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ABSTRACT A general Bayesian model, Diploffect, is described for estimating the effects of founder haplotypes at quantitative trait loci
(QTL) detected in multiparental genetic populations; such populations include the Collaborative Cross (CC), Heterogeneous Socks (HS),
and many others for which local genetic variation is well described by an underlying, usually probabilistically inferred, haplotype
mosaic. Our aim is to provide a framework for coherent estimation of haplotype and diplotype (haplotype pair) effects that takes into
account the following: uncertainty in haplotype composition for each individual; uncertainty arising from small sample sizes and
infrequently observed haplotype combinations; possible effects of dominance (for noninbred subjects); genetic background; and that
provides a means to incorporate data that may be incomplete or has a hierarchical structure. Using the results of a probabilistic
haplotype reconstruction as prior information, we obtain posterior distributions at the QTL for both haplotype effects and haplotype
composition. Two alternative computational approaches are supplied: a Markov chain Monte Carlo sampler and a procedure based on
importance sampling of integrated nested Laplace approximations. Using simulations of QTL in the incipient CC (pre-CC) and
Northport HS populations, we compare the accuracy of Diploffect, approximations to it, and more commonly used approaches based
on Haley–Knott regression, describing trade-offs between these methods. We also estimate effects for three QTL previously identified
in those populations, obtaining posterior intervals that describe how the phenotype might be affected by diplotype substitutions at the
modeled locus.

AN increasingly well-established paradigm for investi-
gating the genetics of complex traits is the multiparent

cross (Churchill et al. 2004; Cavanagh et al. 2008; Kover et al.
2009; Johannesson et al. 2009; Huang et al. 2012; King et al.
2012a; Svenson et al. 2012; Bandillo et al. 2013; Mackay
et al. 2014), and an increasingly popular target for genetic
and phenotypic analysis is its result, the multiparent popula-
tion (e.g., Talbot et al. 1999; Valdar et al. 2006a,b; Huang et al.
2009; Aylor et al. 2011; Huang et al. 2011; Collaborative Cross
Consortium 2012; Baud et al. 2013; Marriage et al. 2014; Tsaih
et al. 2014). In a multiparent cross, a select set of known
founders is combined and bred to an advanced generation to
create a population of individuals whose genomes are mosaics
of the original founder haplotypes; this multiparent population

is then well suited for detection of quantitative trait loci (QTL)
mapping through linkage disequilibrium (LD) mapping—that
is, QTL mapping based on inferred descent. The development
of statistical methods for LD mapping in these populations has
largely focused on QTL detection (e.g., Mott et al. 2000; Valdar
et al. 2009; Durrant and Mott 2010; Huang and George 2011;
Yuan et al. 2011; Zhang et al. 2012). Methods to characterize
the effects at detected QTL, however, namely those estimat-
ing how inheritance of alternate founder haplotypes drives
phenotypic outcome (a key step in the design of follow-up
studies), are relatively underdeveloped. This is particularly
so for populations in which the identity of the haplotypes
at the QTL is probabilistically inferred, where estimation
of haplotype effects must proceed despite the fact that hap-
lotype composition is itself uncertain.

Uncertainty in haplotype composition arises because hap-
lotypes are not themselves the direct target of genotyping
or sequencing assays. In a multiparent population, where the
number of founders is J . 2, the markers used to genotype
individuals will not be fully informative for descent at all (or
often any) loci, and so the underlying haplotype mosaic of
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each individual must be inferred. Inference of the haplotype
mosaic is typically performed using a suitably constructed
hidden Markov model (HMM) (e.g., Mott et al. 2000; Liu
et al. 2010; King et al. 2012b; Gatti et al. 2014) and produces
for each individual at each locus a list of probabilities describ-
ing likely descent. For a diploid organism, this list enumerates
the posterior probability of having inherited each haplotype
pair (diplotype), given available genotype information on the
individual and its founders.

Use of inferred haplotype composition rather than ob-
served genotypes when testing for genetic association con-
fers important advantages, including: automatic modeling
of all ungenotyped, incompletely determined, or entirely
uncharacterized genetic variants; increased robustness to
genotyping errors due to borrowing of information across
markers; implicit modeling of LD decay, leading to a clearer
picture of available mapping resolution; and automatic
modeling of local epistasis. This last benefit arises from
the fact that the heritable range of allelic combinations of all
variants within a QTL region is concisely circumscribed by
local haplotype descent; this provides a more comprehen-
sive account of genetic variation and thereby allows QTL to
be detected with increased power.

Strictly speaking, QTL mapping based on inferred hap-
lotypes should account for haplotype uncertainty (Lander
and Botstein 1989), an idealized framework inferring both
association and composition simultaneously (Lin and Zeng
2006). For large-scale detection of QTL, however, such com-
bined inference is usually computationally impractical; it is
also largely unnecessary given the existence of fast and pow-
erful regression-based alternatives. Specifically, rapid and
highly flexible detection of QTL can be achieved by treat-
ing the inferred diplotype probabilities, or transformations
thereof, as fixed covariates in an ordinary regression (Haley
and Knott 1992; Mott et al. 2000; Zaykin et al. 2002). In
particular, under additive genetic assumptions, the J(J 2 1)
diplotype probabilties (or J2 if phase is distinguished) can be
condensed into a (J 2 1)-d.f. vector of expected haplotype
counts; these “haplotype dosages” can then be used to de-
tect additive “haplotype effects.” This general approach,
which we term regression on probabilities (ROP), is not only
highly scalable but also, due to the ubiquity and flexibility of
linear modeling software, relatively simple to implement, at
least once diplotype probabilities are provided. Indeed, for
LD mapping in multiparent populations, ROP has become
the dominant approach (Kover et al. 2009; Aylor et al. 2011;
Svenson et al. 2012).

Although ROP is powerful for QTL detection, it is prob-
lematic when applied to subsequent characterization of QTL
effects. Treating probabilities of unobserved diplotypes as
if they were observed fractional dosages means that un-
certainty about haplotype composition fails to propagate
into haplotype effect estimation; although this has minimal
(or at least controllable) impact on significance testing (e.g.,
Broman and Sen 2009; Rönnegård and Valdar 2011), it can
lead to estimates of effects that are inflated, unstable, and

misleading. An artificial example is given in Table 1, in
which at a given QTL each of two individuals has one of
two diplotypes, A or B. Regression on the diplotypes (if
known) would estimate the substitution effect as 1; regres-
sion on inferred diplotype probabilities, which in this exam-
ple are highly uncertain but nonetheless accurate in placing
more probability on the correct answer, leads to the differ-
ence in the estimated effects of diplotype A and B being 50.
Both estimations fit their input data equally well; applied to
new inputs of the same form (specifically, the same degree of
uncertainty), they would give equally accurate predictions.
However, using the ROP estimate of 50 to predict phenotype
for individuals where diplotype is known (e.g., by design), or
even where it is inferred with greater certainty, would
clearly result in poor accuracy.

As the number of possible diplotype states grows (e.g., J =
8 founders implies 36 states, ignoring phase), the problem of
inflated estimates increases and is compounded with addi-
tional problems of multicollinearity, whereby higher-order
confounding in diplotype inference leads to linear depen-
dence that in turn reduces the effective number of parameters
estimable by ordinary regression. Although this multicollin-
earity can be circumvented by full rank factorization (e.g.,
appendix A of Valdar et al. 2009) or ridge-type penalization
(e.g., Solberg Woods et al. 2012), such fixes severely limit the
interpretability and/or validity of downstream inference.

Estimating effects of latent genetic states has been
considered by a number of authors. For example, Sillanpaa
and Arjas (1998, 1999) advanced a fully Bayesian treatment
for multilocus interval mapping in inbred and outbred popu-
lations derived from two founders. More recently, and directly
relevant to multiparent populations, Kover et al. (2009), after
using ROP to detect QTL in the Arabidopsis multiparent re-
combinant inbred population, estimated additive haplotype
effects using multiple imputation: Sampling unobserved
diplotypes from the inferred diplotype probabilities and then
averaging least-squares estimates of haplotype effects from
the imputed data sets. That approach was extended by
Durrant and Mott (2010), who describe a partially Bayesian
mixed model of QTL mapping: By focusing on additive effects
of QTL for normally distributed traits with no additional
covariates or population structure, they provided an efficient
method for combined multiple imputation and shrinkage es-
timation via complete factorization of a pseudo-posterior.

Here we build on work of Kover et al. (2009), Durrant and
Mott (2010), and others, developing a flexible framework for
estimating haplotype-based additive and dominance effects at
QTL detected in multiparent populations in which haplotype
descent has been previously inferred. Our Bayesian hierarchi-
cal model, Diploffect, induces variable shrinkage to obtain full
posterior distributions for additive and dominance effects that
take account of both uncertainty in the haplotype composition
at the QTL and confounding factors such as polygenic or
sibship effects. In basing our model around existing, extend-
able software, we describe a flexible framework that accom-
modates non-normal phenotypes. In addition, by using a model
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that is fully Bayesian, at least once conditioning on HMM-
inferred diplotype probabilities, we exploit an opportunity un-
tapped by earlier methods: The potential, when phenotypes
and uncertain haplotypes are modeled jointly, for phenotypic
data to inform and improve inference about haplotype config-
uration at the QTL as well as vice versa. To provide practical
solutions and perspectives on relative trade-offs, we demon-
strate two implementations of our model and compare their
performance in terms of accuracy and running time to simpler
procedures.

Statistical Models and Methods

We consider the following increasingly common scenario. A
complex trait y = (y1, . . . , yn) has been measured in n indi-
viduals i = 1, . . ., n from a multiparent population derived
from J $ 2 founders j = 1, . . . , J. Both the individuals and
founders have been genotyped at high density, and, based on
this information, for each individual descent across the ge-
nome has been probabilistically inferred. A one-dimensional
genome scan of the trait has been performed using a variant
of Haley–Knott regression, whereby a linear model (LM) or,
more generally, a generalized linear mixed model (GLMM)
tests at each locus m = 1, . . . ,M for a significant association
between the trait and the inferred probabilities of descent.
(Note that it is assumed that the GLMM could be controlling
for multiple experimental covariates and effects of genetic
background and that its repeated application for largeM, both
during association testing and in establishment of significance
thresholds, may incur an already substantial computational
burden.) This scan identifies one or more QTL; and for each
such detected QTL, initial interest then focuses on reliable
estimation of its marginal effects—specifically, the effect on
the trait of substituting one type of descent for another, this
being most relevant to follow-up experiments in which, for
example, haplotype combinations may be varied by design.

