
Mining Approximate Order Preserving Clusters in
the Presence of Noise
Mengsheng Zhang#1, Wei Wang#2, Jinze Liu*3

#Department of Computer Science, University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175 USA

1mszhang@cs.unc.edu
2weiwang@cs.unc.edu

*Department of Computer Science, University of Kentucky
 Lexington, KY 40506-0046 USA

3liuj@cs.uky.edu

Abstract— Subspace clustering has attracted great attention due
to its capability of finding salient patterns in high dimensional
data. Order preserving subspace clusters have been proven to be
important in high throughput gene expression analysis, since
functionally related genes are often co-expressed under a set of
experimental conditions. Such co-expression patterns can be
represented by consistent orderings of attributes. Existing order
preserving cluster models require all objects in a cluster have
identical attribute order without deviation. However, real data
are noisy due to measurement technology limitation and
experimental variability which prohibits these strict models from
revealing true clusters corrupted by noise. In this paper, we
study the problem of revealing the order preserving clusters in
the presence of noise. We propose a noise-tolerant model called
approximate order preserving cluster (AOPC). Instead of
requiring all objects in a cluster have identical attribute order,
we require that (1) at least a certain fraction of the objects have
identical attribute order; (2) other objects in the cluster may
deviate from the consensus order by up to a certain fraction of
attributes. We also propose an algorithm to mine AOPC.
Experiments on gene expression data demonstrate the efficiency
and effectiveness of our algorithm.

I. INTRODUCTION
In recent years, the advent of high throughput data

generation techniques have increased not only the number of
objects collected in databases, but also the number of
attributes describing these objects. The resultant datasets are
often referred to as high dimensional. Clustering high
dimensional data using traditional algorithms has suffered
from the fact that many attributes may be irrelevant and can
thus mask clusters located in some subspaces. Subspace
clustering algorithms have recently been proposed to solve
this problem. They search for clusters in subspaces formed by
relevant attributes [1]. Among various subspace clustering
models, one was designed to mine a set of objects which show
identical attribute order, called order preserving cluster (OPC)
[6]. We will give a formal description of this model in next
section. This model originally attracts researchers’ interests
because of its important utility in gene expression data
analysis. Based on the understanding of cellular processes, it
is a general belief that some subsets of genes may be co-
expressed under certain experimental conditions, but behave
independently under other conditions. Finding such local

expression patterns exhibited under relevant conditions is one
important contribution of the OPC algorithm and may be the
key to uncover significant but previously unknown genetic
pathways.

Fig. 1 An example illustrates how an OPC is disrupted by noise. Objects w
and z are excluded from the cluster due to noise

However, noise is ubiquitous in real data due to technical

errors, missing values and variable experimental conditions,
etc. The underlying OPCs may be broken into small ones by
noise and cannot be captured by any strict model due to their
vulnerability to noise. Figure 1 shows an example. The dataset
contains four objects {w, x, y, z} with attributes {a, b, c, d, e}.
Originally, all objects follow the same attribute order: their
values on a, b, c, d and e are in increasing order. Thus {w, x, y,
z} is an OPC on {a, b, c, d, e}. However, after distributing
some noise into this dataset, w and z deviate from their
original attribute order. As a result, {w, x, y, z} is no longer an
OPC on {a, b, c, d, e}. Instead, it is broken into several
smaller ones with overlap, such as {x, y, z} on {a, b, c, d}, {w,
x, y} on {a, b, d, e} and {x, y} on {a, b, c, d, e}. From this
example we can see that the true cluster cannot be captured by
the strict model in the presence of noise.

Mining subspace OPCs in the presence of noise is very
challenging for the following reasons. First, the search space
is often huge due to the curse of dimensionality. For a dataset
with n attributes, there are totally 2n candidate subspaces. For

OPC mining, the complexity is much higher, since in addition
to identifying subspaces, we also need to distinguish different
orders. For a subspace of m attributes, there are totally m!
attribute orders. So given a dataset with n attributes, the total
number of possible orders for all subspaces is:

1

!
n

m

n
m

m=

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ (1)

For each attribute order, there could be a potential OPC
associated with it. This means even for a dataset with 10
attributes, there are O(106) orders to search. Second, when
taking noise into account, the problem becomes even harder.
Ambiguity is brought into the problem by noise. Objects in
the same cluster may not have identical attribute order
anymore. Thus given a cluster candidate, how to identify its
consensus attribute order becomes a new challenge which was
not an issue in previous models. Third, some good properties
such as the anti-monotonicity do not hold anymore when
tolerating noise. All of above facts pose significant challenges
for OPC mining in the presence of noise.

To our best knowledge, no previous work has been done on
the problem of subspace OPC mining with noise tolerance. In
this paper, we study this problem and propose a new model.
Experimental results demonstrate that our new model can
capture OPCs contaminated by noise and thus is more robust
to noise than the previous strict model. We also propose an
algorithm to mine clusters under the new model. Although we
deal with a much more challenging problem, our algorithm
can discover more significant clusters that cannot be found by
the previous strict model in an efficient way.

