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Abstract— Subspace clustering has attracted great attention due 
to its capability of finding salient patterns in high dimensional 
data. Order preserving subspace clusters have been proven to be 
important in high throughput gene expression analysis, since 
functionally related genes are often co-expressed under a set of 
experimental conditions. Such co-expression patterns can be 
represented by consistent orderings of attributes. Existing order 
preserving cluster models require all objects in a cluster have 
identical attribute order without deviation. However, real data 
are noisy due to measurement technology limitation and 
experimental variability which prohibits these strict models from 
revealing true clusters corrupted by noise. In this paper, we 
study the problem of revealing the order preserving clusters in 
the presence of noise. We propose a noise-tolerant model called 
approximate order preserving cluster (AOPC). Instead of 
requiring all objects in a cluster have identical attribute order, 
we require that (1) at least a certain fraction of the objects have 
identical attribute order; (2) other objects in the cluster may 
deviate from the consensus order by up to a certain fraction of 
attributes. We also propose an algorithm to mine AOPC. 
Experiments on gene expression data demonstrate the efficiency 
and effectiveness of our algorithm.  

I. INTRODUCTION 
In recent years, the advent of high throughput data 

generation techniques have increased not only the number of 
objects collected in databases, but also the number of 
attributes describing these objects. The resultant datasets are 
often referred to as high dimensional. Clustering high 
dimensional data using traditional algorithms has suffered 
from the fact that many attributes may be irrelevant and can 
thus mask clusters located in some subspaces. Subspace 
clustering algorithms have recently been proposed to solve 
this problem. They search for clusters in subspaces formed by 
relevant attributes [1]. Among various subspace clustering 
models, one was designed to mine a set of objects which show 
identical attribute order, called order preserving cluster (OPC) 
[6]. We will give a formal description of this model in next 
section. This model originally attracts researchers’ interests 
because of its important utility in gene expression data 
analysis. Based on the understanding of cellular processes, it 
is a general belief that some subsets of genes may be co-
expressed under certain experimental conditions, but behave 
independently under other conditions. Finding such local 

expression patterns exhibited under relevant conditions is one 
important contribution of the OPC algorithm and may be the 
key to uncover significant but previously unknown genetic 
pathways. 

 

 
Fig. 1  An example illustrates how an OPC is disrupted by noise. Objects w 
and z are excluded from the cluster due to noise 

 
However, noise is ubiquitous in real data due to technical 

errors, missing values and variable experimental conditions, 
etc. The underlying OPCs may be broken into small ones by 
noise and cannot be captured by any strict model due to their 
vulnerability to noise. Figure 1 shows an example. The dataset 
contains four objects {w, x, y, z} with attributes {a, b, c, d, e}. 
Originally, all objects follow the same attribute order: their 
values on a, b, c, d and e are in increasing order. Thus {w, x, y, 
z} is an OPC on {a, b, c, d, e}. However, after distributing 
some noise into this dataset, w and z deviate from their 
original attribute order. As a result, {w, x, y, z} is no longer an 
OPC on {a, b, c, d, e}. Instead, it is broken into several 
smaller ones with overlap, such as {x, y, z} on {a, b, c, d}, {w, 
x, y} on {a, b, d, e} and {x, y} on {a, b, c, d, e}. From this 
example we can see that the true cluster cannot be captured by 
the strict model in the presence of noise. 

Mining subspace OPCs in the presence of noise is very 
challenging for the following reasons. First, the search space 
is often huge due to the curse of dimensionality. For a dataset 
with n attributes, there are totally 2n candidate subspaces. For 



OPC mining, the complexity is much higher, since in addition 
to identifying subspaces, we also need to distinguish different 
orders. For a subspace of m attributes, there are totally m! 
attribute orders. So given a dataset with n attributes, the total 
number of possible orders for all subspaces is: 
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For each attribute order, there could be a potential OPC 
associated with it. This means even for a dataset with 10 
attributes, there are O(106) orders to search. Second, when 
taking noise into account, the problem becomes even harder. 
Ambiguity is brought into the problem by noise. Objects in 
the same cluster may not have identical attribute order 
anymore. Thus given a cluster candidate, how to identify its 
consensus attribute order becomes a new challenge which was 
not an issue in previous models. Third, some good properties 
such as the anti-monotonicity do not hold anymore when 
tolerating noise. All of above facts pose significant challenges 
for OPC mining in the presence of noise. 

To our best knowledge, no previous work has been done on 
the problem of subspace OPC mining with noise tolerance. In 
this paper, we study this problem and propose a new model. 
Experimental results demonstrate that our new model can 
capture OPCs contaminated by noise and thus is more robust 
to noise than the previous strict model. We also propose an 
algorithm to mine clusters under the new model. Although we 
deal with a much more challenging problem, our algorithm 
can discover more significant clusters that cannot be found by 
the previous strict model in an efficient way. 

