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Abstract

In this work, a new concept of upper dense sequence in interval (0,1] is introduced. There are infinitely many upper dense
sequences in interval (0,1]. Using any upper dense sequence, a new decomposition theorem for fuzzy sets is established and
proved. Then, using a chosen upper dense sequence as one of the necessary reference systems, infinitely many total orderings on
the set of all fuzzy numbers can be well defined. Among them, a common upper dense sequence based on the binary numbers is
suggested as a natural default option. Another upper dense sequence based on the rational numbers is also suggested. Regarding real
numbers as special fuzzy numbers, all of these total orderings defined by using the suggested upper dense sequences are consistent
with the natural ordering of real numbers. Building total ordering on the set of all fuzzy numbers in such a way is significant for
fuzzy data analysis and, therefore, may be used in decision making with fuzzy information.
Published by Elsevier B.V.
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1. Introduction

Fuzzy numbers is one of the most important mathematical concepts concerning fuzziness. Ranking fuzzy numbers
is an essential step in analyzing fuzzy information in optimization, data mining, decision making, and related areas.
Since the introduction of the concept of fuzzy sets and fuzzy numbers in the sixties of the last century, many significant
contributions have been made in ranking fuzzy numbers [1–4,7–9,14–17,19,20,22]. They have respect intuition based
on some geometric characteristics (e.g., area, distance, or centroid), and can be used for various purposes. Mostly, these
methods can either order a set of fuzzy numbers that are not equivalent according to some selected characteristic(s),
that is, only rank fuzzy numbers but allow different fuzzy numbers to have the same rank, or order some special types
of fuzzy numbers, such as the triangular (or, more generally, trapezoidal) fuzzy numbers. In addition, a total ordering
for the graded numbers, which are similar to some special type of fuzzy numbers and can be identified by finitely
many real-valued parameters, has been discussed [10].

Generally, based on one or more characteristics of fuzzy numbers, an equivalence relation and an opposite but
transitive relation on the set of all fuzzy numbers can be defined. Using these two relations, it is easy to define a total
ordering on its quotient space of the equivalence relation, but not on the set of all fuzzy numbers themselves. Up to
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now, no one has reported any successful result on total orderings defined on the set of all fuzzy numbers in literature.
The difficulty of defining total ordering for all fuzzy numbers is that there is no effective tool to identify an arbitrarily
given fuzzy number by only finitely many real-valued parameters. In this work, by establishing a new decomposition
theorem for fuzzy sets, we can use an upper dense sequence with the natural ordering of real numbers and a chosen or-
dering for the end points of rectangles as the necessary reference systems to overcome the above-mentioned difficulty
and, then, present a way for defining various total orderings on the set of all fuzzy numbers.

This paper is arranged as follows. After the Introduction, some necessary fundamental knowledge on orderings
and fuzzy numbers is reviewed in Section 2. In Section 3, we survey existing results on the total ordering defined on
several sets of fuzzy numbers with some common special type. Section 4 is used to introduce and discuss the concept
of upper dense sequence in interval (0,1]. A new decomposition theorem for fuzzy sets is established in Section 5.
Then, we define total orderings on the set of all fuzzy numbers in Section 6. Several examples showing how the total
ordering can be used for ranking or ordering fuzzy numbers are presented in Section 7. Finally, conclusions are given
in Section 8.

2. Orderings and fuzzy numbers

Let X be a nonempty set. Any subset of the product set X × X is called a relation, denoted by R, on X. We write
aRb if and only if (a, b) ∈ R. Relation R is reflective if and only if aRa for every a ∈ X. Relation R is symmetric
if and only if, for any a, b ∈ X, aRb implies bRa. Relation R is antisymmetric if and only if, for any a, b ∈ X, aRb

and bRa imply a = b. Relation R is transitive if and only if, for any a, b, c ∈ X, aRb and bRc imply aRc. Relation
R is called a partial ordering on X if it is reflective, antisymmetric, and transitive. A partial ordering R on X is called
a total ordering if either aRb or bRa for any a, b ∈ X. Two total orderings R1 and R2 are different if and only if
there exist a, b ∈ X with a �= b such that aR1b but bR2a. For any given total ordered infinite set, there are infinitely
many different ways to redefine a new total ordering on it. Relation R is called an equivalent relation if it is reflective,
symmetric, and transitive.

Now, let R = (−∞,∞). A fuzzy subset of R, denoted by ẽ, is called a fuzzy number if its membership function
me :R → [0,1] satisfies the following conditions.

(FN1) Set {x | me(x) � α}, the α-cut of ẽ (denoted by eα), is a closed interval for every α ∈ (0,1].
(FN2) Set {x | me(x) > 0}, the support set of ẽ (denoted by supp(e)), is bounded.

Condition (FN1) is equivalent to the following three conditions.

(FN1.1) There exists at least one real number a0 such that me(a0) = 1.
(FN1.2) Function me is nondecreasing on (−∞, a0] and nonincreasing on [a0,∞).
(FN1.3) Function me is upper semi-continuous, or say, me is right-continuous (i.e., limx→x0+ me(x) = me(x0)) when

x0 < a0 and is left-continuous (i.e., limx→x0− me(x) = me(x0)) when x0 > a0.

For any fuzzy number ẽ, set {x | me(x) = 1} is nonempty and is called its core (or, kernel). It is the most important
factor for identifying a fuzzy number. Any real number is a special fuzzy number that can be identified by only its
core, which is a singleton.