The remainder of this paper is organized as follows.
Section II is the preliminary section. It introduces the
notations and terminologies we use throughout the paper.
Section III gives a brief review of related work. In Section IV,
we propose our new model and some experimental evidence
to demonstrate its noise tolerance capability. Section V
presents the algorithm, where we first propose a basic mining
algorithm then followed by the discussion of several
optimization techniques. Section VI shows the experimental
results. We conduct a series of experiments to evaluate both
the efficiency and effectiveness of our algorithm. We
conclude the paper in Section VII.

II. PRELIMINARIES
In this section, we discuss the terminologies, notations and

assumptions of this paper. We also formally define the OPC
mining problem here. First, some notations we use are listed
as below:

D A set of objects
A The set of all attributes of objects in D

(C, T) A subset of input dataset, C⊆ D, T⊆ A
x, y.. Individual object in D
a, b.. Individual attribute in A
dxa Value of object x on attribute a

The (attribute) order of an object x on a subset of attributes
T is a permutation of the attributes in T induced by the values
of x on these attributes. The order of x on T, denoted by oxT, is
oxT = abc… if and only if:

dxa < dxb < dxc < … (2)

If the order of x on T is oxT, we also say x follows oxT or oxT is
supported by x. We may omit the subscripts for convenience
if there is no ambiguity. For example, x and y are two objects
with five attributes {a, b, c, d, e} whose values are shown in
TABLE I. In this example x and y follow orders bcead and
daecb respectively. A sub (or super) sequence of oxT is
referred to as a sub (or super) order of oxT. A subset of the
dataset, (C, T) (C⊆ D, T⊆ A), is an order preserving cluster
(OPC) [6] if and only if all objects in C follow the same order
on T. We may also require a minimum size for a cluster (|C| ≥
smin, |T| ≥ lmin). Only clusters satisfy |C| ≥ smin and |T| ≥ lmin are
valid. In the remainder of this paper when we refer to an OPC,
we mean a maximal one1 unless otherwise specified. The OPC
mining problem of a given dataset D is to find all valid OPCs
in D. Since no noise is allowed, OPC model is a strict model.

TABLE I
VALUES OF X AND Y ON EACH ATTRIBUTE AND THEIR ORDERS

 a b c d e order
x 4 1 2 5 3 bcead
y 7 10 9 5 8 daecb

III. RELATED WORK
Clustering is the process of grouping similar objects.

Various similarity measures have been employed, some are
based on distances and others are based on patterns. OPC
model belongs to the second category. In this section we
review previous work on pattern based clustering. Since none
of them considers the presence of noise, we call them strict
models. A common characteristic of the strict models is that
all objects in a cluster must follow the same pattern. Beside
the strict models, we also review the work of approximate
frequent itemset mining, since its idea of handling noise is
related to our problem.

The earliest work on pattern based clustering is the bi-
cluster model proposed by Cheng et al. in [3]. This model
tries to measure the coherence between genes and the
experiment conditions in a sub-matrix of a DNA array. Later,
Wang et al. proposes δ-pCluster model [4] which aims to
discover clusters of objects show shifting or scaling patterns.
With powerful pruning strategies, δ-pClusters can be mined
efficiently. However, this algorithm can group objects
exhibiting either pure shifting or pure scaling pattern, but not
both at the same time. Xu et al. proposes another model called
Reg-Cluster [5] to relax this limitation. Through a linear
transformation, this model is able to capture the shifting and
scaling patterns simultaneously. But the problem is: for most
real world applications, requiring exact shifting or scaling is

1 That is, the OPC is not the subset of any other OPC.

too restrictive. In order to include more diverse patterns, we
often need to lower the required pattern significance. This, in
turn, can result in undesirable inconsistency inside a cluster.

The concept of OPC was first proposed by Ben-Dor et al.
in [2] where they called it order preserving sub-matrix
(OPSM). Each OPSM represents a subset of genes identically
ordered among a subset of experiment conditions in a gene
Micro-array dataset. Since this problem is NP-hard, they
proposed a probabilistic model to mine an OPSM from a
random matrix. The local patterns found by this algorithm
seem to be significant. A drawback of this algorithm is that
only one cluster can be found at a time and the result is very
sensitive to input parameters and initial seeds. To find
multiple OPSMs at the same time, Liu et al. proposes a
deterministic algorithm to mine all OPCs in [6]. They develop
an efficient pruning strategy and an auxiliary data structure
called OPC-tree, this algorithm searches the full order space
and thus can find all orders exhibited by a subset of objects
along a subset of attributes. The OPC model is more flexible
than those models only capturing specific patterns such as
shifting and scaling, thus can be applied more widely.
However due to the noisy nature of real data, it still fail to
discover some significant clusters, since it requires all objects
in a cluster have identical order and thus excludes those
objects originally in the cluster but contaminated by noise. We
will show that the noise tolerance capability of OPC models is
very weak in the next section.