To address estimation in this context, we start by de-
scribing a haplotype-based decomposition of QTL effects
under the assumption that descent at the QTL is known. We
then describe a Bayesian hierarchical model, Diploffect, for
estimating such effects when descent is unknown but is
available probabilistically. To estimate the parameters of this
model, two alternate procedures are presented, representing
different trade-offs between computational speed, required
expertise of use, and modeling flexibility. A selection of
alternative estimation approaches is then described, in-
cluding a partially Bayesian approximation to Diploffect

and several non-Bayesian estimators that use regression on
probabilities. (A summary list of all estimation procedures
evaluated is given in Table 2.)

Haplotypes and diplotype states

The genetic state at locus m in each individual of a multi-
parent population can be described in terms of the pair of
founder haplotypes present, that is, the diplotype state. We
encode the diplotype state for individual i at locus m, using
the J 3 J indicator matrix Di(m), defined as follows. For
maternally inherited founder haplotype j 2 {1, . . . , J} and
paternally inherited haplotype k 2 {1, . . . , J}, which to-
gether correspond to diplotype jk, the entry in the jth row
and the kth column of Di(m) is {Di(m)}jk = 1, with all other
elements being zero. Diplotype jk is defined as homozygous
when j = k and heterozygous when j 6¼ k. Under the het-
erozygote diplotype, when parent of origin is unknown or
disregarded, jk [ kj and it is assumed that {Di(m)}jk +
{Di(m)}kj = 1.

Haplotype effects, diplotype effects, and
dominance deviations

The effect at locus m of substituting one diplotype for an-
other on the trait value can be expressed using a GLMM of
the form yi � Target(Link21(hi), j), where Target is the
sampling distribution, Link is the link function, hi models
the expected value of yi and in part depends on diplotype
state, and j represents other parameters in the sampling
distribution; for example, with a normal target distribution
and identity link, yi � N(hi, s2), and E(yi) = hi. In what
follows, it is assumed that effects of other known influential
factors, including other QTL, polygenes, and experimental
covariates, are modeled to an acceptable extent within the
GLMM itself, either implicitly in the sampling distribution or
explicitly through additional terms in hi.

Under the assumption that haplotype effects combine
additively to influence the phenotype, the linear predictor
can be minimally modeled as

hi ¼ mþ bTaddðDiðmÞÞ; (1)

where add(X) = 1T(X + XT) such that b is a zero-centered
J-vector of (additive) haplotype effects, and m is an intercept
term. The assumption of additivity can be relaxed to admit
effects of dominance by introducing a dominance deviation:

hi ¼ mþ bTaddðDiðmÞÞ þ gTdomðDiðmÞÞ: (2)

The definitions of dom(X) and g depend on whether the
reciprocal heterozygous diplotypes jk and kj are modeled to
have equivalent effects. If so, then dominance is symmetric:
dom(X) is defined as dom.sym(X) = vec(upper.tri(X +
XT)), where upper.tri() returns only elements above the di-
agonal of a matrix, and zero-centered effects vector g has
length J(J2 1)/2. Otherwise, if diplotype effects are modeled
to differ by parent of origin, then dominance is asymmetric:
dom(X) is defined as dom.asym(X) = vec(off-diag(X)),

Table 1 Illustrative example of true diplotype state vs. inferred
diplotype probabilities for two individuals at a QTL

True diplotype
Inferred diplotype

probability

Individual A B A B Phenotype

1 1 0 0.51 0.49 1
2 0 1 0.49 0.51 0
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where off-diag returns all off-diagonal elements, and zero-
centered g has length J2 2 J. Throughout the remainder of
the article, for simplicity, dominance is modeled as symmetric.
For notational convenience, we further define the diplotype
effects, d, as composed of

djk ¼ bj þ bk þ Iðj 6¼ kÞgðjkÞ (3)

for all distinguishable jk. Definitions of b and d (if instead
estimated directly) are analogous to “additive” and “full”
models defined in Yalcin et al. (2005).

Haplotype inference and diplotype probabilities

In practice, the diplotype state at a locus m cannot be ob-
served directly, but it can be inferred probabilistically from
genotype data (e.g., Broman and Sen 2009). Denoting avail-
able genotype data on individuals as G ¼ fG1; . . . ;Gng and
genotype information on the founders as H ¼ fH1; . . . ;HJg;
haplotype reconstruction algorithms based on a hidden
Markov model typically seek to estimate for each individual
i at each locus m = 1, . . . ,M a J 3 J matrix of inferred
diplotype probabilities,

PiðmÞ ¼ p
�
DiðmÞjGi;H

�
; (4)

where each element {Pi(m)}jk contains the probability that
diplotype jk is present and where in more sophisticated
algorithms additional terms may be present in the condition-
ing statement (e.g., G in place of Gi). Diplotype state is
therefore modeled as if drawn from a categorical distribu-
tion with probability parameter Pi(m), i.e.,

DiðmÞ � CatðPiðmÞÞ; i ¼ 1; . . . ; n: (5)

In the HAPPY formulation of Mott et al. (2000), which we
adopt here, element {Pi(m)}jk is the HMM-derived Baum–

Welsh probability of diplotype jk, averaged over the interval
between two adjacent markers m and m + 1. In other
words, {Pi(m)}jk is approximately the probability that a ran-
domly chosen point within the interval inherits from the
diplotype jk. When descent is both constant within the in-
terval and unambiguous, Pi(m) = Di(m); otherwise Pi(m)
represents a hedged bet on which diplotype is present, and
typically becomes less informed as a function of marker
sparsity, recombination density, and genotyping error.

Diploffect: Bayesian inference of QTL effects conditional
on diplotype probabilities

When haplotype composition at a QTL, D = {D1(m), . . . ,
Dn(m)}, is available only as inferred diplotype probabilities,
C = Pi(m), . . . , Pn(m), estimation of QTL effects can be
naturally framed as a Bayesian integration. Defining for
convenience all parameters relating to the QTL effect (and
not to diplotype state) as u = {b, g, . . .}, diplotype states
D and effects u can be considered latent variables in the joint
posterior

pðu;DjC; yÞ} pðyju;DÞpðDjCÞ pðuÞ: (6)

Here, the phenotype is modeled in the likelihood p(y|u, D)
as a function of the effects u and the diplotypes D; the
diplotype states D are in turn modeled as latent categorical
variables with prior p(D|C). Two important consequences
follow. First, the posterior distribution of effects

pðujC; yÞ ¼
Z

pðu;DjC; yÞdD; (7)

from which can be obtained all estimates and intervals of
haplotype effects, dominance deviations, and diplotype
effects, averages over plausible diplotype configurations; this
leads to effect estimates of u, including interval estimates,
that incorporate uncertainty in diplotype state. Second, a
posterior distribution conditional on the phenotype y is
generated for the diplotype state D:

pðDjC; yÞ ¼
Z

pðu;DjC; yÞdu: (8)

This posterior is a Bayesian update of prior C ¼ pðDjG;HÞ
from Equation 4. Specifically, since the prior of diplotypes
is a categorical distribution, the marginal posterior of the
diplotype is also categorical,

pðDiðmÞjQ;C; yÞ
� Cat

�
Q
�
DiðmÞ11

�
;Q

�
DiðmÞ12

�
; . . . ;Q

�
DiðmÞJJ

�
;

(9)

where

Q
�
DiðmÞjk

� ¼ p
�
DiðmÞjk ¼ 1jyi; u;PiðmÞ�} PiðmÞjk|fflfflfflffl{zfflfflfflffl}

prior

3 p
�
yiju;DiðmÞjk ¼ 1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

likelihood

:
(10)

Table 2 Summary of the estimation procedures evaluated in this article

Model Description ROP

partial.lm Each haplotype (additive) effect estimated by single predictor regression Yes
ridge.add Ridge regression modeling additive effects Yes
ridge.dom Ridge regression modeling both additive and dominance effects Yes
DF.IS.noweight Approx. Diploffect using INLA and multiple imputation No
DF.IS Diploffect using INLA and importance sampling No
DF.IS.kinship DF.IS including a polygenic effect No
DF.MCMC.pseudo Approx. Diploffect model using partial MCMC and multiple imputation No
DF.MCMC Diploffect using MCMC No
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This updating of diplotype state for each individual i =
1, . . . , n in light of phenotypic information reflects the fol-
lowing intuition: Suppose that prior to observing y, diplotype
probabilities P1, . . . , Pn21 are well informed but Pn is not; if
analysis with y reveals a clear pattern of effects (e.g., high
phenotype values associated with particular diplotype
states), then yn provides information to update Pn. More-
over, it implies that different phenotypes could in theory
promote different underlying diplotype states D—a use-
ful feature when locus m is defined broadly enough to
contain multiple recombinants and therefore multiple
configurations of D, of which only one is relevant to the
interrogated QTL.

The likelihood conditional on diplotype states, p(y|u, D),
is specified in terms of a GLMM with linear predictor

hi ¼ mþ aTxi|ffl{zffl}
fixed covariates

ðoptionalÞ

þ
X
r2R

�
zðrÞi

�T
uðrÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
random effects

ðoptionalÞ

þ bTaddðDiðmÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
additive haplotype effects

þ gTdomðDiðmÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
dominance deviation

; (11)

where terms are included above for fixed effects a based on
covariates in xi and for an arbitrary set of variance compo-
nents R, each with incidence vector zðrÞi and effect vector
modeled as uðrÞ � Nð0;RðrÞt2r Þ: Such additional terms are
here defined loosely because our model is deliberately pre-
sented within established, extensible software that allows be-
spoke specification. In the current study, we demonstrate use
of the following variance components: cage, where for c
cages, R(cage) = Ic; sibship, where for s sibships, R(sibship) =
Is; and polygenic effects approximated by an animal model
(hereafter, a “kinship” effect), where R(kinship) = K is the s3 s
additive relationship matrix estimated from the pedigree
(Kennedy et al. 1992). Haplotype effects b and dominance
deviations g are modeled hierarchically as b � Nð0; It2addÞ
and g � Nð0; It2domÞ; this hierarchical modeling benefits esti-
mation in two ways—it allows information to be borrowed
across effects on related scales, and it provides robustness to
data sets where the sampling of diplotypes is sparse. The
remaining parameters are given weak, conjugate priors: Fixed
effects (m, a) are given independent normal priors N(0, c),
where c is large relative to the phenotype scale [e.g., c= 1000
for Var(y) = 1]; and dispersions s2, t2add; t

2
dom; and each t2r

are given inverse-gamma priors as in, e.g., Lenarcic et al.
(2012). The complete Diploffect model, shown with a poly-
genic effect, is summarized using plate notation in Figure 1.

