire
routing tree h. Sites do not know their locations in the tree.

Overall Analysis The transmission cost for the height-aware
algorithm can be derived as follows. For each site, we compute
and transfer a single coreset CT (Algorithm 3, Step 4) instead
of an EH-summary as in topology-oblivious algorithm. CT
is an E-coreset of Cu, where Cu < N, thus CTI =

O( kh log N). Therefore, the max per node transmission for
height-aware algorithm is O( kh log N), which is smaller com-
pared with the topology-oblivious case considering small h.
However, we need to know the height of the tree beforehand.

C. Path-aware algorithm
In height-aware algorithm, the additive approximation factor

2h is uniformly assigned to each site. In this section, we

assume that each site is aware of the height of the subtree
rooted at itself. This information can be obtained during
the routing process. With the extra information about the
topology, we propose a path-aware algorithm which assigns
approximation factor uniformly along each path. The path-
aware algorithm further reduces data transmission compared
with height-aware algorithm.

9&/1O 3&/5

40/5

7c/10 3&/5

3&/5 t l

&/2b

Same additive error at each site e/10

(a)Height-aware

9&/1O 9C/1O

2 6M

4&/5

7&/10 .7/10

Path: - additive errorx/10
Path: . additive error: E/5
Path: _ _ additive error:2c/5

(b)Path-aware
Fig. 2. Error accumulation of Height-aware and Path-aware algorithms. This
figure compares the different strategies of assigning additive approximation
factors at each site of the tree for height-aware and path-aware algorithms.
Height-aware algorithm assigns the additive error uniformly to 2-h, where
h is the height of the tree. Path-aware algorithm assigns the additive error
uniformly inside each sub-path, but differently for different sub-paths.

Algorithm 3 CombineCoresetHW(P, h)
1: Compute the local EH-summary EH

{C0, Cl0 . . .. lk,... CL} using Algorithm 1, with
Ac1 1 -

i\1 = W E6
2: Compute a 3gE-coreset CEH on (Ul Clk ) U C°
3: Take the union Of CEH with all the coresets Cj~ received from

the child nodes Cu = CEH U(U CEH)
4: Compute an 2h-coreset CT on CIu
5: Return CT as the final coreset for transmission

In the height-aware algorithm, each site computes an 2
coreset of the local data, merges all coresets from the children,
and computes another ' -coreset on top of it. It works well for
balanced tree. However, for unbalanced tree, the transmission
of the sites on a shorter path in the tree can be further reduced.
For example, in Fig.2(a), the height of the tree is 5, so that
the additive approximation factor at each site is '

, which is
determined by the longest path in the tree (path 9 -> 5 - 4 -
3 -> 2 -> 1). However, for a shorter path such as 7 - 6
1, we can actually take additive approximation factor as 25
instead of 10 without affecting the final approximation factor
E at the root. This approach saves communication because
the coreset size is inversely proportional to the approximation
factor. Therefore, we may determine the additive error on each

1136



path seperately. In the following discussion, we propose a top-
down algorithm for assigning additive approximation factor
AE in a piecewise fashion along each path, assuming that each
node knows the height of the subtree rooted at itself.

Algorithm 4 AssignEps(Si,Ei)
Input Si: current site; Ei: the maximum possible approxima-
tion factor of the coreset sent by Si's children

1: if Si is leaf then
2: return
3: end if
4: if Si is root then
5: AEsi = Eilh, where h is the height of the entire routing tree
6: ci = ci - s
7: end if
8: for each site in Si's children set {SCj} do
9: if SCj is a leaf then

10: Assign the additive approximation factor of SCj to be
AEscj = Ei

11: else
12: Assign the additive approximation factor of SCj to be

AEsc = height(SC) where height(SCj) is the height
of the subtree rooted at SCj.