The task of frequent itemset mining is to mine a sub-matrix
of ‘1’s containing a sufficiently large set of rows (transactions)
in a binary matrix representation of the input dataset. This
problem also suffers from the presence of noise which may
corrupt true frequent itemsets. Liu et al. proposes a noise
tolerant model for this problem called approximate frequent
itemset (AFI) in [7]. AFI criteria place restrictions on the
fraction of noise in both the rows and columns of a sub-matrix
which ensures a relatively uniform distribution of noise in any
discovered patterns. AFI is proven to be effective in revealing
significant underlying frequent itemsets. However, it only
deals with binary data. For continuous data, it is much more
difficult to discover noise-tolerant clusters. In this paper, we
study noise tolerance in continuous data.

IV. MODEL

A. Approximate Order Preserving Cluster
Due to the noisy nature of real data, it is often too

optimistic to expect all objects in a cluster to have the same
order. Co-expression patterns in gene expression data is such
an example. So in order to find more significant clusters, a
more flexible model which can tolerate noise is needed. In this
section, we propose a new model called approximate order
preserving cluster (AOPC). The general idea is that the
members of an AOPC should follow similar (not necessarily
identical) orders. At the same time, there should be enough
members supporting an order as the consensus order of the
cluster. The novelty of this model is that it allows relaxation in
a systematic way. Instead of requiring all objects have an
identical order, it allows a group of objects with similar orders

to form a cluster. The formal definition of this model is in
DEFINITION 4.1. In this definition, LCS(a, b) denotes the
longest common subsequence of two sequences a and b [8].
Also, we use | ⋅ | to denote the size (or length) of a set (or
sequence). δc and δs are two input parameters of AOPC model
to control the allowed noise level, both are between 0 and 1.
We will provide some guidance on how to choose them in real
world applications later.

DEFINITION 4.1 Given a dataset D and its attribute set A.
Let (C, T) be a subset of the dataset where C⊆ D and T⊆ A. If
o is an order of attributes in T, then C is an approximate
order preserving cluster with order o if and only if it satisfies
the following two criteria:
1. (consistency criterion) For each object x in C, |LCS(oxT,

o)| ≥ |o|×δc, where 0 <δc≤1.
2. (supporting criterion) There exist at least |C|×δs objects

in C which support o, where 0<δs≤1.

From the above definition, we know that the OPC model is
actually a special case of AOPC where δs = 1. Thus an OPC is
an AOPC as well. Moreover, we define the core of an AOPC
in DEFINITION 4.2 which is another important concept for
our algorithm.

DEFINITION 4.2 Let (C, T) be an AOPC with order o, then
its core is the subset of C consisting of all objects in O which
support o.

B. Robustness to Noise
In this section, we present some experimental results to

demonstrate that the AOPC model is more robust to noise than
the OPC model.

The objective of the experiment is to compare the noise
tolerant capability of the OPC model and the AOPC model.
The experiment is designed in the following way. First, we
generate an OPC where all objects in it follow an identical
order. The value of each data entry in this OPC satisfies a
normal distribution with mean zero and variance one. Second,
we add some noise to each data entry. The noise also satisfies
a normal distribution with mean zero and a controlled
variance σ. We set σ to zero initially and increase it gradually
by 10-7 at each step. With each σ value, we test the
satisfiability of the resulting data for both OPC and AOPC
models. At the beginning, since there is no noise in the dataset,
it satisfies both models. As σ increases, the resulting data
becomes messier. There exists some σ from which the data no
longer satisfies the model, we call this value turning point. We
want to find turning points for OPC model and AOPC model
respectively and compare their magnitude difference. In our
experiment, we totally generated 1000 clusters with various
sizes. The parameters δs and δc in AOPC model are set to be
0.2 and 0.6 respectively. For each of the 1000 test cases, we
record its turning points for OPC model and AOPC model
respectively. We plot histograms to compare the turning point
distribution under each model, as shown in Figure 2. To make
the figure more readable, we use a logarithmic scale lg(σ) for

the turning points (x-axis). In Figure 2, the blue histogram
shows the turning point distribution under OPC model while
the red one is under AOPC model. From the result we can see
that most turning points of OPC model are around 10-5 while
the turning points of AOPC model are mostly around 10-2. So
the turning points of OPC model are generally much smaller
than that of AOPC model. Small turning point indicates poor
robustness to noise. This experiment demonstrates that OPC
model fails to recognize the clusters when very small
perturbations are added while AOPC model can still discover
the original clusters in the presence of much higher level noise.
The big gap between blue and red distributions shows that
AOPC model is much more robust to noise than OPC model,
which is the key to discover significant clusters in real data.

Fig. 2 Blue and red histograms are the turning point distributions of the OPC
model and AOPC model respectively. The histograms are computed from
1000 test cases. Note the x-axis is in lg(σ)

V. MINING AOPC
In this section, we propose an algorithm to mine AOPCs in

a given dataset. Our algorithm can be divided into two phases.
We find all valid OPCs in the given dataset in Phase 1. In
Phase 2, we mine AOPCs from the result of Phase 1. The
general idea of this algorithm is inspired by the observation
we made in the introduction. As shown in Figure 1, the
presence of noise breaks original clusters into smaller ones
with overlap. So a natural thought is to reverse this process, i.e.
first find all small OPCs and then merge them to recover the
true clusters.