The posterior of effects integrated in Equation 7 involves
integrating over a J2n-dimensional space. We consider two
alternatives for sampling from this posterior below.

Diploffect estimation by MCMC: DF.MCMC

Posteriors for all parameters in the Diploffect model can
be estimated by Markov chain Monte Carlo (MCMC) by

iterating two basic Gibbs sampling steps. At each iteration,
k = 1, . . . , K:

1. Sample all effect variables u(k+1) given the previous iter-
ation’s diplotypes D(k),

uðkþ1Þ � p
�
ujy;DðkÞ

�
: (12)

2. Sample diplotypes D(k+1) given effect variables u(k+1),

Dðkþ1Þ � p
�
Dðkþ1Þ

���C; uðkþ1Þ; y
�
: (13)

Initial values for k = 1 are randomly sampled from their
priors.

Although relatively efficient Gibbs sampling schemes
for step 1 are well established (we use those provided in
Plummer 2003; see Implementation details), step 2 requires
special consideration. A straightforward approach is to sample
from the full conditional, evaluating all diplotypes’ posterior
probabilities in Di(m) by Equation 10 and drawing a diplotype
state for each individual in turn. Per individual, however, this
incurs O(J2) computational time because it requires evaluating
the function Q for all diplotypes. For the sake of efficiency, we
develop an optimization, discrete slice sampling with prior
reordering, described in Appendix A, which makes this sam-
pling more efficient. Hereafter we refer to this method as
Diploffect estimation by MCMC (DF.MCMC).

Diploffect estimation by importance sampling: DF.IS
and DF.IS.kinship

Seeking a noniterative estimation procedure that is more
efficient for standard GLMMs, we also provide a strategy
based on Importance Sampling (IS) of integrated nested
Laplace approximations (INLA). INLA provides a determin-
istic estimate of the multivariate posterior distribution of
a GLMM (Rue et al. 2009), giving analytic approximations
for effects and sampling approximations for variances. In our
IS procedure, these posteriors are estimated conditional on
diplotype for many possible diplotype configurations; they are
then combined through reweighting to give a final mixture
distribution that resembles more closely the integration of the
full posterior in Equation 7. Specifically, the procedure is

1. Sample diplotypes D(k) from their prior, D(k) � p(C).
2. Obtain an INLA estimate of posterior p(u|y, D(k)) for

effect variables u(k).
3. Obtain an INLA estimate of the marginal likelihood

w(k) = p(y|D(k)).
4. Repeat steps 1–3 K times.
5. Estimate the posterior of any statistic of interest T(u),

using the weighted mixture

T̂ISðuÞ ¼
P

kT
�
uðkÞ

�
wðkÞ

P
kwðkÞ ; (14)
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where for each k, statistic T(u(k)) is calculated from the
corresponding posterior p(u|y, D(k)) calculated in step 2.

Calculation of the weighting function w(1), . . . ,w(K) uses
the marginal likelihood obtained from INLA and is de-
scribed more fully in Appendix B. The statistic T(u) is de-
fined in this study according to the following requirements:
for point estimation is needed, we use the posterior mean
T(u) = E(u|y, D); for obtaining highest posterior density
(HPD) intervals of effects parameters, T(u) records the an-
alytic approximation of p(u|y, D); and for estimating the
additive vs. dominance proportion, p(padd|y), where
padd ¼ t2add=ðt2add þ t2domÞ; T(u) records 1000 posterior sam-
ples from p(padd|y, D).

Importance sampling of the above mixture model can be
highly inefficient and lead to unstable results when the mixture
prior p(F) is uninformed; in particular, a large number of
samples drawn from the prior may, after reweighting, translate
into a comparatively tiny number of samples from the posterior
(Carlin and Louis 2008). To track sampling efficiency, we
therefore use the effective sample size (ESS) metric of
Liu et al. (2001) equivalent to ESS ¼ ½Pkw

ðkÞ�2=½PkðwðkÞÞ2�
(Robert and Casella 2009).

Application of the IS procedure is denoted Diploffect
estimation by importance sampling (DF.IS) in all cases
except when the GLMM includes a kinship effect, in which
case it is denoted DF.IS.kinship. This distinction is made in
light of the fact that fitting kinship effects (as opposed to
approximating them with, e.g., sibship effects) can incur
significant additional computation.

Partial Bayesian approximation: DF.MCMC.pseudo
and DF.IS.noweight

In cases where it can be assumed that p(D|C) � p(D|C, y),
for example, where the QTL effect is weak or the posteriors
of the diplotypes are consistently vague across individuals,
integration of the joint posterior in Equation 7 can be ap-
proximated as

pðujC; yÞ �
Z

pðujD;C; yÞ  pðDjCÞdD: (15)

This approximation, essentially a form of unweighted mul-
tiple imputation, is used by Durrant and Mott (2010) to
estimate haplotype effects at QTL in populations of recombi-
nant inbreds. By restricting attention to normally distributed
traits with no covariates or structure, they develop a method
to sample from the above pseudoposterior directly. To explore
the utility of this approximation, we implement versions of it
based on both DF.MCMC and DF.IS. In DF.MCMC.pseudo,
the sampling of the posterior of D conditional on the current
value of u in Equation 13 is replaced by a draw from the prior,
D(k) � p(C); this method was recently used by us in the
analysis of immune phenotypes in the pre-CC (Phillippi
et al. 2014). In DF.IS.noweight, DF.IS is modified so that

weights are uniform, i.e., w(k) = 1 for all k; this approach is
similar to that used in the Arabidopsis study of Kover et al.
(2009), who instead estimate b via a fixed-effects regression.

Non-Bayesian approximations using regression on
probabilities: partial.lm, ridge.add, and ridge.dom

ROP methods model the phenotype in a regression where
diplotype states (and functions thereof) are represented by
their corresponding probabilities of being present. Use of
probabilities in this way, substituting functions of Di(m) with
functions of Pi(m), can provide stable estimation when
Pi(m) probabilities are well informed; otherwise, when
uncertainty is present, the design matrix can become multi-
collinear, making some effects nonidentifiable and thus in-
eligible for a fair comparison with the truth. Rather than
providing a comprehensive survey of ROP, we therefore
consider three illustrative examples that at least guarantee
identifiability under all possible levels of haplotype uncer-
tainty: a marginal estimator, partial.lm; and two ridge re-
gression estimators, ridge.add and ridge.dom.

The marginal estimator partial.lm uses a single predictor
linear model to estimate, for each founder haplotype in turn,
the effect of that haplotype’s dosage on the phenotype; i.e.,

hi ¼ mj þ bjfaddðPiðmÞÞgj;

where bj is the jth element of b. This method was used to
estimate effects in the pre-CC study of Aylor et al. (2011).

In ridge.add, ridge regression (Hoerl and Kennard 1970)
is applied to a ROP form of the additive model of Equation 1,

hi ¼ mþ bTaddðPiðmÞÞ; (16)

with b estimated by minimizing
P

iðyi2hiÞ2 þ lbTb; where
tuning parameter l is set by 10-fold cross-validation. In
ridge.dom, an analogous model is fitted based on the addi-
tive plus dominance model of Equation 2,

hi ¼ mþ bTaddðPiðmÞÞ þ gTdomðPiðmÞÞ: (17)

Implementation details

MCMC-based approaches (DF.MCMC and DF.MCMC.
pseudo) were implemented in R (R Development Core Team
2011), JAGS (Plummer 2003), and rjags (Plummer 2014).
JAGS is an open-source general MCMC sampling package;
we implemented add-on code to support the partially Bayes-
ian prior sampling of DF.MCMC.pseudo (see code in File
S4). MCMC was performed for 5000 time steps, of which
the first 1000 were discarded as burn-in, and the remaining
4000 were thinned at 1/10 to give 400 usable samples.
Importance sampling approaches (DF.IS, DF.IS.noweight,
and DF.IS.kinship) were implemented using the R package
INLA (Rue et al. 2009). In each application of the IS meth-
ods we used 1000 independent samples directly drawn from
the haplotype probabilities inferred by HAPPY (Mott et al.
2000; Mott 2009). Estimation of the additive relationship
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matrix was performed using the R package pedigreemm
(Vazquez et al. 2010). Ridge regression was performed us-
ing the R package GLMNet (Friedman et al. 2010), with
tuning parameters selected by 10-fold cross-validation. All
other analysis was performed in R.

Data and Simulations

We use simulation to evaluate the ability of our Diploffect
model to estimate haplotype and diplotype effects at a single
QTL segregating in a multiparent population. It is assumed
that the QTL location has been determined already and pheno-
type information per individual is available, but diplotype
state at the QTL for each individual is available only as
inferred diplotype probabilities. For methods in Table 2,
we assess subsequent estimation in terms of both numerical
accuracy and ability to rank effects under a range of QTL
effect sizes and in different genetic contexts. Practical use of
the Diploffect model is then illustrated through application
to real, previously mapped QTL. Both simulation and applica-
tion use data from two real populations: the incipient strains
of the Collaborative Cross (pre-CC) (Aylor et al. 2011) and
the Northport HS mice (Valdar et al. 2006a). These data sets
are described below.