The remainder of this paper is organized as follows. 
Section II is the preliminary section. It introduces the 
notations and terminologies we use throughout the paper. 
Section III gives a brief review of related work. In Section IV, 
we propose our new model and some experimental evidence 
to demonstrate its noise tolerance capability. Section V 
presents the algorithm, where we first propose a basic mining 
algorithm then followed by the discussion of several 
optimization techniques. Section VI shows the experimental 
results. We conduct a series of experiments to evaluate both 
the efficiency and effectiveness of our algorithm. We 
conclude the paper in Section VII. 

II. PRELIMINARIES 
In this section, we discuss the terminologies, notations and 

assumptions of this paper. We also formally define the OPC 
mining problem here. First, some notations we use are listed 
as below: 

 
D A set of objects 
A The set of all attributes of objects in D 

(C, T) A subset of input dataset, C⊆ D, T⊆ A 
x, y.. Individual object in D 
a, b.. Individual attribute in A 
dxa Value of object x on attribute a 

 

The (attribute) order of an object x on a subset of attributes 
T is a permutation of the attributes in T induced by the values 
of x on these attributes. The order of x on T, denoted by oxT, is 
oxT = abc… if and only if: 

 
dxa < dxb < dxc < …   (2) 

 
If the order of x on T is oxT, we also say x follows oxT or oxT is 
supported by x. We may omit the subscripts for convenience 
if there is no ambiguity. For example, x and y are two objects 
with five attributes {a, b, c, d, e} whose values are shown in 
TABLE I. In this example x and y follow orders bcead and 
daecb respectively. A sub (or super) sequence of oxT is 
referred to as a sub (or super) order of oxT. A subset of the 
dataset, (C, T) (C⊆ D, T⊆ A), is an order preserving cluster 
(OPC) [6] if and only if all objects in C follow the same order 
on T. We may also require a minimum size for a cluster (|C| ≥ 
smin, |T| ≥ lmin). Only clusters satisfy |C| ≥ smin and |T| ≥ lmin are 
valid. In the remainder of this paper when we refer to an OPC, 
we mean a maximal one1 unless otherwise specified. The OPC 
mining problem of a given dataset D is to find all valid OPCs 
in D. Since no noise is allowed, OPC model is a strict model. 

TABLE I 
VALUES OF X AND Y ON EACH ATTRIBUTE AND THEIR ORDERS 

 a b c d e order
x 4 1 2 5 3 bcead
y 7 10 9 5 8 daecb

III. RELATED WORK 
Clustering is the process of grouping similar objects. 

Various similarity measures have been employed, some are 
based on distances and others are based on patterns. OPC 
model belongs to the second category. In this section we 
review previous work on pattern based clustering. Since none 
of them considers the presence of noise, we call them strict 
models. A common characteristic of the strict models is that 
all objects in a cluster must follow the same pattern. Beside 
the strict models, we also review the work of approximate 
frequent itemset mining, since its idea of handling noise is 
related to our problem. 

The earliest work on pattern based clustering is the bi-
cluster model proposed by Cheng et al. in [3]. This model 
tries to measure the coherence between genes and the 
experiment conditions in a sub-matrix of a DNA array. Later, 
Wang et al. proposes δ-pCluster model [4] which aims to 
discover clusters of objects show shifting or scaling patterns. 
With powerful pruning strategies, δ-pClusters can be mined 
efficiently. However, this algorithm can group objects 
exhibiting either pure shifting or pure scaling pattern, but not 
both at the same time. Xu et al. proposes another model called 
Reg-Cluster [5] to relax this limitation. Through a linear 
transformation, this model is able to capture the shifting and 
scaling patterns simultaneously. But the problem is: for most 
real world applications, requiring exact shifting or scaling is 

                                                 
1 That is, the OPC is not the subset of any other OPC. 



too restrictive. In order to include more diverse patterns, we 
often need to lower the required pattern significance. This, in 
turn, can result in undesirable inconsistency inside a cluster. 