A. Mine OPCs
Given a dataset D, user-specified parameters smin and lmin,

Phase 1 finds all valid OPCs, i.e. with size at least smin and
order length at least lmin. We modify the original OPC mining
algorithm in [6]. This algorithm exhaustively enumerates all
OPCs from lower-dimensional space to higher-dimensional
space by adding one attribute at a time. It traverses the search
space in a depth-first order. The anti-monotonic property is
applied to prune the candidate subspaces that do not contain
any valid clusters.

We made some modifications to the original algorithm to
make it work well with Phase 2. The major changes we made
are as below. First, the original algorithm has a pre-processing

phase which groups attributes with similar values together.
This process not only introduces extra computation, but also
has the risk of missing some OPCs. In our algorithm, in order
to find more OPCs as a good foundation for Phase 2, we
remove this pre-processing phase. Second, the original
algorithm returns a set of OPCs without any order. However,
as we will explain later, to organize the OPCs in a way such
that similar OPCs are adjacent to each other is important for
the efficiency of Phase 2. Since the OPC algorithm traverses
the order space in depth-first manner, the OPCs generated in
consecutive steps are likely to have similar orders thus similar
to each other. Figure 3 illustrates this with an example. It
shows the search process of a set of three attributes {a, b, c}.
By depth-first searching manner, similar attribute orders such
as ab, abc, ac and acb are traversed in consecutive steps.
When the total number of attributes increases, this property is
more prominent. In order to take advantage of the temporal
locality of similar OPCs generated during the traversal of the
search space, we use a FIFO queue to store the OPCs in the
order of which they are generated. Due to space limitation, we
cannot cover every detail here. For more details of the OPC
algorithm, please refer to [6].

Fig. 3 The search process of the OPC mining algorithm for a dataset with
three attributes {a, b, c}

B. Recover True Clusters
In Section IV.B, we showed that an OPC corrupted by

noise can be modelled by AOPC model. However, generating
all AOPCs is NP-hard. Thus we propose an efficient greedy
algorithm to generate significant AOPCs. Specifically, we
propose a greedy algorithm to mine AOPCs through a
recursive merging process. The time complexity of this
algorithm is polynomial with respect to the number of OPCs
found in Phase 1. Based on this basic algorithm, we propose
an enhanced version with a hierarchical merge scheme which
is much faster. Experiment demonstrates that the AOPCs
generated by the enhanced algorithm are as significant as
those found by the basic algorithm.

1) Mine AOPCs by Merging
The basic process of Phase 2 is to merge smaller AOPCs

(initially OPCs) into bigger ones. To merge two AOPCs, we
first take the union of their object sets then construct a
common super-order of their orders as the consensus order of
the new AOPC. Among all common super-orders, the one
with the highest support is selected. The merge result is a
valid AOPC only if both consistency and supporting criteria in

Input
 δs, two AOPCs C1 and C2

Output
 succeed or fail

FILTER_TEST(C1, C2)
1. if size(core(C1∩C2))/size(C1∪C2) > δs, then
2. return succeed;
3. else
4. return fail;
5. end if;

DEFINITION 4.1 are satisfied. To verify them, we need to (1)
compute the LCS between the super-order and the order of
every object in the union to check whether the length of the
LCS is at least δc percent of the length of the super-order; (2)
confirm that the super-order is supported by at least δs percent
of the objects in the union. Since the merging process starts
from valid OPCs found in Phase 1, the sizes of all AOPCs
found are at least smin and their order lengths are at least lmin.
The computational complexity to fully test whether a pair of
AOPCs can be merged is O(smin×lmin

2). When the number of
AOPCs is large, doing this for every AOPC pair would be
very time consuming. Therefore, we propose a prefiltering
technique which can quickly exclude most AOPC pairs that
cannot be merged.

2) Prefiltering
In this section, we present a technique called prefiltering,

which can exclude most AOPC pairs that cannot be merged
with time complexity O(smin) for each AOPC pair. It is much
faster than performing the full test discussed above which has
time complexity O(smin×lmin

2) for each pair. The effectiveness
of prefiltering will be demonstrated in the experiment section.
In the following discussion, if C denotes an AOPC, then o(C)
denotes the order of C and core(C) denotes the core of C.

LEMMA 5.1 If C is an AOPC, then all objects follow o(C)
are in core(C).

Proof: Suppose that C is generated from Cn and Cn is
generated from Cn-1, …, and C1 is generated from C0, through
a series of merges, where C0,…,Cn are interim AOPCs and C0
is an OPC obtained in Phase 1. Because C is generated from
Cn, o(C) is a super-order of o(Cn). So any object follows o(C)
must also follow o(Cn). By the same token, they follow o(Cn-

1), …, o(C0) as well. On the other hand, since C0 is an OPC,
according to the assumption we made in Section II: all OPCs
returned are maximal, any object follows o(C0) is in C0. Since
no object is removed during any merge operation, any object
in C0 is in C. So any object follows o(C) is in C, thus in
core(C).