Pre-CC data set

The Collaborative Cross (Collaborative Cross Consortium
2012) is a large panel of recombinant inbred lines bred from
a set of eight inbred founder mouse strains (abbreviated
names in parentheses): 129S1/SvlmJ (129S1), A/J (AJ),
C57BL/6J (B6), NOD/ShiLtJ (NOD), NZO/HILtJ (NZO),
CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB).
Breeding of the CC is an ongoing effort, and at the time of
this writing a relatively small number of finalized lines are
available. Nonetheless, partially inbred lines taken from an

early stage of the CC breeding process, the so-called pre-CC
population, have been studied and used for QTL identifica-
tion (Aylor et al. 2011; Kelada et al. 2012; Ferris et al. 2013;
Phillippi et al. 2014). The pre-CC data set analyzed here is
that from the study of Aylor et al. (2011). This comprises
data for 184 mice from 184 independent pre-CC lines (i.e.,
one replicate per line); these lines had attained on average
6.7 generations of inbreeding following the initial eight-way
cross and as a result have genomes with �16% residual
heterozygosity. Aylor et al. (2011) used HAPPY (Mott et al.
2000) to generate diplotype probability matrices for all 184
mice based on genotype information for 16,159 markers
across the genome. For simulation purposes, we use the
originally analyzed probability matrices for a subset of 50
loci spaced approximately evenly throughout the genome
(provided in Supporting Information, File S1, and File S2).
For data analysis, we consider the white head-spotting phe-
notype mapped by Aylor et al. (2011) to a QTL with a peak
at 95.0 Mb on chromosome 10. This QTL data set comprises
a binary phenotype value (presence or absence of a white
head spot) defined for 110 nonalbino mice and diplotype
probability matrices for the QTL peak.

HS data set

The heterogeneous stocks are an outbred population of mice
also derived from eight inbred strains: AJ, AKR/J (AKR),
BALBc/J (BALB), CBA/J (CBA), C3H/HeJ (C3H), B6, DBA/
2J (DBA), and LP/J (LP). We used data from the study of
Valdar et al. (2006a), which includes mice from approxi-
mately generation 50 of the cross and comprises genotypes
and phenotypes for 1762 mice from 180 families, with fam-
ily sizes varying from 8 to 48. Valdar et al. (2006a) also used
HAPPY to generate diplotype probability matrices based on
10,148 markers across the genome. For simulation pur-
poses, we use the originally analyzed probability matrices

Figure 1 The Diploffect model depicted as a directed
acyclic graph. Dashed arrows indicate deterministic
relationships and solid arrows indicate stochastic
relationships. Shaded nodes are observed variables,
and open nodes are unobserved variables, with a
double circle representing the remaining parameters;
priors are omitted. The number of instances of each
variable is shown using plate notation.
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for a subset of 50 loci spaced approximately evenly through-
out the genome (provided in File S1). For data analysis, we
consider two phenotypes: total cholesterol (CHOL: 1656
observations), mapped by Valdar et al. (2006a) to a QTL
at 171.5–172.0 Mb on chromosome 1; and the total startle
time to a loud noise [fear potentiated startle (FPS): 1508
observations], which was mapped to a QTL at 91.37–92.62
Mb on chromosome 15. In each case, we use the original
probability matrices defined at the peak loci; partial pedi-
gree information; per-individual values for phenotype; and
per-individual values for pre-determined covariates (defined
in Valdar et al. 2006b)—sibship, cage, sex, testing chamber
(FPS only), and date of birth (CHOL only) (all provided in
File S3).

Simulating QTL effects

The ability of the Diploffect-based methods to estimate and
rank haplotype and diplotype effects is assessed by simula-
tion: We apply those methods, and their competitors listed
in Table 2, to simulated single QTL for which the true effects
are known. This is performed first using pre-CC data, which
emphasizes estimation of haplotype (i.e., additive) effects,
potentially in the presence of dominance from residual het-
erozygotes, and then separately using the HS data, which
emphasizes estimation of diplotype effects that could arise
from both additive and dominance genetics. In either pop-
ulation, simulation of QTL involves four basic steps: select-
ing a locus; assigning true diplotypes; assigning QTL effects;

and simulating a phenotype based on the QTL effect, poly-
genic factors, and noise. This is described in detail below.

Let B be a set of 50 representative haplotype effects
(listed in File S1): 25 of these are binary alleles distributed
among the eight founders [e.g., (0, 0, 0, 0, 1, 1, 1, 1), (0, 1,
1, 1, 1, 1, 1, 1)]; the remaining 25 were drawn from N(0,
I8). Let V ¼ f2:5; 5; 10; 20; 30; 40g be the set of percentages
of variance explained considered to be attributable to the
QTL effect. Simulations are performed in the following (fac-
torial) manner: For each data set (pre-CC or HS), for each
locus m from the 50 defined in that data set, for b 2 B; and
for dominance effects being either included or excluded, we
perform the following simulation trial for every QTL effect
size v 2 V :

1. For each individual i 2 {1, . . . , n}, assign a true diplotype
state by sampling Di(m) � p(Pi(m)).

2. If including dominance effects, draw g � N(0, I); other-
wise, set g = 0.

3. Calculate QTL contribution for each individual i as qi =
bTadd(Di(m) + gTdom(Di(m)).

4. If HS, draw polygenic effect as n-vector u � N(0, KIBS)
(see below); otherwise, if pre-CC, set u = 0.

5. Draw individual-specific noise as n-vector e � N(0, In).
6. Calculate the phenotype for each individual i as yi =

aqi + bui + cei, where a, b, and c are constants used to
adjust relative contributions of each term to the total
phenotypic variance, ensuring that the QTL accounts
for v%, polygenic effects account for 50% (in HS) or 0%

Figure 2 (A and B) Estimation of additive
effects for a simulated additive-acting QTL
in the pre-CC population, judged by (A)
prediction error and (B) rank accuracy. For
a given combination of QTL effect size and
estimation method, each point indicates
the mean of the evaluation metric based
on 2500 simulation trials, and each vertical
line indicates the 95% confidence interval
of that mean. Points and lines are grouped
by the corresponding QTL effect sizes and
also are shifted slightly to avoid overlap.
At the same QTL effect size, left to right
jittering of the methods reflects relative
performance from better to worse.

Figure 3 (A and B) Estimation of addi-
tive effects for a QTL simulated to have
both additive and dominant effects in
the pre-CC population. Symbols are de-
fined as in Figure 2.
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(in pre-CC), and the remainder is attributed to individual-
specific noise.

7. Assess the ability of each method to estimate QTL effects
given only y and P1(m), . . . , Pn(m).

In step 4, KIBS is the realized genomic relationship matrix
calculated using EMMA (Kang et al. 2008), applied to the
entire set of HS genotypes. This polygenic effect, which repre-
sents potentially confounding effects of other QTL, is simulated
only for the HS; the pre-CC lines are (in expectation) geneti-
cally exchangeable, and it is therefore assumed (for simulation
purposes) that polygenic effects in the pre-CC would be in-
distinguishable from individual-specific noise. Also, because
of this, in the pre-CC simulations we do not evaluate method
DF.IS.kinship.

The above simulation scheme describes 2 3 50 3 50 3
63 2 = 603 103 distinct experimental conditions; this makes
evaluating some methods in some populations impractical—
specifically, DF.MCMC and DF.MCMC.pseudo are not evalu-
ated in simulations involving the HS.

Evaluating estimation of QTL effects

Methods are evaluated based on their accuracy in deter-
mining two types of information: (1) the relative shift in
phenotype value associated with a given diplotype substitu-
tion, which we measure across all such substitutions using an
adjusted mean square error (the “effect MSE”), and (2) the
relative ordering of the diplotype effect series, which we mea-
sure by agreement of ranks (the “effect rank accuracy”). Both
types of information we consider highly relevant to subse-
quent experimental and/or bioinformatic characterization of
QTL detected in multiparent populations.

Effect MSE and effect rank accuracy are defined as follows.
Let u denote the p-vector of simulated effects (the target)
after mean centering, and let û be the p-vector of point esti-
mates for the target, also after mean centering. Note that
mean centering is performed both to adjust for the fact that
the estimation models are naturally overspecified (e.g., the
intercepts are redundant) and to reflect the fact that scientific

interest is more meaningfully focused on substitution effects
relative to each other (both in magnitude and in rank) than in
absolute terms. The estimator û is defined according to the
method used: For Bayesian or partially Bayesian methods in
Table 2 (DF.IS, DF.IS.kinship, DF.IS.noweight, DF.MCMC,
and DF.MCMC.pseudo) it is defined as the posterior mean;
for the remaining methods (partial.lm, ridge.add, and ridge.
dom) it is the standard point estimate (i.e., that maximizing
the likelihood or penalized likelihood). The effect MSE is then
defined as the average squared difference between parame-
ters in target and estimate, normalized by the variance of the
target; i.e.,

Effect MSE ¼
�
û2u

�
T
�
û2 u

�
p3VarðuÞ : (18)

The effect rank accuracy is measured by Spearman’s rank
correlation of u and û:

The set of effects included in the target u differs accord-
ing to the population. For the pre-CC, which is almost in-
bred, the target includes only the haplotype (additive)
effects, i.e., u = b; dominance effects may be present, but
the infrequency of heterozygotes in the pre-CC precludes
their meaningful estimation, making them akin to a type
of confounding noise in the pre-CC. For the HS, many het-
erozygous diplotype states will be present at a given QTL,
although overall some diplotype states may be absent; the
target is therefore the J 3 (J + 1)/2 vector of diplotype
effects; i.e., u = d.

Evaluating improvement in diplotype inference

Application of the Diploffect model leads not only to pos-
teriors for QTL effects but also to updated probabilities for
each individual’s diplotype state (see Statistical Models and
Methods, Equation 8, and Figure A1); because the simulations

Figure 4 Increased posterior probability placed on the true diplotype at
QTL simulated in the pre-CC, as analyzed using DF.MCMC.

Figure 5 Certainty of inferred diplotype assignments across all marker
loci in the pre-CC and HS.
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described above actually generate diplotype states for each
individual (step 1), in postsimulation analysis it is possible to
observe to what extent these updated probabilities are closer
to the truth. We quantify this using a summary statistic, the
true diplotype improvement (TDI). Letting jk[i] index the
true diplotype for individual i, such that {Di(m)}jk[i] [
Di(m)jk[i] = 1, the TDI measures, over all true diplotypes,
the average increase in probability from prior to poste-
rior, i.e.,

TDI ¼ 1
n

Xn
i¼1

�
p
�
DiðmÞjk½i�

��C; y
�
2PiðmÞjk½i�

	
: (19)

Results

Pre-CC simulations

Methods were evaluated on their ability to estimate additive
(haplotype) effects at simulated QTL in the pre-CC. Figure 2
shows performance when the QTL effect simulated was en-
tirely additive; Figure 3 shows performance when the sim-
ulated effect also included dominance. In the latter case,
dominance was not the target of inference as such—the
mostly inbred pre-CC can manifest dominance only through
residual heterozygosity; rather, it was included as a form
of noise, potentially disrupting additive effect estimation.