13: end if
14: AssignEps(SCj ,Ei -Escj)
15: end for

The algorithm proceeds as follows (Algorithm 4). Initially,
we call AssignEps (root, 2) and the algorithm runs recur-
sively and traverses the tree to assign the proper additive
approximation factor for each site. In Fig.2(b), for example,
the algorithm starts with root node S1 AssignEps(Sl, E/2),
and set the additive error AES1 at root to be E/10 (height of
the tree h 5). Two children of S1 are S2 and S6, where
height(S2) 4, and height(S6) = 1. Therefore, we assign
the additive approximation factor at S2 as AES2 = E/10.
Similarly, the additive approximation factor at S6 is AES6
2E/5. Note that AEs6 is assigned to be E/10 in height-aware
algorithm. AESs8 is also assigned to be E/5 instead of E/10.

After the additive error assignment phrase, the remaining
part of the path-aware algorithm is the same as that of the
height-aware algorithm.

V. EXPERIMENTS AND ANALYSIS

We have simulated our algorithms using different tree
topologies with up to 50 nodes. We generated the routing tree
by placing the sites on a 100 x 100 grid. In our experiments,
we assumed that the sites can communicate with other sites
within a distance of 5. Based on this assumption, we generated
a site graph and used the distances between the sites as the
weights of the site graph edges. A spanning tree algorithm is
then applied to generate the routing tree.

A. Benchmark Data

We tested our algorithms on both real and synthetic datasets
with up to millions of data points. Specifically, we applied our
algorithms on the following two data sets:

. New York stock Exchange (NYSE) Data: We used
an archived data set representing data volumes at the
end of each day in the New York stock exchange2.
The data volume information is collected at the stock
exchange over a hundred years. The overall dataset has
over 30K observations. The trading data volume can vary
significantly from day to day.

. Synthetic data: We generated synthetic data using a
weighted combination of normalized distributions at a
given set of centers. 15 centers are randomly chosen in
the user-specified data range. We tested our algorithms
on up to 2 million observations.

B. Results and Analysis
We performed our experiments in different configurations

and analyzed the data transmission as a function of the total
stream data size, the approximation bound in k-median compu-
tation, and the number of sites. In this section, we present our
experimental results and compare with the theoretical bounds
of our algorithms.

1) Stream Data Size: The max per node transmission is
asymptotically bounded by a polylog function of total stream
size N. For topology-Oblivious algorithm, the max per node
bound is Boulndmax = O( log3 N log N); for height-
aware algorithm, the max per node bound is Bound'max

k(kh log N). Thus, the total data transmission size is asymp-
totically bounded by the number of sites times Boulndmax.
The advantage of our algorithms is more prominent for large
data volume.

Fig.3 shows the overall and max per node transmission for
synthetic and real data with varying per-epoch data volume of
the input streams. For the experiments on both real data and
synthetic data, the parameters we used are k = 10, E = 0.05.
For real data, we tested all three proposed algorithms on a
simulated stream system of 5 nodes, with total stream size
varying between 20K and 28K. For synthetic data, we tested
all three algorithms on a simulated stream system of 10 nodes,
with total stream size varying between 1M and 9M.

Figs. 3(a) and 3(b) demonstrate the overall communication
load of all three algorithms. In 3(a) and 3(b) we observe that
the total communication of topology oblivious algorithm is
more than height-aware algorithm, and height-aware algorithm
is more than path-aware algorithm. All three algorithms are
well below the corresponding theoretical bounds for total data
transmission. Figs. 3(c) and 3(d) highlight the maximum per
node data transmission of our algorithms on the real and
synthetic data. The plots also indicate a polylog relationship
between data transmission and total stream size. In addition,
height-aware algorithm and path-aware algorithm have much
smaller max per node transmission than topology-oblivious
algorithm. In our experiments, we observed a significant
reduction in both the total and max per node data transmission,
and more reduction for larger stream size. We noticed that the
max per node transmission of path-aware algorithm is only a

2http://www.nyse.com/marketinfo/datalib/1022221393023.html

1137



small fraction ( 20%) of the overall stream size for real data
(see Fig. 3(c)) and ( 2%) for synthetic data (see Fig. 3(d)).