THEOREM 5.2 A necessary condition under which two
given AOPCs C1 and C2 can be merged is:

1 2

1 2

| () () |

| | s

core C core C

C C
δ

∩
>

∪
 (3)

Proof: Suppose that C1 and C2 can be merged, and C is the
AOPC after merge. For any object in core(C), it follows o(C).
Since o(C) is a super-order of both o(C1) and o(C2), this object
follows o(C1) and o(C2) as well. From LEMMA 5.1, we know
that this object is in core(C1) and core(C2) at the same time.
Thus,

1 2| () | | () () |core C core C core C≤ ∩ (4)

During the merge, the object set of C is generated by taking
the union of the object sets of C1 and C2. Thus,

1 2| | | |C C C= ∪ (5)

Finally, according to the definition of AOPC, we have

()

| | s

core C

C
δ> (6)

Therefore, Eq. (4) – Eq. (6) imply Eq. (3) holds.

Based on THEOREM 5.2, we propose a linear time test
called FILTER_TEST for each AOPC pair as shown in Figure
4. Each AOPC pair will first take this test before the merge
routine. Those pairs failing this test will not be merged. Since
this test only requires an intersection and a union operation of
two sets, the time complexity is linear with respect to the size
of the AOPCs. In addition to FILTER_TEST, COROLLARY
5.3 suggests that we should exclude an AOPC from future
merge attempt if its FILTER_TEST with all other AOPCs fail.
With FILTER_TEST, the algorithm can speedup substantially
which we will show in the experiment section.

COROLLARY 5.3 During the merge process, if the
FILTER_TEST for an AOPC C with every other AOPC fails,
C need not be considered for future merge.

Proof: From THEOREM 5.2 we know that the core of the
newly merged AOPC is a subset of the intersection of the
cores of two AOPCs before merge. After each subsequent
merge, the size of the core decreases while the size of the
AOPC increases. Thus, the ratio at the left hand side of Eq. (3)
decreases monotonically after each merge. Once it fails below
δs when we do FILTER_TEST between C and any other
AOPC, there is no need to do the FILTER_TEST for C in the
future. This is because all new AOPCs in future are generated
by merging current AOPCs. Thus it is impossible for C to be
merged with another AOPC in the future.

Fig. 4 FILTER_TEST

3) The Basic Algorithm
We propose a greedy algorithm consisting of a series of

iterations. The algorithm selects and merges the best pair of
AOPCs at each iteration. If two AOPCs C1 and C2 pass both

Phase 2 (Basic)
Input
 δc, δs
 FIFO queue Q contains OPCs found in Phase 1

Output
 A set of AOPCs

Algorithm
1. AD := Φ;
2. for (Ci, Cj) ∈ Q×Q, do
3. if FILTER_TEST(Ci, Cj)=succeed, then
4. if FULL_TEST(Ci, Cj)=succeed, then
5. AD.push(AD(Ci, Cj));
6. end if;
7. end if;
8. end if;
9. while !AD.empty(), do
10. merge (Ci, Cj) with the max AD to C;
11. Q.push(C);
12. AD.pop();
13. Q.delete(Ci); Q.delete(Cj);
14. for Ci ∈ Q, do
15. if FILTER_TEST(Ci, C)=succeed, then
16. if FULL_TEST(Ci, C)=succeed, then
17. AD.push(AD(Ci, C));
18. end if;
19. end if;
20. end for;
21. end while;
Subroutine: FULL_TEST(Ci, Cj)
1. vote and determine super-order o;
2. s := 0;
3. for any x in Ci∪Cj, do
4. l := LCS(o(x), o).length;
5. if l ≤ o.length×δc, then
6. return fail;
7. else if l = o.length, then
8. s := s+1;
9. end if;
10. end for;
11. if s ≤ |Ci∪Cj|×δs, then
12. return fail;
13. else
14. return succeed;
end if;

the FILTER_TEST and the full test, we compute their
adhesion (AD value) as follows:

1 2
1 2

| ((), ()) || () |
(,)

| | | () |

LCS o C o Ccore C
AD C C

C o C
= × (7)

where C denotes the resulting AOPC, should C1 and C2 be
merged. The intuition behind this is that the more the objects
supporting the new super-order and the more similar o(C1)
and o(C2) are, the more likely C1 and C2 should be merged.

Initially, the algorithm starts from the OPCs found in Phase
1. It prefilters most AOPC pairs that cannot be merged. For
the rest pairs, it computes the adhesion for those pass the full
test. Among them, the AOPC pair with the highest adhesion is
selected to merge into a new AOPC. At each subsequent
iteration, the above operations are only need to be done
between the newly generated AOPC and other existing
AOPCs. This process iterates until no new AOPC can be
generated. The pseudo code is shown in Figure 5.