The concept of OPC was first proposed by Ben-Dor et al. 
in [2] where they called it order preserving sub-matrix 
(OPSM). Each OPSM represents a subset of genes identically 
ordered among a subset of experiment conditions in a gene 
Micro-array dataset. Since this problem is NP-hard, they 
proposed a probabilistic model to mine an OPSM from a 
random matrix. The local patterns found by this algorithm 
seem to be significant. A drawback of this algorithm is that 
only one cluster can be found at a time and the result is very 
sensitive to input parameters and initial seeds. To find 
multiple OPSMs at the same time, Liu et al. proposes a 
deterministic algorithm to mine all OPCs in [6]. They develop 
an efficient pruning strategy and an auxiliary data structure 
called OPC-tree, this algorithm searches the full order space 
and thus can find all orders exhibited by a subset of objects 
along a subset of attributes. The OPC model is more flexible 
than those models only capturing specific patterns such as 
shifting and scaling, thus can be applied more widely. 
However due to the noisy nature of real data, it still fail to 
discover some significant clusters, since it requires all objects 
in a cluster have identical order and thus excludes those 
objects originally in the cluster but contaminated by noise. We 
will show that the noise tolerance capability of OPC models is 
very weak in the next section. 

The task of frequent itemset mining is to mine a sub-matrix 
of ‘1’s containing a sufficiently large set of rows (transactions) 
in a binary matrix representation of the input dataset. This 
problem also suffers from the presence of noise which may 
corrupt true frequent itemsets. Liu et al. proposes a noise 
tolerant model for this problem called approximate frequent 
itemset (AFI) in [7]. AFI criteria place restrictions on the 
fraction of noise in both the rows and columns of a sub-matrix 
which ensures a relatively uniform distribution of noise in any 
discovered patterns. AFI is proven to be effective in revealing 
significant underlying frequent itemsets. However, it only 
deals with binary data. For continuous data, it is much more 
difficult to discover noise-tolerant clusters. In this paper, we 
study noise tolerance in continuous data. 

IV. MODEL 

A. Approximate Order Preserving Cluster 
Due to the noisy nature of real data, it is often too 

optimistic to expect all objects in a cluster to have the same 
order. Co-expression patterns in gene expression data is such 
an example. So in order to find more significant clusters, a 
more flexible model which can tolerate noise is needed. In this 
section, we propose a new model called approximate order 
preserving cluster (AOPC). The general idea is that the 
members of an AOPC should follow similar (not necessarily 
identical) orders. At the same time, there should be enough 
members supporting an order as the consensus order of the 
cluster. The novelty of this model is that it allows relaxation in 
a systematic way. Instead of requiring all objects have an 
identical order, it allows a group of objects with similar orders 

to form a cluster. The formal definition of this model is in 
DEFINITION 4.1. In this definition, LCS(a, b) denotes the 
longest common subsequence of two sequences a and b [8]. 
Also, we use | ⋅ | to denote the size (or length) of a set (or 
sequence). δc and δs are two input parameters of AOPC model 
to control the allowed noise level, both are between 0 and 1. 
We will provide some guidance on how to choose them in real 
world applications later. 

 
DEFINITION 4.1   Given a dataset D and its attribute set A. 
Let (C, T) be a subset of the dataset where C⊆ D and T⊆ A. If 
o is an order of attributes in T, then C is an approximate 
order preserving cluster with order o if and only if it satisfies 
the following two criteria: 
1. (consistency criterion) For each object x in C, |LCS(oxT, 

o)| ≥ |o|×δc, where 0 <δc≤1. 
2. (supporting criterion) There exist at least |C|×δs objects 

in C which support o, where 0<δs≤1. 
 
From the above definition, we know that the OPC model is 
actually a special case of AOPC where δs = 1. Thus an OPC is 
an AOPC as well. Moreover, we define the core of an AOPC 
in DEFINITION 4.2 which is another important concept for 
our algorithm. 
 
DEFINITION 4.2   Let (C, T) be an AOPC with order o, then 
its core is the subset of C consisting of all objects in O which 
support o. 

B. Robustness to Noise 
In this section, we present some experimental results to 

demonstrate that the AOPC model is more robust to noise than 
the OPC model. 

The objective of the experiment is to compare the noise 
tolerant capability of the OPC model and the AOPC model. 
The experiment is designed in the following way. First, we 
generate an OPC where all objects in it follow an identical 
order. The value of each data entry in this OPC satisfies a 
normal distribution with mean zero and variance one. Second, 
we add some noise to each data entry. The noise also satisfies 
a normal distribution with mean zero and a controlled 
variance σ. We set σ to zero initially and increase it gradually 
by 10-7 at each step. With each σ value, we test the 
satisfiability of the resulting data for both OPC and AOPC 
models. At the beginning, since there is no noise in the dataset, 
it satisfies both models. As σ increases, the resulting data 
becomes messier. There exists some σ from which the data no 
longer satisfies the model, we call this value turning point. We 
want to find turning points for OPC model and AOPC model 
respectively and compare their magnitude difference. In our 
experiment, we totally generated 1000 clusters with various 
sizes. The parameters δs and δc in AOPC model are set to be 
0.2 and 0.6 respectively. For each of the 1000 test cases, we 
record its turning points for OPC model and AOPC model 
respectively. We plot histograms to compare the turning point 
distribution under each model, as shown in Figure 2. To make 
the figure more readable, we use a logarithmic scale lg(σ) for 