Comparison of Figure 2 and Figure 3 reveals this disruptive
effect to be slight (at least for dominance effects simulated
here), causing an overall increase in effect MSE and a de-
crease in effect rank accuracy; otherwise there were few qual-
itative differences in relative performance across methods.

For both types of QTL effect, strong performance was seen
across all effect sizes and metrics by implementations of
Diploffect DF.MCMC (best) and DF.IS and ridge estimator
ridge.add. Other methods produced competitive performance
only in some settings and by some criteria. In particular,
although the MSE of ridge.dom was worse than that of most
other methods, and the MSE of partial.lm was worst of all
(especially for QTL effect sizes ,10%), both achieved com-
petitive rank accuracy; this suggests that under this setting,
and relative to a full probabilistic model, these ROP methods
give estimates that are inflated (and therefore strongly penal-
ized by MSE) but not necessarily poorly ordered.

Comparison of Bayesian methods DF.MCMC and DF.IS
with their partially Bayesian approximations DF.MCMC.
pseudo and DF.IS.noweight reflected some advantages of
the Bayesian methods. DF.IS outperformed its approxima-
tion DF.IS.noweight in terms of MSE when the QTL effect
was strong and matched it when the QTL effect was weak;
similarly, DF.MCMC consistently outperformed approxima-
tion DF.MCMC.pseudo in rank accuracy for all QTL effect
sizes. Both these observations can be explained in part by
the fact that the Diploffect model when implemented fully
makes more efficient use of phenotype data—not only using
those data to inform the QTL effects, but also then using
those QTL effects to help resolve uncertainty in diplotype
state. This phenomenon is reflected in Figure 4, which uses
results from DF.MCMC to demonstrate that as the strength of
the QTL is increased, the posterior distribution of diplotype
state at the QTL is moved consistently closer to the truth.

Heterogeneous Stock simulations

The HS population represents a far more challenging target
for inference of QTL effects than the pre-CC largely because
its haplotype composition, inferred from a smaller number

Figure 6 (A and B) Estimation of diplo-
type effects for an additive-only QTL
simulated in the HS. Symbols are de-
fined as in Figure 2.

Table 3 Running time in seconds of different methods applied to
simulated QTL in the pre-CC and HS data sets

Population Pre-CC Heterogeneous stock

partial.lm 0.056 2.72
ridge.add 0.124 2.80
ridge.dom 0.151 2.92
DF.MCMC.pseudo 27.96 NA
DF.MCMC 92.77 NA
DF.IS.noweight 580.7 3,727
DF.IS 580.9 3,724
DF.IS.kinship NA 16,231
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of genotyped markers on a more highly recombinant genome,
is far more uncertain. This increased uncertainty is illustrated
in Figure 5, which plots the distribution of the scaled selective
information content (SIC) (a rescaling of the negated Shannon
entropy, previously used for this purpose in, e.g., Rönnegård and
Valdar 2011). Although locus information varies in both popu-
lations, and the pre-CC manifests uncertainty for some individu-
als even at those loci that are overall most informed, the HS has
many individuals whose diplotype state is almost uninformed.

Methods were evaluated on their ability to estimate si-
multaneously 36 diplotype effects for QTL simulated in the
HS, with separate simulation studies for QTL with effects
of additive vs. effects of additive plus dominance. Excluded
from these simulations were the MCMC methods, owing to
their impractically slow mixing: The time required for ac-
ceptable MCMC convergence on this relatively large data set
(1762 individuals) made performing 5000 trials at each QTL
effect size unfeasible (see Table 3 and Data and Simulations
section). The Diploffect model was therefore represented
by importance samplers DF.IS, DF.IS.noweight, and DF.IS.
kinship. Of these, genetic background effects arising from
unequal relatedness were represented in two ways: DF.IS.
kinship, which used a pedigree-derived animal model; and
DF.IS and DF.IS.noweight, which used instead a simple ran-
dom intercept for sibship—an approximation that reduced
their running time by more than fourfold (Table 3). We note
that the polygenic effect used to generate the simulated
phenotypes corresponded to neither of these estimation
models, but was instead based on realized genomic relation-
ships in the HS (see Data and Simulations).

As shown in Figure 6 and Figure 7, methods based on the
Diploffect model strongly outperformed ROP-based compet-
itors. This is somewhat expected: In the face of uncertainty,
ROP will lead to often highly inflated estimates and result-
ing poor MSE (see discussion of Table 1 in Statistical Models
and Methods). In this context, ridge regression should im-
prove considerably over standard least-squares multivariable
regression. Nonetheless, ridge.add produced effect estimates
that were considerably dispersed relative to their true values,
and ridge.dom performed so poorly (prediction error .2000
for 2.5%; see File S1) that it had to be excluded from Figure
6A and Figure 7A for legibility.

The addition of dominance effects to the simulated QTL
reduced rank accuracy among all methods (Figure 8B) but
did not alter relative performance. The plots showing MSE
in the HS for different types of QTL effect (i.e., Figure 6A
and Figure 8A) are not directly comparable in scale because
of the way in which this metric is normalized (i.e., the de-
nominator in Equation 18 is greater owing to greater vari-
ance of the target estimand); nonetheless, the pattern of
performance among methods changes little between the ad-
ditive setting and additive plus dominance—this is perhaps
most surprising for ridge.dom, whose performance benefits
so little from its additional dominance parameterization.

For QTL effect sizes of $10%, MSE was controlled best
by Diploffect models DF.IS and DF.IS.kinship; for smaller

effect QTL, however, the less informed, partially Bayesian
method DF.IS.noweight was seen to retain its accuracy
while that of the more fully Bayesian models deteriorated.
As with the pre-CC simulations above, this may reflect a
trade-off between modeling sophistication and computa-
tional stability: DF.IS allows phenotype to inform descent,
but to do so it must reweight each of its 1000 prior samples
using an importance function, which, when the posterior is
far from the prior, can drastically reduce sampling efficiency,
leading to erratic results when sampling is capped, as in
these simulations; DF.IS.noweight does not allow phenotype
to inform descent but also does not require its samples to be
reweighted, leading to pseudo-posteriors that are nonethe-
less well estimated. The need for using many more impor-
tance samples when applying DF.IS to the HS rather than to
the pre-CC is illustrated in Figure 8, which shows for DF.IS
analysis of 10% QTL the distribution of the effective sample
size (ESS) statistic (see Statistical Models and Methods).

Finally, we note that in estimating both types of QTL ef-
fects, modeling genetic background using a kinship-specified
polygenic effect, as in DF.IS.kinship, was not clearly superior
to using a sibship-based approximation—indeed, at least in
this context, it performed worse on rank accuracy while re-
quiring substantially more computation. We speculate that
this relative robustness of the sibship approximation could
reflect either the circular-mated breeding scheme of the HS
leading to kinship being well approximated by sibship, or/and
computational efficiencies associated with estimating random
effects with more complex covariance structures (which may
lead to, for example, smaller ESS values), rather than any
advantage of sibship approximations in general.

Haplotype effects on a binary outcome: white head
spotting in the pre-CC

The pre-CC study of Aylor et al. (2011) identified a Mendelian
trait locus on chromosome 10 (at 92.0 Mb) for white head
spotting. White head spotting is a characteristic of the inbred
CC founder strain WSB, and this phenotype was visibly
present in 6 of the 110 nonalbino pre-CC mice. Because the
identified locus was dominant Mendelian, associated with
the presence of either one or two WSB haplotypes, it was
straightforward to identify by LD mapping using a ROP model
as in Equation 16. Estimating meaningful strain effects was
not, in this case, necessary, because the effect was obvious.
Such estimation would, however, have been awkward statis-
tically because proper treatment of the binary outcome is
most naturally modeled as a binary logistic regression, which
in a standard maximum-likelihood estimation would have
quickly become problematic due to separation (see, e.g.,
Gelman and Hill 2007). We considered estimation using
Diploffect, which, as a GLMM with hierarchical shrinkage on
the strain effects, models the white spot data without further
development. Figure 9 plots 95% highest posterior density
(HPD) intervals for all haplotype effects at the QTL estimated
by both DF.MCMC and DF.IS. Both models report a similar
result for this QTL: The non-WSB posteriors are similar to
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each other and broad, reflecting high uncertainty about the
relative effects of these strains; the WSB posterior distribution
is shifted above the others, reflecting its positive effect. The
HPD of the contrast WSB vs. the other strains, calculated by
applying this contrast to each MCMC sample from DF.MCMC,
is 1.35–36.18, further reflecting the positive effect of the WSB
haplotype but also the fact that uncertainty about this effect
remains because the sample size is not infinite.

Haplotype and diplotype effects at QTL in the HS:
FPS and CHOL

To demonstrate Diploffect-based estimation of additive and
dominance effects, we examined two previously detected
QTL from the HS mapping study of Valdar et al. (2006a). The
first QTL examined was for fear potentiated startle (a condi-
tioned test of anxiety), located between 91.37 and 92.62 Mb
on chromosome 15. To the central marker interval of the FPS
QTL (rs3722990–rs3716673), we fitted a Diploffect linear
mixed model (LMM) using DF.IS that included fixed effects
of sex and testing chamber and random effects of cage and
sibship, and where FPS was subject to a cube root transfor-
mation; this model specification follows that described in the
parallel HS study of Valdar et al. (2006b). The results of the
DF.IS analysis are shown in Figure 10 and Figure 11. Figure
10A shows HPD intervals for the haplotype effects. Domi-
nance effects, which comprise 28 deviations from the additive
haplotype model, are harder to graph intuitively; instead we
plot the posterior predictive means of the 36 possible diplo-
type effects, i.e., E(d|y), as a symmetric grayscale matrix in
Figure 10B. Both plots suggest that effects are driven by
C57BL/6J, and the consistent banding pattern of the diplo-
type effect plot suggests these effects are mainly additive.
Figure 11 more directly quantifies the extent to which the
QTL effects are additive vs. dominant: It plots the posterior
of the proportion of hyperparameter variance attributable to
additive effects (see Statistical Models and Methods). The
mode of this distribution is close to 1 but, as expected for
a quantity defined using hyperparameters, the distribution
itself is very broad (posterior mean 0.546), reflecting a high
degree of uncertainty.