To analyse the complexity of this algorithm, let us assume
that totally N OPCs are found in Phase 1. Before the first
merge, the algorithm needs to do an operation on each AOPC
pair, with totally O(N2) operations. Each operation can be
either a prefiltering test or a full test (only if the pair passes
the prefiltering test, the full test is needed). After that, at each
iteration, the operations are only need to be done between the
newly generated AOPC and other existing AOPCs. So there
are totally O(N) operations at each iteration. To find the
largest AD value in an efficient way, we keep all AD values in
a priority queue. The complexity of pushing and popping of
this queue is O(lgN) at each iteration. Since each merge
decreases the number of AOPCs by one, there are at most O(N)
iterations. So the complexity of this algorithm is
O(N2m+N2(lgN+m))) = O(N2(lgN+m)), where m denotes the
average cost of a single operation for each AOPC pair. If a
pair can be prefiltered, then this cost is only O(smin), otherwise
it is O(smin×lmin

2), where smin and lmin define the valid OPC in
Phase 1. Since most pairs can be prefiltered (we will
demonstrate this in the experiment section), m is close to
O(smin). So the average complexity of this algorithm is
O(smin×N2lgN) practically.

4) Hierarchical Merging
A possible way to speed up the algorithm is to use a

hierarchical merge scheme. In such a scheme, we first
partition the OPCs generated by Phase 1 into groups. There
are 2n groups at the nth level. Starting from Level n, we run
the basic algorithm in each group. Then we take the union of
the resulting AOPCs for each pair of sibling groups and
proceed to Level n-1. The basic algorithm is to run repeatedly
in each new group and generate AOPCs that will be used as
the initial input to Level n-2. This procedure repeats until only
one group is left as illustrated by Figure 6.

The time complexity of this scheme is 2p2n+2/(2p2-1) times
the cost of the basic algorithm, where n is the number of
hierarchical levels and p is an average fraction of AOPCs
remaining after merge for each group, i.e. the ratio between

the numbers of AOPCs after and before merge. The analysis
details can be found in the appendix. This result suggests that
a smaller p value makes the hierarchical merging scheme
more effective. Therefore, it is desirable to group AOPCs that
are likely to be merged so that the number of AOPCs to be
carried to the next level is less. Thus when initially
partitioning the OPCs at Level n, we want to put similar OPCs
in the same group. As we discussed in Section V.A, the search
method and the FIFO queue employed in Phase 1 naturally
support this objective. The pseudo code of the hierarchical
merge algorithm is shown in Figure 7.

Fig. 5 Basic algorithm of Phase 2

Fig. 6 n-level hierarchical merging scheme

Fig. 7 Enhanced algorithm of Phase 2

VI. EXPERIMENTS
In this section, we study the performance of our algorithm

through a series of experiments. To make the experiment
results more realistic and thus convincing, we conduct all
experiments on a real gene expression dataset. This dataset is
the yeast cell cycle data from [9]. Each row of this dataset
records the expression levels across 18 time points for a gene.
Totally 799 genes are in this dataset. All experiments were run
on a 3.4GHz Dell PC with 2G memory.

A. Choose Parameters Properly
First, we study the influence of the input parameters to the

mining results and provide some guidance on how to choose
them properly. There are totally four parameters that need to
be specified in our algorithm. In Phase 1, smin and lmin are set
to define the valid OPC. In Phase 2, δc, δs are set to define the
AOPC. In principle, the optimal values of these parameters
depend on the size and shape of the salient clusters and the
level and distribution of noise in the dataset. For our dataset,
we use smin=60, lmin=5 and found 682 OPCs in 495 seconds.
As for δc and δs, they are often set to some moderate level to
control the noise tolerance. As a rule of thumb, δs should be
no larger than 0.5, otherwise it is too strict to prevent AOPCs
from being merged; δc should be in [0.6, 0.8], since a too

small value tends to include too much noise and thus
decreases the significance of the results. Figure 8 shows the
number of AOPCs found and the runtime under several (δc, δs)
settings. Note that this result is without hierarchical merging.
We can see that, as δc and δs decrease, more merges are
performed (thus fewer AOPCs are returned) and the runtime is
longer.

Fig. 8 The number of AOPCs found and runtime under different (δc, δs)
settings, initially 682 OPCs

B. Efficiency of Optimizations
The experiments in this section are run with δc=0.6, δs=0.2.

We ran Phase 2 with and without prefiltering, and with
varying levels of hierarchical merging from 0 to 6, which
correspond to 1, 2, 4, 8, 16, 32 and 64 leaf groups after initial
partition. Note that the case of level 0 is essentially the basic
algorithm. The result is shown in Figure 9, where #Group
shows the number of initial groups. From the result we can see
that the hierarchical merging with initially 64 groups can have
an order of magnitude speedup over the basic algorithm. Plus,
for all cases, prefiltering can also expedite the execution
substantially. For the 64-group initial partition, we also
compare the results of terminating the algorithm when 4, 2
and 1 group(s) are left respectively. The result is shown in
Table II. The set of AOPCs when there are 4 groups left does
not differ much from that of the final outcome (i.e., 1 group
left). But the running time differs by half. This is because few
new AOPCs are generated during the last two merging levels.
(Most merge attempts fail to generate new AOPCs.) This fact
suggests that we can consider terminating the algorithm earlier
to gain more speed advantage.