the turning points (x-axis). In Figure 2, the blue histogram 
shows the turning point distribution under OPC model while 
the red one is under AOPC model. From the result we can see 
that most turning points of OPC model are around 10-5 while 
the turning points of AOPC model are mostly around 10-2. So 
the turning points of OPC model are generally much smaller 
than that of AOPC model. Small turning point indicates poor 
robustness to noise. This experiment demonstrates that OPC 
model fails to recognize the clusters when very small 
perturbations are added while AOPC model can still discover 
the original clusters in the presence of much higher level noise. 
The big gap between blue and red distributions shows that 
AOPC model is much more robust to noise than OPC model, 
which is the key to discover significant clusters in real data. 

 

 
Fig. 2  Blue and red histograms are the turning point distributions of the OPC 
model and AOPC model respectively. The histograms are computed from 
1000 test cases. Note the x-axis is in lg(σ) 

V. MINING AOPC 
In this section, we propose an algorithm to mine AOPCs in 

a given dataset. Our algorithm can be divided into two phases. 
We find all valid OPCs in the given dataset in Phase 1. In 
Phase 2, we mine AOPCs from the result of Phase 1. The 
general idea of this algorithm is inspired by the observation 
we made in the introduction. As shown in Figure 1, the 
presence of noise breaks original clusters into smaller ones 
with overlap. So a natural thought is to reverse this process, i.e. 
first find all small OPCs and then merge them to recover the 
true clusters. 

A. Mine OPCs 
Given a dataset D, user-specified parameters smin and lmin, 

Phase 1 finds all valid OPCs, i.e. with size at least smin and 
order length at least lmin. We modify the original OPC mining 
algorithm in [6]. This algorithm exhaustively enumerates all 
OPCs from lower-dimensional space to higher-dimensional 
space by adding one attribute at a time. It traverses the search 
space in a depth-first order. The anti-monotonic property is 
applied to prune the candidate subspaces that do not contain 
any valid clusters. 

We made some modifications to the original algorithm to 
make it work well with Phase 2. The major changes we made 
are as below. First, the original algorithm has a pre-processing 

phase which groups attributes with similar values together. 
This process not only introduces extra computation, but also 
has the risk of missing some OPCs. In our algorithm, in order 
to find more OPCs as a good foundation for Phase 2, we 
remove this pre-processing phase. Second, the original 
algorithm returns a set of OPCs without any order. However, 
as we will explain later, to organize the OPCs in a way such 
that similar OPCs are adjacent to each other is important for 
the efficiency of Phase 2. Since the OPC algorithm traverses 
the order space in depth-first manner, the OPCs generated in 
consecutive steps are likely to have similar orders thus similar 
to each other. Figure 3 illustrates this with an example. It 
shows the search process of a set of three attributes {a, b, c}. 
By depth-first searching manner, similar attribute orders such 
as ab, abc, ac and acb are traversed in consecutive steps. 
When the total number of attributes increases, this property is 
more prominent. In order to take advantage of the temporal 
locality of similar OPCs generated during the traversal of the 
search space, we use a FIFO queue to store the OPCs in the 
order of which they are generated. Due to space limitation, we 
cannot cover every detail here. For more details of the OPC 
algorithm, please refer to [6]. 

 

 
Fig. 3  The search process of the OPC mining algorithm for a dataset with 
three attributes {a, b, c} 

B. Recover True Clusters 
In Section IV.B, we showed that an OPC corrupted by 

noise can be modelled by AOPC model. However, generating 
all AOPCs is NP-hard. Thus we propose an efficient greedy 
algorithm to generate significant AOPCs. Specifically, we 
propose a greedy algorithm to mine AOPCs through a 
recursive merging process. The time complexity of this 
algorithm is polynomial with respect to the number of OPCs 
found in Phase 1. Based on this basic algorithm, we propose 
an enhanced version with a hierarchical merge scheme which 
is much faster. Experiment demonstrates that the AOPCs 
generated by the enhanced algorithm are as significant as 
those found by the basic algorithm. 