The second QTL examined in the HS was for total choles-
terol concentration, located between 171.15 and 171.51 Mb
on chromosome 1. To the central marker interval of the
CHOL QTL (rs13476229–rs3657320), we fitted a Diploffect
LMM using DF.IS that included fixed effects of sex and birth
month, and random intercepts for cage and sibship (again
following Valdar et al. 2006b). Results of this analysis are
shown in Figure 11 and Figure 12. Unlike the FPS QTL, the
HPD intervals for CHOL (Figure 12A) cluster into three dif-
ferent groups: the highest effect from LP, a second group
comprising C3H and CBA with positive mean effects, and
the remaining five strains having negative effects. This pat-
tern is consistent with a multiallelic QTL, potentially arising
through multiple, locally epistatic biallelic variants. In the
diplotype effect plot (Figure 12B), although most of the effects
are additive, off-diagonal patches provide some evidence of

Figure 8 Density plot of the effective sample size (ESS) of posterior sam-
ples for the DF.IS method (maximum possible is 1000) applied to HS and
pre-CC when analyzing a 10% QTL with additive and dominance effects.
The plot shows that ESS is more efficient in the pre-CC data set than in
the HS, reflecting the much larger dimension of the posterior in modeling
QTL for the larger and less informed HS population.

Figure 7 (A and B) Estimation of diplo-
type effects for QTL simulated to have both
additive and dominance effects in the HS.
Symbols are defined as in Figure 2.
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dominance effects—in particular, the haplotype combinations
AKR 3 DBA and C3H 3 CBA deviate from the banding other-
wise expected under additive genetics. The fraction of additive
QTL effect variance for CHOL in Figure 11 is, however, strongly
skewed toward additivity (posterior mean 0.717, with a sharp
peak near 1), suggesting that additive effects predominate.

Discussion

We present here a statistical model and associated compu-
tational techniques for estimating the marginal effects of
alternating haplotype composition at QTL detected in multi-
parent populations. Our statistical model is intuitive in its
construction, connecting phenotype to underlying diplotype
state through a standard hierarchical regression model. Its

chief novelty, and the source of greatest statistical challenge,
is that diplotype state, although efficiently encapsulating
multiple facets of local genetic variation, cannot be observed
directly and is typically available only probabilistically—
meaning that statistically coherent and predictively useful
description of QTL action requires estimating effects of
haplotype composition from data where composition is itself
uncertain. We frame this problem as a Bayesian integration,
in which both diplotype states and QTL effects are latent
variables to be estimated, and provide two computational
approaches to solving it: one based on MCMC, which pro-
vides great flexibility but is also heavily computationally de-
manding, and the other using importance sampling and
noniterative Bayesian GLMM fits, which is less flexible but
more computationally efficient. Importantly, in theory and
simulation, we describe how simpler, approximate methods
for estimating haplotype effects relate to our model and how
the trade-offs they make can affect inference.

An important comparison is made between Diploffect
and approaches based on Haley–Knott regression, which
regress on the diplotype probabilities themselves (or func-
tions of them, such as the haplotype dosage) rather than
the latent states those probabilities represent. In the con-
text of QTL detection, where the need to scan potentially
large numbers of loci makes fast computation essential,
we believe that such ROP-based approaches are typically
well justified and often the only practical solution. But for
estimating effects at detected QTL, where the number of
loci interrogated will be fewer by several orders of magni-
tude and the amount of time and energy devoted to inter-
pretation will be far greater, there is room for a different
trade-off.

We do expect ROP to provide accurate effect estimates
under some circumstances. When, for example, descent can

Figure 10 (A and B) Haplotype (A) and diplotype (B) effects estimated by DF.IS for phenotype FPS in the HS.

Figure 9 Highest posterior density intervals (95%, 50% and mean) for
the haplotype effects of the binary trait white spotting in the pre-CC.
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be determined with near certainty (as may become more
common as marker density is increased), a design matrix of
diplotype probabilities (and haplotype dosages) will reduce to
zeros and ones (and twos); in this case, although hierarchical
modeling of effects would induce useful shrinkage, modeling
diplotypes as latent variables would produce comparatively little
benefit. This is demonstrated in the results of ridge regression
(ridge.add) on the pre-CC: In this context, with only moderate
uncertainty for most individuals at most loci, the performance
of a simple ROP-based eight-allele ridge model (which we con-
sider an optimistic equivalent to an unpenalized regression of
the same model) approaches that of the best Diploffect-based
method. Adding dominance effects to this ridge regression
(which again we consider a more stable equivalent to doing so

with an ordinary regression) produces effect estimates that are
far more dispersed. Applying these stabilized ROP approaches to
the HS data set, whose higher ratio of recombination density to
genotype density implies a less certain haplotype composition,
leads to effect estimates that can be erratic; indeed, such point
estimates should not be taken at face value without substantial
caveats or examining (if possible) likely estimator variance.
In populations and studies where this ratio is lower, and
haplotype reconstruction is more advanced (e.g., in the DO
population of Svenson et al. 2012 and Gatti et al. 2014), or
where the number of founders is small relative to the sample
size, we expect that additive ROP models will often be ade-
quate, if suboptimal. Only in extreme cases, however, do we
expect that reliable estimation of additive plus dominance
effects will not require some form of hierarchical shrinkage.

A strong motivation for developing Diploffect, and in par-
ticular to use a Bayesian approach to its estimation, is to fa-
cilitate design of follow-up studies—in particular, the ability
to obtain for any future combination of haplotypes, covariates,
and concisely specified genetic background effects a posterior-
predictive distribution for some function of the phenotype. This
could be, for example, a cost or utility function whose posterior
predictive distribution can inform decisions about how to pri-
oritize subsequent experiments. Such predictive distributions
are easily obtained from our MCMC procedure and can also
be extracted with only slightly more effort [via specification of
T(u) in Equation 14] from our importance sampling methods.
We anticipate that, applied to (potentially multiple) indepen-
dent QTL, Diploffect models could provide more robust out-of-
sample predictions of the phenotype value in, e.g., proposed
crosses of multiparental recombinant inbred lines than
would be possible using ROP-based models.

Use of the Bayesian procedures proposed here nonethe-
less has several potential drawbacks, foremost among which
is computation time: Although our modified slice sampler

Figure 12 (A and B) Haplotype (A) and diplotype (B) effects estimated by DF.IS for phenotype CHOL in the HS.

Figure 11 Posteriors of the fraction of effect variance due to additive
rather than dominance effects at QTL for phenotypes FPS and CHOL in
the HS data set.
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(DF.MCMC; Appendix A) makes MCMC sampling of both dip-
lotypes and effects feasible, it is highly computationally in-
tensive. For large outbred populations, especially those with
a high degree of diplotype uncertainty, we therefore prefer
our importance sampler (DF.IS). For either method, however,
a high degree of diplotype uncertainty and weak QTL effects
result in computational inefficiency, since the posterior distri-
bution that must be traversed (in MCMC) or sampled (in IS) is
much more diffuse: For DF.MCMC this means convergence must
be carefully monitored; for DF.IS, this means manymore samples
must be taken to achieve a reasonable picture of the posterior.

In light of the additional computational costs incurred by
jointly modeling diplotypes and effects, it is worth consid-
ering the utility of partially Bayesian approaches in which
diplotypes are multiply imputed, as in, for example, Kover
et al. (2009) or Durrant and Mott (2010). Indeed, in discus-
sing their partially Bayesian but highly computationally ef-
ficient random haplotype effects model, Durrant and Mott
(2010) warn that Bayesian updating of the joint model de-
scribed here would likely suffer from the label-switching
problem (Stephens 1997). We consider this somewhat pes-
simistic: The label-switching problem usually occurs when
the prior on the mixture components (in this case, the set of
diplotype probabilities in C) is uniform or nearly uniform;
in practice, diplotype probabilities from modern haplotype
reconstructions tend to be well informed enough for most
individuals (even in the HS data set reported here) that
label switching will be minimal, negligibly impact inference.
Nonetheless, although our more fully Bayesian modeling
adds value to inference when QTL effect sizes are large, when
QTL effect sizes are small (#10%), the partially Bayesian
approximations DF.MCMC.pseudo and DF.IS.noweight become
more competitive. Indeed, we observe that when analyzing
small effect QTL (#10%) in the high-dimensional/low-
information setting of the HS data set, DF.IS.noweight out-
performed its fully Bayesian counterpart, reflecting a potential
trade-off between statistical and computational efficiency.

At greater computational cost, our modeling of QTL effects
could be more comprehensive. At one extreme, we could con-
sider a complete probabilistic treatment, for example in the
spirit of Lin and Zeng (2006), whereby QTL effects and dip-
lotypes are estimated conditional on raw genotype data, rather
than, as here, conditional on diplotype probabilities that have
been inferred previously and independently. Alternatively, and
more realistically, we could attempt to model diplotype states
explicitly at all contributing QTL, rather than, as here, focusing
on marginal effects at a single QTL and presuming that all
other effects can be can be well approximated by covariates
and structured noise. Instead we provide a starting point—one
that, while somewhat computationally demanding, relies on
previously computed results (HMM output) and standard sim-
plifying assumptions. In implementing Diploffect through an
adaptation of existing, flexible modeling software (JAGS and
INLA), we further aim that other researchers will be able to
extend the model to better suit the specifics of a given pheno-
type, covariate structure, or experimental setting.
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Appendix A

Discrete Slice Sampling with Reordering of Prior Probabilities

To help efficiently traverse the space of possible diplotype states during sampling of each Di(m) in Equation 13, we propose
an optimization of the discrete slice sampling algorithm of Neal (2003). First, we describe the original algorithm, which
adapts slice sampling on a continuous density to the discrete case. Let T(jk) represent diplotype jk’s order in the range 1, . . . ,
J 3 (J + 1)/2, and define two boundary diplotypes for T(L) = 0 and T(R) = J 3 (J + 1)/2 + 1, with posterior probabilities
for these set to zero. For the previous diplotype sampled, x9, first evaluate S ¼ QðDiðmÞT21ðx9ÞÞ; and then sample an auxiliary
variable q � U(0, S). After that, expand a region [l, u] satisfying Q(l)$ q and Q(l 2 l), q and Q(u), q and Q(u)$ q. From
the uniform distribution defined on [u, l], continue sampling the new diplotype status xnew until one is reached for which
QðDiðmÞT21ðxÞÞ$ q: The diplotype posterior in Equation 10 is evaluated only a few times during each iteration, and thus it is
much faster than full sampling.