Phase 2 (Hierarchical merge)
Input
 δc, δs, n (hierarchical levels)
 FIFO queue Q contains OPCs found in Phase 1

Output
 A set of AOPCs

Algorithm:
1. for i := 0 to 2n-1, do
2. Gi := Q[i×Q.size/2n, (i+1)×Q.size/2n-1];
3. end for;
4. for l := n downto 1, do /* for each level */
5. for any i, do
6. run basic algorithm for Gi;
7. end for;
8. for i := 0 to 2l-1, do
9. merge G2i with G2i+1;
10. end for;
11. end for;

Fig. 9 Runtime of merging with different hierarchical levels with and without
prefiltering

Figure 10 gives the percentage of AOPC pairs that are
prefiltered under different (δc, δs) settings. For all cases, more
than half of the AOPC pairs were prefiltered. The stricter the
thresholds are, the more pairs that can be prefiltered. So the
prefiltering stage plays an important role in speeding up the
algorithm. The quality comparison of the results with and
without hierarchical merging is discussed in next section.

Fig. 10 Percentage of AOPC pairs prefiltered under different (δc, δs) settings

TABLE II
RESULTS WITH DIFFERENT STOP CRITERIA

#Groups when stop Runtime(s) #Cluster Found
4 96 285
2 142 276
1 229 267

C. Significance of the Result
Finally, we evaluate the quality of AOPCs found by our

algorithm. We compare their significance with the OPCs
found in Phase 1, since these are the result under the strict
model. As mentioned in Section VI.A, with smin=60, lmin=5,
totally 682 OPCs were found. While with δc=0.6, δs=0.2, the
basic algorithm found 262 AOPCs and the enhanced
algorithm with 64-group initial partition found 267 AOPCs.
For each cluster, we evaluate its biological significance by
calculating its association strength with different gene
categories according to the Fisher’s exact test [10]. The
known gene categories are based on gene ontology
information from [11]. Smaller p-value indicates stronger
association and thus is more significant. For each cluster, we

record the number of categories it strongly associates with (p-
value ≤ 10-9). Table III summarizes the distribution of this
number for each method. 49 out of 262 AOPCs by the basic
algorithm have more than six strongly associated categories;
this number changes to 50 out of 267 by the hierarchical
merging algorithm with 64-group initial partition. But under
OPC model, there are only 14 out of 682 OPCs have such
significance. The advantage of the AOPC model is even more
prominent if a stronger association category cut-off is used.
Moreover, there is little difference in the significance of the
result of basic algorithm and that of hierarchical merging. This
means that the hierarchical merging can speed up the mining
process without scarifying the result significance. Note that
the number of AOPCs is much smaller than that of OPCs, thus
the percentage of high quality clusters of AOPC model is
much higher than that of OPC model.

We also trace the merge process of an AOPC and compare
its biological significance with all the six OPCs it is merged
from. This result is summarized in Table IV. The AOPC has
stronger associations to 5-7 categories (highlighted by bold
fonts) than each OPC individually. This demonstrates that the
AOPC found by our algorithm is biologically more significant
than every single OPC it is merged from. Thus the merging
process is an effective way to discover more significant
clusters.

VII. CONCLUSIONS
In this paper, we study the problem of subspace OPC

mining with noise tolerance. Due to its challenging nature, no
previous work has been done on this topic. In this paper, we
propose a new model called approximate order preserving
cluster (AOPC). This model is proven to be more robust to
noise than OPC model. In addition to its robustness, this
model also has several good properties which allow us to mine
the AOPCs using an efficient greedy algorithm. We propose a
prefiltering technique which can quickly exclude most AOPC
pairs that cannot be merged. We also propose a hierarchical
merging scheme to further improve the execution time.
Experiments on real gene expression data demonstrate that
these techniques are efficient to speed up the mining process
and the AOPCs are more biologically significant than the
OPCs. Note that, although our experiments are run on gene
expression data, the method presented in this paper can be
used widely in many applications beyond gene expression
analysis.

REFERENCES
[1] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high

dimensional data: a review”, ACM SIGKDD Explorations Newsletter,
Volume 6, Issue 1, 2004, pp. 90-105.

[2] A. Ben-Dor, B. Chor, R.M. Karp and Z. Yakhini, “Discovering local
structure in gene expression data: the order-preserving submatrix
problem”, Journal of Computational Biology 10(3/4), 2003, pp. 373-
384.

[3] Y. Cheng and G.Church, “Biclustering of expression data”, In
Proceedings of the 8th International Conference on Intelligent System
for Molecular Biology, 2000.