1)  Mine AOPCs by Merging 
The basic process of Phase 2 is to merge smaller AOPCs 

(initially OPCs) into bigger ones. To merge two AOPCs, we 
first take the union of their object sets then construct a 
common super-order of their orders as the consensus order of 
the new AOPC. Among all common super-orders, the one 
with the highest support is selected. The merge result is a 
valid AOPC only if both consistency and supporting criteria in 



Input 
 δs, two AOPCs C1 and C2 

Output  
 succeed or fail 

FILTER_TEST(C1, C2) 
1. if size(core(C1∩C2))/size(C1∪C2) > δs, then 
2.   return succeed; 
3. else 
4.   return fail; 
5. end if; 

DEFINITION 4.1 are satisfied. To verify them, we need to (1) 
compute the LCS between the super-order and the order of 
every object in the union to check whether the length of the 
LCS is at least δc percent of the length of the super-order; (2) 
confirm that the super-order is supported by at least δs percent 
of the objects in the union. Since the merging process starts 
from valid OPCs found in Phase 1, the sizes of all AOPCs 
found are at least smin and their order lengths are at least lmin. 
The computational complexity to fully test whether a pair of 
AOPCs can be merged is O(smin×lmin

2). When the number of 
AOPCs is large, doing this for every AOPC pair would be 
very time consuming. Therefore, we propose a prefiltering 
technique which can quickly exclude most AOPC pairs that 
cannot be merged. 

2)  Prefiltering 
In this section, we present a technique called prefiltering, 

which can exclude most AOPC pairs that cannot be merged 
with time complexity O(smin) for each AOPC pair. It is much 
faster than performing the full test discussed above which has 
time complexity O(smin×lmin

2) for each pair. The effectiveness 
of prefiltering will be demonstrated in the experiment section. 
In the following discussion, if C denotes an AOPC, then o(C) 
denotes the order of C and core(C) denotes the core of C. 
 
LEMMA 5.1   If C is an AOPC, then all objects follow o(C) 
are in core(C). 
 
Proof: Suppose that C is generated from Cn and Cn is 
generated from Cn-1, …, and C1 is generated from C0, through 
a series of merges, where C0,…,Cn are interim AOPCs and C0 
is an OPC obtained in Phase 1. Because C is generated from 
Cn, o(C) is a super-order of o(Cn). So any object follows o(C) 
must also follow o(Cn). By the same token, they follow o(Cn-

1), …, o(C0) as well. On the other hand, since C0 is an OPC, 
according to the assumption we made in Section II: all OPCs 
returned are maximal, any object follows o(C0) is in C0. Since 
no object is removed during any merge operation, any object 
in C0 is in C. So any object follows o(C) is in C, thus in 
core(C).  
 
THEOREM 5.2   A necessary condition under which two 
given AOPCs C1 and C2 can be merged is: 
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Proof: Suppose that C1 and C2 can be merged, and C is the 
AOPC after merge. For any object in core(C), it follows o(C). 
Since o(C) is a super-order of both o(C1) and o(C2), this object 
follows o(C1) and o(C2) as well. From LEMMA 5.1, we know 
that this object is in core(C1) and core(C2) at the same time. 
Thus, 
 

1 2| ( ) | | ( ) ( ) |core C core C core C≤ ∩    (4) 
 

During the merge, the object set of C is generated by taking 
the union of the object sets of C1 and C2. Thus, 
 

1 2| | | |C C C= ∪    (5) 
 
Finally, according to the definition of AOPC, we have 
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Therefore, Eq. (4) – Eq. (6) imply Eq. (3) holds.  

Based on THEOREM 5.2, we propose a linear time test 
called FILTER_TEST for each AOPC pair as shown in Figure 
4. Each AOPC pair will first take this test before the merge 
routine. Those pairs failing this test will not be merged. Since 
this test only requires an intersection and a union operation of 
two sets, the time complexity is linear with respect to the size 
of the AOPCs. In addition to FILTER_TEST, COROLLARY 
5.3 suggests that we should exclude an AOPC from future 
merge attempt if its FILTER_TEST with all other AOPCs fail. 
With FILTER_TEST, the algorithm can speedup substantially 
which we will show in the experiment section. 
 
COROLLARY 5.3   During the merge process, if the 
FILTER_TEST for an AOPC C with every other AOPC fails, 
C need not be considered for future merge. 
 
Proof: From THEOREM 5.2 we know that the core of the 
newly merged AOPC is a subset of the intersection of the 
cores of two AOPCs before merge. After each subsequent 
merge, the size of the core decreases while the size of the 
AOPC increases. Thus, the ratio at the left hand side of Eq. (3) 
decreases monotonically after each merge. Once it fails below 
δs when we do FILTER_TEST between C and any other 
AOPC, there is no need to do the FILTER_TEST for C in the 
future. This is because all new AOPCs in future are generated 
by merging current AOPCs. Thus it is impossible for C to be 
merged with another AOPC in the future.  