Directly applying discrete slice sampling as above with the diplotype states ordered arbitrarily (e.g., alphabetically) will
typically produce a prior and a posterior that are highly multimodal; this leads to extremely slow mixing, with posterior
updates remaining stuck for many MCMC iterations within islands of higher-probability diplotypes separated by barrier-
forming groups of lower-probability diplotypes (Figure A1A). To improve mixing, we introduce a small modification: Before
applying slice sampling, we first reorder all J 3 (J + 1)/2 entries in matrix Di(m) according to their prior probabilities in
Pi(m). As shown in Figure A1B, this creates a prior that is monotone decreasing, removes the barrier, and results in posteriors
that are more efficiently mixed (Figure A1C).

Appendix B

Importance Sampling Using the Diplotype Prior and the Conditional Effects Posterior

Method DF.IS approximates statistics on the joint posterior p(D, b|y) by importance sampling. The IS procedure it uses owes
its efficiency to INLA (Rue et al. 2009) and, in particular, to deterministic results for p(b|D, y) and p(y|D). This approach is
explained in more detail here. Importance sampling, when used to estimate posterior statistics on disjoint parameter sets
a and b whose joint posterior density p(a, b|y) is hard to sample from directly, describes the following general strategy:
Sample a large number of times from a more tractable density g(a, b) (the importance function) and then reweight each
sample relative to the others using importance weight w(a, b) = p(a, b|y)/g(a, b). In this article, a [ D, b [ b, with
independent priors p(a, b) = p(a)p(b); additionally, due to INLA, deterministic approximations are available
for both the conditional effects posterior p(b|y, a) and the conditional marginal likelihood p(y|a). Considered to-
gether, these features suggest an importance function g(a, b) = p(b|a, y)p(a), whereby each importance sample
ðaðkÞIS ;b

ðkÞ
IS Þ for k = 1, . . . , K is generated by first sampling aðkÞIS from diplotype prior p(a) and then sampling bðkÞ

IS from
conditional effects posterior pðbjaðkÞIS ; yÞ: Since only the difference between sampling from g(a, b) and sampling from
p(a, b|y) is the use of p(a) rather than p(a|y), the importance weight for each ðaðkÞIS ;bðkÞ

IS Þ pair is proportional only to pðyjaðkÞIS Þ;
that is,

wða;bÞ ¼ pða;bjyÞ
gða;bÞ ¼ pða;bjyÞ

pðbjy; aÞpðaÞ ¼
pða;bjyÞ

pða;bjyÞpðaÞ
pðajyÞ

¼ pðajyÞ
pðaÞ 3

pðyÞ
pðyÞ ¼

pða; yÞ
pðaÞpðyÞ ¼

pðyjaÞ
pðyÞ } pðyjaÞ:

These proportionally defined weights can then be renormalized by their sum and used to appropriately reweight statistics on
each sampled ðaðkÞIS ;bðkÞ

IS Þ; as in Equation 14 (refer to Statistical Models and Methods).
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Figure A1 Reordering of prior probabilities
in the discrete slice sampler, using as an
example the diplotype probabilities from
haplotype reconstruction on the pre-CC.
Diplotypes are represented by different let-
ters, and 23 diplotypes with very low prob-
abilities are omitted. The true diplotype,
selected during simulation, is shaded black.
An arbitrary ordering of diplotypes is shown
in A and illustrates the problem to be
addressed: If the initially sampled diplotype
is M, the slice sampler cannot easily cross
the barrier region to sample other high-
probability diplotypes. Reordering the diplo-
types by their prior probabilities to create
a smoother distribution, as in B, removes

this barrier region and allows the sampler to move easily between its initial value and all other values of high to moderate probability. C shows the
posterior of this distribution given phenotype data (from the DF.MCMC procedure), in which the true diplotype’s posterior probability is increased.
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• Table 1 shows the 50 simulated effect vectors used in the simulation study, with each row being a
single effect vector for eight founders. For CC population, the effects to the founders from A to H
are assigned to 129S1/SvlmJ (129S1), A/J (AJ), C57BL/6J (B6), NOD/ShiLtJ (NOD), NZO/HILtJ
(NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB), respectively. And For HS
population, the effects are assigned to to A/J (AJ), AKR/J (AKR), BALBc/J (BALB), CBA/J (CBA),
C3H/HeJ (C3H), C57BL/6J (B6), DBA/2J (DBA) and LP/J (LP), respectively.

• Table 2 and 3 show the simulation result based on Pre-CC population with mean values of two metrics
and their 95% confident intervals. The data of the tables is used for generating Figure 3 and 4 in the
main manuscript.

• Table 4 and 5 show the simulation result based on HS population with mean values of two metrics and
their 95% confident intervals. The data of the tables is used for generating Figure 5 and 6 in the main
manuscript.
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Strain A B C D E F G H
2 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1
1 1 2 1 1 1 1 1
1 1 1 2 1 1 1 1
1 1 1 1 2 1 1 1
1 1 1 1 1 2 1 1
1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 2
2 2 1 1 1 1 1 1
1 2 2 1 1 1 1 1
1 1 2 2 1 1 1 1
1 1 1 2 2 1 1 1
1 1 1 1 2 2 1 1
1 1 1 1 1 2 2 1
2 1 1 1 1 1 1 2
1 1 1 1 2 2 2 1
2 1 1 1 1 2 2 1
2 2 1 1 1 1 2 1
1 1 1 2 2 1 2 1
1 2 2 1 1 1 1 2
2 2 2 2 1 1 1 1
1 2 2 2 2 1 1 1
1 1 2 2 2 2 1 1
1 1 1 2 2 2 2 1
2 2 2 1 1 1 1 2

1.78 0.72 -1.54 0.74 -0.68 -0.17 -1.08 1.28
-1.505 0.059 1.868 1.156 0.206 -0.514 -0.049 -0.909
-1.31 -1.26 0.66 -0.52 -1.56 -0.79 -0.72 0.09

-0.739 -1.915 0.081 1.060 -0.380 0.361 0.348 0.153
2.70 0.29 0.60 -0.72 -1.06 -1.21 1.32 -0.19
0.88 -0.21 0.85 2.08 -3.52 -0.34 -0.55 -0.57

0.781 -1.886 0.099 0.687 0.539 0.755 -0.752 -1.159
0.428 -1.052 0.459 0.049 -0.731 0.406 -0.601 -0.972
-2.40 0.13 0.94 0.85 0.34 -0.23 1.60 0.29
0.237 0.022 0.428 -0.390 0.103 -0.551 -0.835 -0.113
-0.67 -1.76 1.05 0.29 0.50 -0.59 -0.54 -1.27
-1.22 -1.97 1.81 -0.26 -0.18 -0.64 -0.72 -0.84

-0.048 0.974 1.048 0.536 -1.349 -0.290 0.307 0.522
1.090 -0.552 -0.731 0.067 -0.693 -0.459 -0.629 -0.012
0.064 -0.678 1.154 1.477 -0.118 -0.947 0.954 0.778

-0.700 0.023 -1.199 -1.168 -0.637 -0.515 0.059 1.332
-0.287 -0.092 -1.238 0.388 -0.980 -0.605 -0.608 0.832
-0.133 -0.907 -0.342 0.024 1.542 -0.013 2.274 2.435
-2.211 -1.598 -0.617 -0.738 0.774 -1.006 -0.073 -0.467
0.073 0.331 -0.027 -0.136 -0.863 0.105 1.065 -0.088
0.235 -0.637 -0.326 1.200 0.024 -1.819 1.384 -0.759

0.44028 -0.46124 1.24133 -0.57630 0.74145 0.00036 -1.55446 0.37339
0.62 1.58 1.07 -0.25 0.44 -0.16 -0.56 0.68

-0.71 0.86 1.73 -1.02 -0.24 -1.78 -1.11 -0.32
-1.139 0.442 -1.779 -0.739 0.545 -1.192 0.023 1.230

Table 1: A table of all effect vectors used in the simulation study.2



Simulated
Metric Model

QTL effect size
Effects 2.5% 5% 10%

Additive

Effect MSE

partial.lm 2.174 (0.042) 1.096 (0.021) 0.557 (0.011)
ridge.add 0.748 (0.010) 0.551 (0.009) 0.340 (0.006)
ridge.dom 0.756 (0.008) 0.677 (0.009) 0.537 (0.009)
DF.MCMC.pseudo 0.678 (0.011) 0.467 (0.007) 0.337 (0.006)
DF.MCMC 0.712 (0.014) 0.472 (0.008) 0.305 (0.005)
DF.IS.noweight 0.706 (0.014) 0.471 (0.008) 0.362 (0.006)
DF.IS 0.703 (0.014) 0.469 (0.008) 0.333 (0.006)

Effect Rank Accuracy

partial.lm 0.537 (0.009) 0.656 (0.007) 0.741 (0.005)
ridge.add 0.537 (0.009) 0.656 (0.007) 0.742 (0.005)
ridge.dom 0.535 (0.009) 0.652 (0.007) 0.738 (0.005)
DF.MCMC.pseudo 0.519 (0.010) 0.638 (0.008) 0.722 (0.006)
DF.MCMC 0.531 (0.010) 0.653 (0.007) 0.741 (0.005)
DF.IS.noweight 0.531 (0.009) 0.654 (0.007) 0.740 (0.005)
DF.IS 0.534 (0.010) 0.654 (0.007) 0.739 (0.006)