2) Number of Sites: We demonstrate the total transmission
and max per node transmission by varying the number of
sites. The total data transmission is asymptotically linear to
the number of sites. Figs. 4(a) and 4(b) highlight the total
data transmission as a function of the number of sites for
both NYSE dataset and synthetic dataset. We fix the total
input stream size to 30K for the real data and 5M for the
synthetic data. We observe that the total data transmission
by all three algorithms are below the theoretical bound. The
graphs indicate that the height-aware algorithm performs better
than the topology-oblivious algorithm, and the path-aware
algorithm performs better than the height-aware algorithm.
Figs. 4(c) and 4(d) highlight the maximum per node data
transmission as a function of the number of sites in the
network. The height-aware and path-aware algorithms slowly
increase with larger number of sites due to the increases of
the height of the tree. The topology-oblivious algorithm does
not exhibit increasing tendency with the change of the number
of sites. The ups and downs of the topology-oblivious curve
are due to the different distribution of the total stream data
in different tree topologies (with increasing sensor numbers).
The graphs demonstrate the scalability of the algorithms in
terms of the number of sites.

3) Approximation Error: The data transmission is expected
to reduce when a larger approximation error is allowed. Using
the same datasets, our experiments demonstrate that the total
transmission in all three algorithms declines slowly as the
approximation error increases on both synthetic and real data,
as shown in Figs. 5(a) and 5(b). Figs. 5(c) and 5(d) highlight
the maximum per node data transmission as a function of the
approximation error, which also decreases slowly with larger
approximation error. We observe that the path-aware algorithm
requires the least total data transmission and the maximum
data transmission per node.

VI. CONCLUSIONS
We present algorithms for approximate k-median clus-

tering over distributed data streams in three different set-
tings: topology-oblivious, height-aware, and path-aware. Our
algorithms reduce the max per node data transmission to
polylog(N). The topology oblivious algorithm runs without
any prior knowledge of topology and the distribution of the
stream data. We propose a multi-level summary structure and
efficient algorithms to compute bounded-error approximate
k-median. The performance can be further improved if the
height of the tree is given. This leads to the development
of our height-aware algorithm. If each site knows the path
it is on, a path-aware algorithm is introduced to deliver even
better performance than the height-aware algorithm, especially
for unbalanced tree structure. In practice, our methods sig-
nificantly reduce the data transmission requirements on both
synthetic and real data sets to a small fraction of the overall
volume of the streams and are also well below the theoretical
bounds.

There are many promising avenues for future work. We
would like to extend our algorithms to perform sliding window
computations in streaming and sensor network model. Another
interesting avenue is to extend the notion of bias to adapt to
data distribution. We would also like to extend our clustering
algorithms to higher order primitives for spatial computations,
as well as other distributed applications.

REFERENCES

[1] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan.
Geometric approximation via coresets. 2005.

[2] Charu Aggarwal. On abnormality detection in spuriously populated data
streams. In Proceedings of ACM SIAM Conference on Data Mining,
April 2005.

[3] Charu C. Aggarwal. A framework for diagnosing changes in evolving
data streams. In Proceedings of SIGMOD, June 2003.

[4] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A
framework for clustering evolving data streams. In Proceedings of 29th
VLDB Conference, 2003.

[5] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A
framework for projected clustering of high dimensional data streams. In
Proceedings of 30th VLDB Conference, 2004.

[6] Yanif Ahmad and Ugur etintemel. Network-aware query processing for
stream-based applications. In Proceedings of VLDB, August 2004.

[7] Brian Babcock and Chris Olston. Distributed top-k monitoring. In Pro-
ceedings of ACM SIGMOD International Conference on Management
of Data, June 2003.

[8] Mitch Chemiack, Hari Balakrishnan, Magdalena Balazinska, Donald
Camey, Ugur Cetintemel, Ying Xing, and Stan Zdonik. Scalable dis-
tributed stream processing. In Proceedings of First Biennial Conference
on Innovative Data Systems Research(CIDR 2003), January 2003.