Fig. 4  FILTER_TEST 

3)  The Basic Algorithm 
We propose a greedy algorithm consisting of a series of 

iterations. The algorithm selects and merges the best pair of 
AOPCs at each iteration. If two AOPCs C1 and C2 pass both 



Phase 2 (Basic) 
Input 
 δc, δs 
 FIFO queue Q contains OPCs found in Phase 1 

Output 
 A set of AOPCs 

Algorithm 
1.   AD := Φ;  
2.   for (Ci, Cj) ∈ Q×Q, do 
3.     if FILTER_TEST(Ci, Cj)=succeed, then 
4.       if FULL_TEST(Ci, Cj)=succeed, then 
5.         AD.push(AD(Ci, Cj)); 
6.       end if; 
7.     end if; 
8.   end if; 
9.   while !AD.empty(), do 
10.   merge (Ci, Cj) with the max AD to C; 
11.   Q.push(C); 
12.   AD.pop(); 
13.   Q.delete(Ci); Q.delete(Cj); 
14.   for Ci ∈ Q, do 
15.     if FILTER_TEST(Ci, C)=succeed, then 
16.       if FULL_TEST(Ci, C)=succeed, then 
17.         AD.push(AD(Ci, C)); 
18.       end if; 
19.     end if; 
20.   end for; 
21. end while; 
Subroutine: FULL_TEST(Ci, Cj) 
1. vote and determine super-order o; 
2. s := 0; 
3. for any x in Ci∪Cj, do 
4.   l := LCS(o(x), o).length; 
5.   if l ≤ o.length×δc, then 
6.     return fail; 
7.   else if l = o.length, then 
8.     s := s+1; 
9.   end if; 
10. end for; 
11. if s ≤ |Ci∪Cj|×δs, then 
12.   return fail; 
13. else 
14.   return succeed; 
end if; 

the FILTER_TEST and the full test, we compute their 
adhesion (AD value) as follows: 
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where C denotes the resulting AOPC, should C1 and C2 be 
merged. The intuition behind this is that the more the objects 
supporting the new super-order and the more similar o(C1) 
and o(C2) are, the more likely C1 and C2 should be merged. 

Initially, the algorithm starts from the OPCs found in Phase 
1. It prefilters most AOPC pairs that cannot be merged. For 
the rest pairs, it computes the adhesion for those pass the full 
test. Among them, the AOPC pair with the highest adhesion is 
selected to merge into a new AOPC. At each subsequent 
iteration, the above operations are only need to be done 
between the newly generated AOPC and other existing 
AOPCs. This process iterates until no new AOPC can be 
generated. The pseudo code is shown in Figure 5. 

To analyse the complexity of this algorithm, let us assume 
that totally N OPCs are found in Phase 1. Before the first 
merge, the algorithm needs to do an operation on each AOPC 
pair, with totally O(N2) operations. Each operation can be 
either a prefiltering test or a full test (only if the pair passes 
the prefiltering test, the full test is needed). After that, at each 
iteration, the operations are only need to be done between the 
newly generated AOPC and other existing AOPCs. So there 
are totally O(N) operations at each iteration. To find the 
largest AD value in an efficient way, we keep all AD values in 
a priority queue. The complexity of pushing and popping of 
this queue is O(lgN) at each iteration. Since each merge 
decreases the number of AOPCs by one, there are at most O(N) 
iterations. So the complexity of this algorithm is 
O(N2m+N2(lgN+m))) = O(N2(lgN+m)), where m denotes the 
average cost of a single operation for each AOPC pair. If a 
pair can be prefiltered, then this cost is only O(smin), otherwise 
it is O(smin×lmin

2), where smin and lmin define the valid OPC in 
Phase 1. Since most pairs can be prefiltered (we will 
demonstrate this in the experiment section), m is close to 
O(smin). So the average complexity of this algorithm is 
O(smin×N2lgN) practically. 

4)  Hierarchical Merging 
A possible way to speed up the algorithm is to use a 

hierarchical merge scheme. In such a scheme, we first 
partition the OPCs generated by Phase 1 into groups. There 
are 2n groups at the nth level. Starting from Level n, we run 
the basic algorithm in each group. Then we take the union of 
the resulting AOPCs for each pair of sibling groups and 
proceed to Level n-1. The basic algorithm is to run repeatedly 
in each new group and generate AOPCs that will be used as 
the initial input to Level n-2. This procedure repeats until only 
one group is left as illustrated by Figure 6. 

The time complexity of this scheme is 2p2n+2/(2p2-1) times 
the cost of the basic algorithm, where n is the number of 
hierarchical levels and p is an average fraction of AOPCs 
remaining after merge for each group, i.e. the ratio between 

the numbers of AOPCs after and before merge. The analysis 
details can be found in the appendix. This result suggests that 
a smaller p value makes the hierarchical merging scheme 
more effective. Therefore, it is desirable to group AOPCs that 
are likely to be merged so that the number of AOPCs to be 
carried to the next level is less. Thus when initially 
partitioning the OPCs at Level n, we want to put similar OPCs 
in the same group. As we discussed in Section V.A, the search 
method and the FIFO queue employed in Phase 1 naturally 
support this objective. The pseudo code of the hierarchical 
merge algorithm is shown in Figure 7. 