[4] H. Wang, W. Wang, J. Yang and P. Yu, “Clustering by pattern
similarity in large data sets”, In Proceedings of the ACM SIGMOD

TABLE III
THE DISTRIBUTIONS OF CLUSTERS FOUND BY THREE METHODS IN DIFFERENT INTERVALS OF NUMBER OF STRONGLY ASSOCIATED GENE CATEGORIES. (#)

BEHIND EACH METHOD INDICATES THE TOTAL NUMBER OF CLUSTERS FOUND BY IT

#Gene Categories A Cluster Strongly Associates ≤5 >5 >6 >7 >8 >9 >10
OPC (682) 574 108 14 4 2 2 0

AOPC found by the basic algorithm (262) 161 101 49 29 17 9 6
AOPC found by hierarchical merge, initially 64 groups (267) 170 97 50 27 17 10 6

TABLE IV
P-VALUES FOR EACH GENE CATEGORY OF A AOPC FOUND BY OUR ALGORITHM AND THE SIX OPCS THE AOPCS WAS MERGED FROM; (#) BEHIND EACH

CLUSTER INDICATES ITS SIZE

Gene Categories AOPC(134) OPC1(69) OPC2(71) OPC3(69) OPC4(73) OPC5(77) OPC6(65)
cell 10-15 10-15 10-15 10-15 10-15 10-15 10-14
bud 10-11 10-4 10-7 10-10 10-4 10-3 10-5

intracellular 10-15 10-15 10-15 10-15 10-15 10-15 10-15
cytoplasm 10-15 10-15 10-15 10-15 10-15 10-15 10-15

nucleus 10-15 10-8 10-10 10-11 10-11 10-15 10-11
membrane 10-15 10-15 10-13 10-11 10-15 10-13 10-12

integral 10-11 10-10 10-6 10-10 10-8 10-4 10-7
plasma 10-13 10-6 10-5 10-6 10-7 10-7 10-7

sensu Fungi 10-10 10-4 10-6 10-6 10-2 10-3 10-7

International Conference on Management of Data (SIGMOD), pp.
394-405, 2002.

[5] X. Xu, Y. Liu, K. H. Tung and W. Wang, “Mining shifting-and-scaling
co-regulation patterns on gene expression profiles”, In Proceedings of
the 22nd IEEE International Conference on Data Engineering (ICDE),
pp. 89-98, 2006.

[6] J.Z. Liu and W. Wang, “OP-Cluster: Clustering by tendency in high
dimensional space”, In Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM), 2003, pp. 187-194.

[7] J.Z. Liu, S. Paulsen, X. Sun, W. Wang, A. Nobel and J. Prins, “Mining
Approximate frequent itemset in the presence of noise: algorithm and
analysis”, In Proceedings of the 6th SIAM Conference on Data Mining
(SDM), pp. 405-416, 2006.

[8] L. Bergroth, H. Hakonen and T. Raita, “A survey of longest common
subsequence algorithms”, SPIRE, pp 39-48, 2000.

[9] Spellman et al., “Comprehensive identification of cell cycle-regulated
genes of the yeast saccharomyces cerevisiae by microarray
hybridization”, Molecular Biology of the Cell 9, 1998, pp. 3273-3297.

[10] Fisher, R.A.(1922), “On the interpretation of χ2 from contingency
tables, and the calculation of P”, Journal of the Royal Statistical
Society 85(1): pp. 87-94.

[11] Gene ontology consortium, www.geneontology.org.

APPENDIX
Suppose Phase 2 starts from N OPCs found in Phase 1 and

the time used by the basic algorithm is Tb. As discussed in
Section V.B.3, for fixed smin, Tb = O(N2lgN), thus we can write
Tb as Tb = c×N2lgN, where c is a constant related to smin. In the
following discussion, p denotes the average percentage of
AOPCs remaining after merging in each group, i.e. the ratio
between the numbers of AOPCs after and before merge. The
total time used by the hierarchical version and the time used at
Level n are denoted as Th and Tn respectively. We now derive
the average time used by the hierarchical version with n levels.
We start from Level n.

At Level n, there are 2n groups each contains N/2n OPCs.
Each group consumes c×(N/2n)2lg(N/2n)) time for the basic
algorithm. Thu we have:

2

2

2

2 (/ 2) lg(/ 2)

(lg lg 2) / 2

lg / 2 / 2

n n n

n n

n n

n

b

T c N N

c N N

c N N T

= × ×

= × −

< × =

 (a.1)

When the merge at Level n terminates, each group has p×N/2n
AOPCs. Then the algorithm proceeds to Level n-1, two
sibling groups are merged to one. Now we have 2n-1 groups,
each contains p×N/2n-1 AOPCs. Similarly, the time used in
each group is smaller than p2×T/(2n-1)2, thus we have:

Tn-1 < 2n-1×p2×T/(2n-1)2 = p2×Tb/2n-1 (a.2)

For Level n-k, we have:

Tn-k < p2k×Tb/2n-k, k = 0, 1, …, n (a.3)

Taking the sum of Tk for all k = 0, 1, …, n, we get the total
time used by the hierarchical merging scheme:

2

0 0

2

0

2 1 2 2

2 2

2

(2)
2

(2) 1 2

2 2 1 2 1

n n
k

h k n k
k k

n
k

n
k

n n

n

b

b

b
b

T
T T p

T
p

T p p
T

p p

−
= =

=

+ +

= < ×

= ×

−
= × < ×

− −

∑ ∑

∑ (a.4)

Since 0<p<1, as n increases, the dividend of Eq. (a.4)
decreases faster than the denominator. Eq. (a.4) suggests that
more hierarchical levels and smaller p make the advantage of
the hierarchical merging scheme more prominent.