[9] Jeffrey Considine, Feifei Li, George Kollios, and John Byers. Approxi-
mate aggregation techniques for sensor databases. In Proceedings of the
International Conference on Data Engineering (ICDE04), March 2004.

[10] Graham Cormode and Minos Garofalakis. Efficient strategies for
continuous distributed tracking tasks. In Proceedings of IEEE Data
Engineering Bulletin, pages 33-39, March 2005.

[11] George Forman and Bin Zhang. Distributed data clustering can be
efficient and exact. In ACM KDD Explorations special issue on Scalable
Data Mining Algorithms, January 2001.

[12] Gereon Frahling and Christian Sohler. Clustering data streams. In IEEE
Symposium on Foundations of Computer Science, pages 359-366, 2000.

[13] Gereon Frahling and Christian Sohler. Coresets in dynamic geometric
data streams. In Proc. 37th ACM Symposium on Theory of Computing,
pages 209-217, 2005.

[14] Michael B. Greenwald and Sanjeev Khanna. Power-conserving compu-
tation of order-statistics over sensor networks. In PODS, June 2004.

[15] Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and
k-means clustering. In Proceedings of the 21st annual symposium on
computational geometry, pages 126-134, 2005.

[16] Sariel Har-Peled and Soham Mazumdar. Coresets for k-means and k-
median clustering and their applications. In ACM Symposium on Theory
of Computing, June 2004.

[17] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. Towards ef-
fective and efficient distributed clustering. In Workshop on Clustering
Large Data Sets (ICDM2003), 2003.

[18] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham.
Communication-efficient distributed monitoring of thresholded counts.
In Proceedings ofACM SIGMOD International Conference on Manage-
ment of Data, June 2006.

[19] Samuel Madden, Michael J. Franklin, Joseph Hellerstein, and Wei Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks. In Proceed-
ings of 5th Symp. Operating Systems Design and Implementation(OSDI
02), April 2002.

[20] Liadan O'Callaghan, Nina Mishra, Adam Meyerson, and Sudipto Guha.
Streaming data algorithms for high-quality clustering. In Proceedings
of IEEE International Conference on Data Engineering, March 2002.

[21] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for
continuous queries over distributed data streams. In Proceedings of
ACM SIGMOD International Conference on Management of Data, June
2003.

1138



28000 2.5

o,-Topology Oblivious
24000 o -Height-aware

= / _ 2 *- ~~~~~~~~~ ~~~Path-aware /
_ 20000 ,'1

016000 -Topology Obliviouso
X -Height-aware 1

< 1 2000 - *- Path-aware_ _ _ _ _ _ _ _ _. E / _ _ _ _ _ __- - - - - - - -

,,,,,...........
.... ..

4000 o
20000 22000 24000 260 0 28000 5 7 9

Size of the Total Stream Data Size of the Total Stream Data (in Millions)

(a) Overall communication on

real data
(b) Overall communication on

synthetic data
(c) Maximum per node com-

munication on real data
(d) Maximum per node com-

munication on synthetic data

Fig. 3. Performance of our algorithms as a function of the total stream size. We measured the overall communication among the sensor network nodes to
perform k-median clustering on sensor network nodes using real and synthetic data. We performed our experiments on the NYSE data consisting of up to 28K
records and synthetic data with up to 9 million data values. In our experiments, we used an approximation error threshold of 0.05. For real data, we tested
all three algorithms on a 5-node system. For synthetic data, we tested on a 10-node system. Figs. 3(a) and 3(b) demonstrate the overall data communication
of our algorithms as a function of input data size. Figs. 3(c) and 3(d) demonstrate the max per node data communication of our algorithms as a function of
input data size. Our experiments demonstrate a significant reduction in the overall and max per node communication.

180000

160000 -Tplogy Oblivious /

=140000 - Path-aware

0v
El 00000_.