Fig. 5  Basic algorithm of Phase 2 



 

 
Fig. 6  n-level hierarchical merging scheme 

 

 
Fig. 7  Enhanced algorithm of Phase 2 

VI. EXPERIMENTS 
In this section, we study the performance of our algorithm 

through a series of experiments. To make the experiment 
results more realistic and thus convincing, we conduct all 
experiments on a real gene expression dataset. This dataset is 
the yeast cell cycle data from [9]. Each row of this dataset 
records the expression levels across 18 time points for a gene. 
Totally 799 genes are in this dataset. All experiments were run 
on a 3.4GHz Dell PC with 2G memory.  

A. Choose Parameters Properly 
First, we study the influence of the input parameters to the 

mining results and provide some guidance on how to choose 
them properly. There are totally four parameters that need to 
be specified in our algorithm. In Phase 1, smin and lmin are set 
to define the valid OPC. In Phase 2, δc, δs are set to define the 
AOPC. In principle, the optimal values of these parameters 
depend on the size and shape of the salient clusters and the 
level and distribution of noise in the dataset. For our dataset, 
we use smin=60, lmin=5 and found 682 OPCs in 495 seconds. 
As for δc and δs, they are often set to some moderate level to 
control the noise tolerance. As a rule of thumb, δs should be 
no larger than 0.5, otherwise it is too strict to prevent AOPCs 
from being merged; δc should be in [0.6, 0.8], since a too 

small value tends to include too much noise and thus 
decreases the significance of the results. Figure 8 shows the 
number of AOPCs found and the runtime under several (δc, δs) 
settings. Note that this result is without hierarchical merging. 
We can see that, as δc and δs decrease, more merges are 
performed (thus fewer AOPCs are returned) and the runtime is 
longer. 

 

 

 
Fig. 8  The number of AOPCs found and runtime under different (δc, δs) 
settings, initially 682 OPCs 

B. Efficiency of Optimizations 
The experiments in this section are run with δc=0.6, δs=0.2. 

We ran Phase 2 with and without prefiltering, and with 
varying levels of hierarchical merging from 0 to 6, which 
correspond to 1, 2, 4, 8, 16, 32 and 64 leaf groups after initial 
partition. Note that the case of level 0 is essentially the basic 
algorithm. The result is shown in Figure 9, where #Group 
shows the number of initial groups. From the result we can see 
that the hierarchical merging with initially 64 groups can have 
an order of magnitude speedup over the basic algorithm. Plus, 
for all cases, prefiltering can also expedite the execution 
substantially. For the 64-group initial partition, we also 
compare the results of terminating the algorithm when 4, 2 
and 1 group(s) are left respectively. The result is shown in 
Table II. The set of AOPCs when there are 4 groups left does 
not differ much from that of the final outcome (i.e., 1 group 
left). But the running time differs by half. This is because few 
new AOPCs are generated during the last two merging levels. 
(Most merge attempts fail to generate new AOPCs.) This fact 
suggests that we can consider terminating the algorithm earlier 
to gain more speed advantage. 

 

Phase 2 (Hierarchical merge) 
Input 
 δc, δs, n (hierarchical levels) 
 FIFO queue Q contains OPCs found in Phase 1 

Output 
 A set of AOPCs 

Algorithm: 
1.   for i := 0 to 2n-1, do 
2.     Gi := Q[i×Q.size/2n, (i+1)×Q.size/2n-1]; 
3.   end for; 
4.   for l := n downto 1, do  /* for each level */ 
5.     for any i, do 
6.       run basic algorithm for Gi; 
7.     end for; 
8.     for i := 0 to 2l-1, do 
9.       merge G2i with G2i+1; 
10.   end for; 
11. end for; 



 
Fig. 9  Runtime of merging with different hierarchical levels with and without 
prefiltering 
 

Figure 10 gives the percentage of AOPC pairs that are 
prefiltered under different (δc, δs) settings. For all cases, more 
than half of the AOPC pairs were prefiltered. The stricter the 
thresholds are, the more pairs that can be prefiltered. So the 
prefiltering stage plays an important role in speeding up the 
algorithm. The quality comparison of the results with and 
without hierarchical merging is discussed in next section. 