Effect MSE

partial.lm 2.242 (0.048) 1.170 (0.025) 0.635 (0.014)
ridge.add 0.775 (0.012) 0.578 (0.010) 0.376 (0.008)
ridge.dom 0.762 (0.007) 0.685 (0.008) 0.561 (0.008)
DF.MCMC.pseudo 0.701 (0.013) 0.493 (0.008) 0.388 (0.007)
DF.MCMC 0.740 (0.016) 0.498 (0.009) 0.335 (0.006)
DF.IS.noweight 0.729 (0.015) 0.494 (0.009) 0.384 (0.006)

Additive
+

DF.IS 0.728 (0.016) 0.492 (0.009) 0.360 (0.006)

Dominant

Effect Rank Accuracy

partial.lm 0.535 (0.010) 0.646 (0.008) 0.727 (0.006)
ridge.add 0.535 (0.010) 0.647 (0.007) 0.731 (0.006)
ridge.dom 0.535 (0.010) 0.645 (0.007) 0.729 (0.006)
DF.MCMC.pseudo 0.514 (0.010) 0.624 (0.008) 0.700 (0.006)
DF.MCMC 0.527 (0.010) 0.643 (0.008) 0.729 (0.006)
DF.IS.noweight 0.531 (0.010) 0.645 (0.007) 0.729 (0.006)
DF.IS 0.530 (0.010) 0.643 (0.008) 0.728 (0.006)

Table 2: Performance of the methods applied on CC population with simulated phenotypes. The table
shows the mean values of either prediction error or rank accuracy with halved 95% confidence interval size
in parentheses.
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Simulated
Metric Model

QTL effect size
Effects 20% 30% 40%

Additive

Effect MSE

partial.lm 0.288 (0.006) 0.199 (0.005) 0.154 (0.005)
ridge.add 0.174 (0.003) 0.109 (0.002) 0.076 (0.001)
ridge.dom 0.348 (0.007) 0.254 (0.006) 0.196 (0.005)
DF.MCMC.pseudo 0.192 (0.004) 0.134 (0.003) 0.100 (0.002)
DF.MCMC 0.166 (0.003) 0.102 (0.002) 0.068 (0.001)
DF.IS.noweight 0.237 (0.005) 0.169 (0.004) 0.130 (0.003)
DF.IS 0.188 (0.004) 0.120 (0.003) 0.086 (0.002)

Effect Rank Accuracy

partial.lm 0.793 (0.005) 0.813 (0.005) 0.825 (0.005)
ridge.add 0.797 (0.005) 0.818 (0.005) 0.831 (0.005)
ridge.dom 0.791 (0.005) 0.814 (0.005) 0.826 (0.005)
DF.MCMC.pseudo 0.784 (0.005) 0.807 (0.005) 0.821 (0.005)
DF.MCMC 0.797 (0.005) 0.818 (0.005) 0.830 (0.005)
DF.IS.noweight 0.793 (0.005) 0.814 (0.005) 0.825 (0.005)
DF.IS 0.796 (0.005) 0.815 (0.005) 0.828 (0.005)

Effect MSE

partial.lm 0.369 (0.009) 0.281 (0.008) 0.237 (0.007)
ridge.add 0.219 (0.005) 0.158 (0.004) 0.127 (0.003)
ridge.dom 0.399 (0.008) 0.321 (0.007) 0.273 (0.006)
DF.MCMC.pseudo 0.246 (0.005) 0.184 (0.004) 0.152 (0.003)
DF.MCMC 0.203 (0.004) 0.140 (0.004) 0.105 (0.004)
DF.IS.noweight 0.274 (0.005) 0.213 (0.005) 0.175 (0.004)

Additive
+

DF.IS 0.227 (0.005) 0.163 (0.004) 0.123 (0.003)

Dominant

Effect Rank Accuracy

partial.lm 0.777 (0.005) 0.797 (0.005) 0.806 (0.005)
ridge.add 0.782 (0.005) 0.802 (0.005) 0.812 (0.005)
ridge.dom 0.784 (0.005) 0.805 (0.005) 0.817 (0.005)
DF.MCMC.pseudo 0.762 (0.005) 0.788 (0.005) 0.797 (0.005)
DF.MCMC 0.784 (0.005) 0.805 (0.005) 0.817 (0.006)
DF.IS.noweight 0.780 (0.005) 0.800 (0.005) 0.810 (0.005)
DF.IS 0.782 (0.005) 0.801 (0.005) 0.811 (0.005)

Table 3: Performance of the methods applied on CC population with simulated phenotypes. The table
shows the mean values of either prediction error or rank accuracy with halved 95% confidence interval size
in parentheses.
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Simulated
Metric Model

QTL effect size
Effects 2.5% 5% 10%

Additive

Effect MSE

partial.lm 32.678 (1.697) 19.145 (1.085) 12.427 (0.763)
ridge.add 41.639 (3.217) 19.961 (1.556) 9.692 (0.715)
ridge.dom 2293 (603) 1156 (289) 599 (156.9)
DF.IS.noweight 0.850 (0.007) 0.814 (0.007) 0.803 (0.006)
DF.IS.kinship 1.136 (0.020) 0.902 (0.015) 0.797 (0.013)
DF.IS 0.915 (0.031) 0.813 (0.010) 0.764 (0.008)

Effect Rank Accuracy

partial.lm 0.186 (0.014) 0.245 (0.013) 0.310 (0.012)
ridge.add 0.178 (0.014) 0.241 (0.014) 0.311 (0.013)
ridge.dom 0.095 (0.010) 0.126 (0.010) 0.160 (0.010)
DF.IS.noweight 0.318 (0.012) 0.393 (0.011) 0.457 (0.009)
DF.IS.kinship 0.246 (0.013) 0.325 (0.015) 0.398 (0.015)
DF.IS 0.296 (0.030) 0.364 (0.012) 0.442 (0.010)

Effect MSE

partial.lm 16.954 (0.909) 10.486 (0.602) 7.111 (0.444)
ridge.add 18.434 (1.222) 10.580 (0.666) 5.805 (0.343)
ridge.dom 1085 (256) 557 (142) 275 (68.40)
DF.IS.noweight 0.910 (0.004) 0.892 (0.003) 0.887 (0.003)
DF.IS.kinship 1.051 (0.011) 0.936 (0.007) 0.887 (0.006)

Additive + DF.IS 0.946 (0.008) 0.893 (0.006) 0.867 (0.004)
Dominant

Effect Rank Accuracy

partial.lm 0.146 (0.010) 0.176 (0.010) 0.218 (0.009)
ridge.add 0.122 (0.011) 0.160 (0.010) 0.205 (0.010)
ridge.dom 0.073 (0.009) 0.101 (0.008) 0.137 (0.009)
DF.IS.noweight 0.229 (0.009) 0.276 (0.008) 0.313 (0.008)
DF.IS.kinship 0.180 (0.010) 0.229 (0.010) 0.270 (0.011)
DF.IS 0.220 (0.010) 0.258 (0.009) 0.309 (0.008)

Table 4: Performance of the methods applied on HS population with simulated phenotypes. The table
shows the mean values of either prediction error or rank accuracy with halved 95% confidence interval size
in parentheses.
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Simulated
Metric Model

QTL effect size
Effects 20% 30% 40%

Additive

Effect MSE

partial.lm 9.103 (0.590) 8.008 (0.529) 7.467 (0.498)
ridge.add 4.566 (0.296) 2.959 (0.171) 2.293 (0.146)
ridge.dom 270 (74.24) 164 (46.05) 111 (29.70)
DF.IS.noweight 0.785 (0.006) 0.775 (0.007) 0.768 (0.007)
DF.IS.kinship 0.744 (0.012) 0.702 (0.013) 0.709 (0.011)
DF.IS 0.733 (0.008) 0.721 (0.008) 0.714 (0.008)

Effect Rank Accuracy

partial.lm 0.371 (0.011) 0.399 (0.011) 0.416 (0.010)
ridge.add 0.394 (0.012) 0.447 (0.012) 0.483 (0.011)
ridge.dom 0.202 (0.010) 0.233 (0.010) 0.254 (0.010)
DF.IS.noweight 0.502 (0.008) 0.516 (0.008) 0.526 (0.008)
DF.IS.kinship 0.460 (0.014) 0.489 (0.013) 0.505 (0.012)
DF.IS 0.488 (0.009) 0.501 (0.009) 0.516 (0.009)

Effect MSE

partial.lm 5.414 (0.354) 4.845 (0.320) 4.558 (0.301)
ridge.add 3.249 (0.164) 2.471 (0.115) 2.116 (0.110)
ridge.dom 124 (30.90) 78 (19.99) 55 (13.51)
DF.IS.noweight 0.879 (0.003) 0.874 (0.003) 0.870 (0.003)
DF.IS.kinship 0.859 (0.006) 0.837 (0.007) 0.840 (0.005)

Additive + DF.IS 0.854 (0.004) 0.849 (0.004) 0.844 (0.004)
Dominant

Effect Rank Accuracy

partial.lm 0.260 (0.009) 0.280 (0.008) 0.292 (0.008)
ridge.add 0.261 (0.010) 0.293 (0.009) 0.316 (0.009)
ridge.dom 0.179 (0.009) 0.208 (0.009) 0.229 (0.009)
DF.IS.noweight 0.346 (0.007) 0.357 (0.007) 0.366 (0.006)
DF.IS.kinship 0.309 (0.010) 0.340 (0.010) 0.348 (0.009)
DF.IS 0.336 (0.008) 0.345 (0.008) 0.357 (0.007)

Table 5: Performance of the methods applied on HS population with simulated phenotypes. The table
shows the mean values of either prediction error or rank accuracy with halved 95% confidence interval size
in parentheses.

Simulated
2.5% QTL 5% QTL 10% QTL 20% QTL 30% QTL 40% QTL

Effects

Additive 0.0010 (0.0001) 0.0014 (0.0001) 0.0025 (0.0001) 0.0051 (0.0001) 0.0083 (0.0002) 0.0125 (0.0003)

Additive
0.0013 (0.0001) 0.0017 (0.0001) 0.0032 (0.0001) 0.0066 (0.0001) 0.0108 (0.0002) 0.0163 (0.0003)+

Dominant

Table 6: The table shows the mean values of TDI with halved 95% confidence interval size in parentheses.

6



7 
 

Files S2‐S4 

Available for download as .gz files at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.166249/‐/DC1 

 

File S2   Computer code, including simulation and example code 

File S3   Data used in the simulations 

File S4   Real data examples used 