80000 / _-

X 60000 / ,-~

40000 ',
20000 ff'J"

s 10 15 20 25 30 35 40 45 so
Number of Sites

munication on real data

01j-Topology Obliviousj
° 3 Height-aware

E 1.X5X; :~
Number of Sites

(b) Normalized overall com-

munication per node on syn-
thetic data

20000

'18000 -Topology Oblivious
2 -- Height-aware

* Path-aware

.14000
12000

s 10 1 0 2 0 s 4 s s

(a) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~c per-
node communication on real

data

RO0 1

X0.1 -Topology Oblivious
.08 Height-aware

- Path-aware

m 0.04 - _- -

5002 ; ...

... ..

s 10 15 20 25 30 35 40 45 so
Number of Sites

(d)Normalized
node communication on syn-
thetic data

Fig. 4. Performance of our algorithms as a function of the number of sites. We measured the data communication of our algorithms as a function of the
number of sites on NYSE and synthetic data. The total input stream size is fixed to be 30K for the NYSE data and 5K for the synthetic data. Figs. 4(a) and
4(b) highlight the total data transmission as a function of the number of sites. Figs. 4(c) and 4(d) demonstrate the maximum per node data transmission as a

function of the number of sites.

4000 0 -Topology Oblivious
-- Height-aware

o35000 t \ ~ ^~ Path-a
°30000 1~

E,25000
220000
_a15000r

10000 |'.,-=___

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Approximation Bound (Epsilon)

(a) Overall communication on

real data

^094 ~~~~-Topology Oblivious
Height-aware

- Path-aware

50.6

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Approximation Bound (Epsilon)

(b) Overall communication on

synthetic data

25000,
| ~~~~~-Topology Oblivious

o)20000 Height-aware

.°' \ -*~- Path-aar

'15000X -

z150000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Approximation Bound (Epsilon)

(c) Maximum per node com-

munication on real data

-,0 18 -Topology Oblivious

--Height-aware
- Path-aware

,0.12 \

z0.08 -_

<,0.04

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.0 0.09 0.1
Approximation Bound (Epsilon)

(d) Maximum per node com-

munication on synthetic data

Fig. 5. Performance of our algorithms as a function of approximation error. The overall communication of our algorithm decreases as the error increases.
Figs. 5(a) and 5(b) highlight the overall data communication as the error increases. Figs. 5(c) and 5(d) demonstrate the max per node data communication
as the error increases. In our experiments, we used 10 centers and performed approximate clustering on NYSE data with 30K data records and synthetic
data with 5 million observations. As the error tolerance increases, we observe that both the height-aware and path-aware algorithms perform better than the
topology-oblivious algorithm and can further reduce the communication by additional 10- 30%.

[22] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric
approach to monitoring threshold functions over distributed data streams.
In Proceedings ofACM SIGMOD International Conference on Manage-
ment of Data, June 2006.

[23] Rebecca M. Willett, Aline M. Martin, and Robert D. Nowak. Adaptive
sampling for wireless sensor networks. In Proceedings of ISIT04, 2004.

[24] Adam Silberstein Rebecca Braynard Jun Yang. Constraint chaining: On

energyeffcient continuous monitoring in sensor networks. In Proceed-
ings of 5th Symp. Operating Systems Design and Implementation(OSDI
02), June 2006.

[25] Yunyue Zhu and Dennis Shasha. Efficient elastic burst detection in
data streams. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 336-345,
2003.

1139

,°18 Topology Oblivious
501 - Height-aware
-. --Path-aware/

F 0.R12
00.0

,0.06

x0.04____- - - - - - - - - - - - - - - - - - - -_
2 0.02 I-

1 3 s 7 9
Size of the Total Stream Data (in Millions)

15000

.212500

E10000_ ~~~-Topology Oblivious
F7soo --~~~~~Height-aware
O *- ~~~~~Path-aware

2500 ..................

20000 22000 24000 26000 28000
Size of the Total Stream Data