 

 
Fig. 10  Percentage of AOPC pairs prefiltered under different (δc, δs) settings 

TABLE II 
RESULTS WITH DIFFERENT STOP CRITERIA 

#Groups when stop  Runtime(s) #Cluster Found
4 96 285 
2 142 276 
1 229 267 

 

C. Significance of the Result 
Finally, we evaluate the quality of AOPCs found by our 

algorithm. We compare their significance with the OPCs 
found in Phase 1, since these are the result under the strict 
model. As mentioned in Section VI.A, with smin=60, lmin=5, 
totally 682 OPCs were found. While with δc=0.6, δs=0.2, the 
basic algorithm found 262 AOPCs and the enhanced 
algorithm with 64-group initial partition found 267 AOPCs. 
For each cluster, we evaluate its biological significance by 
calculating its association strength with different gene 
categories according to the Fisher’s exact test [10]. The 
known gene categories are based on gene ontology 
information from [11]. Smaller p-value indicates stronger 
association and thus is more significant. For each cluster, we 

record the number of categories it strongly associates with (p-
value ≤ 10-9). Table III summarizes the distribution of this 
number for each method. 49 out of 262 AOPCs by the basic 
algorithm have more than six strongly associated categories; 
this number changes to 50 out of 267 by the hierarchical 
merging algorithm with 64-group initial partition. But under 
OPC model, there are only 14 out of 682 OPCs have such 
significance. The advantage of the AOPC model is even more 
prominent if a stronger association category cut-off is used. 
Moreover, there is little difference in the significance of the 
result of basic algorithm and that of hierarchical merging. This 
means that the hierarchical merging can speed up the mining 
process without scarifying the result significance. Note that 
the number of AOPCs is much smaller than that of OPCs, thus 
the percentage of high quality clusters of AOPC model is 
much higher than that of OPC model. 

We also trace the merge process of an AOPC and compare 
its biological significance with all the six OPCs it is merged 
from. This result is summarized in Table IV. The AOPC has 
stronger associations to 5-7 categories (highlighted by bold 
fonts) than each OPC individually. This demonstrates that the 
AOPC found by our algorithm is biologically more significant 
than every single OPC it is merged from. Thus the merging 
process is an effective way to discover more significant 
clusters. 

VII. CONCLUSIONS 
In this paper, we study the problem of subspace OPC 

mining with noise tolerance. Due to its challenging nature, no 
previous work has been done on this topic. In this paper, we 
propose a new model called approximate order preserving 
cluster (AOPC). This model is proven to be more robust to 
noise than OPC model. In addition to its robustness, this 
model also has several good properties which allow us to mine 
the AOPCs using an efficient greedy algorithm. We propose a 
prefiltering technique which can quickly exclude most AOPC 
pairs that cannot be merged. We also propose a hierarchical 
merging scheme to further improve the execution time. 
Experiments on real gene expression data demonstrate that 
these techniques are efficient to speed up the mining process 
and the AOPCs are more biologically significant than the 
OPCs. Note that, although our experiments are run on gene 
expression data, the method presented in this paper can be 
used widely in many applications beyond gene expression 
analysis. 
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APPENDIX 
Suppose Phase 2 starts from N OPCs found in Phase 1 and 

the time used by the basic algorithm is Tb. As discussed in 
Section V.B.3, for fixed smin, Tb = O(N2lgN), thus we can write 
Tb as Tb = c×N2lgN, where c is a constant related to smin. In the 
following discussion, p denotes the average percentage of 
AOPCs remaining after merging in each group, i.e. the ratio 
between the numbers of AOPCs after and before merge. The 
total time used by the hierarchical version and the time used at 
Level n are denoted as Th and Tn respectively. We now derive 
the average time used by the hierarchical version with n levels. 
We start from Level n. 

At Level n, there are 2n groups each contains N/2n OPCs. 
Each group consumes c×(N/2n)2lg(N/2n)) time for the basic 
algorithm. Thu we have: 
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When the merge at Level n terminates, each group has p×N/2n 
AOPCs. Then the algorithm proceeds to Level n-1, two 
sibling groups are merged to one. Now we have 2n-1 groups, 
each contains p×N/2n-1 AOPCs. Similarly, the time used in 
each group is smaller than p2×T/(2n-1)2, thus we have: 
 

Tn-1 < 2n-1×p2×T/(2n-1)2 = p2×Tb/2n-1   (a.2) 
 
For Level n-k, we have: 
 

Tn-k < p2k×Tb/2n-k,  k = 0, 1, …, n   (a.3) 
 
Taking the sum of Tk for all k = 0, 1, …, n, we get the total 
time used by the hierarchical merging scheme: 
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Since 0<p<1, as n increases, the dividend of Eq. (a.4) 
decreases faster than the denominator. Eq. (a.4) suggests that 
more hierarchical levels and smaller p make the advantage of 
the hierarchical merging scheme more prominent. 
 