The set of all fuzzy numbers is denoted by NF . It is easy to define a partial ordering on set NF as follows.
First, a partial ordering, denoted by �, on the set of all closed intervals, denoted by NI , is defined by saying

[a, b] � [c, d] if and only if a � c and b � d . Then a partial ordering, still denoted by �, on NF can be well defined
by saying ẽ1 � ẽ2 if and only if (e1)α � (e2)α for all α ∈ (0,1].

The major contribution of this work is presented in Section 6, where we give total orderings defined on the set of
all fuzzy numbers, NF .

3. Total orderings defined on some sets of fuzzy numbers with special type

Before defining total orderings on the set of all fuzzy numbers, let us recall some total orderings defined on several
common proper subsets of NF .
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Each rectangular fuzzy number can be regarded as a closed interval. So, we can still use NI , the notation for the
set of all interval numbers, to denote the set of all rectangular fuzzy numbers. NI is a proper subset of NF . The
membership function of a rectangular number ẽ takes the form

me(x) =
{

1 if x ∈ [al, ar ]
0 otherwise,

and can be simply denoted by vector [al ar ], where real-valued parameters al and ar satisfy al � ar . From Section 2,
we can see that it is easy to define a total ordering on NI based on any two selected parameter that can identify a
rectangular fuzzy number. For example, one way to define a total ordering � on NI is by a statement that [al ar ] �
[bl br ] if and only if al < bl or ar � br when al = bl ; another way is by a statement that [al ar ] � [bl br ] if and only
if al + ar < bl + br or ar − al � br − bl when al + ar = bl + br . There are infinitely many ways to define different
total orderings on NI . So, there are infinitely many different total orderings on NI . Each particular total ordering
corresponds to (or say, depends on) particularly selected reference systems. For instance, in the above-mentioned
examples, the first total ordering corresponding to two selected reference systems: one consists of the set of all real
numbers with the natural ordering and another is “left-first, right-second” for end points of intervals (denoted by
(l, r)) such an ordered pair. It is easy to see that we can obtain another total ordering, which is different from the
above-mentioned two total orderings, on NI when “left-first, right-second” is replaced with “right-first, left-second”
(denoted by (r, l)) in the second reference system. That is to say, even if two identifying parameters for rectangular
fuzzy numbers have been fixed in the second reference system, the defined total ordering on NI still depends on the
order of these two parameters. People may also use the convex combination of any chosen weight w ∈ (0,1) with
w �= 1/2 followed by its dual (the convex combination of weight 1 − w) as the second reference system to define
a total ordering on NI . This is similar to the weighted average of pessimism and optimism expressed in Hurwicz
criterion [5,12], where only one coefficient α is used and a ranking on the set of all closed intervals can be obtained.
But now, to get a total ordering, we need two ordered indexes as a reference system, i.e., using an ordered pair of w

and 1 − w satisfying w �= 1/2. In such a way, we have infinitely many different choices for weight w and, therefore,
infinitely many different total orderings can be defined on NI . They depend on the selected reference systems.

Another common special type of fuzzy numbers is the triangular fuzzy numbers whose membership function has a
form

me(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−al

a0−al
if x ∈ [al, a0)

1 if x = a0
x−ar

a0−ar
if x ∈ (a0, ar ]

0 otherwise,

where real-valued parameters al , a0, and ar satisfy al � a0 � ar . The set of all triangular fuzzy numbers is denoted
by NT , which is also a proper subset of NF . Such a fuzzy number can be simply denoted by vector [al a0 ar ]. Thus,
a total ordering � on NT may be defined according to the following criterion: [al a0 ar ] � [bl b0 br ] if and only if

(1) al < bl , or
(2) al = bl but a0 < b0, or
(3) al = bl , a0 = b0, but ar � br .

The above way for defining a total ordering is often referred to as lexicographic in literature [8]. Of course, there
are infinitely many different ways, even according to the lexicography, to define a total ordering on NT .

As a generalization of both rectangular fuzzy numbers and triangular fuzzy numbers, trapezoidal fuzzy numbers
are also an important common type of fuzzy numbers, whose membership function has a form

me(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−al

ab−al
if x ∈ [al, ab)

1 if x ∈ [ab, ac]
x−ar

ac−ar
if x ∈ (ac, ar ]

0 otherwise,

where al , ab , ac, and ar are real-valued parameters with al � ab � ac � ar . Such a trapezoidal fuzzy number can
be simply denoted by vector [al ab ac ar ]. Similar to above discussion for rectangular fuzzy numbers and triangular
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fuzzy numbers, the lexicography can also be used to define total orderings on the set of all trapezoidal fuzzy numbers.
This set is still a proper subset of NF .

All above-mentioned subsets of NF have a common specialty: they involve only finitely many real-valued param-
eters. Hence, it is easy to define a total ordering on each of them by the lexicography. However, fuzzy numbers in NF

cannot be identified by only finitely many real-valued parameters. This is a fundamental challenge in defining a total
ordering on NF . In the next two sections, we propose to identify fuzzy numbers in NF by infinitely but countably
many real-valued parameters such that the lexicography can be used to define total orderings on the set of all fuzzy
numbers as well. This entails a new decomposition theorem for fuzzy sets.

4. Upper dense sequences in interval (0,1]

To define a total ordering on NF , we need an upper dense sequence, as one of the reference systems, consisting of
real numbers in interval (0,1] described below.

Let D be a set of real numbers in (0,1], that is, D ⊆ (0,1].

Definition 1. Set D is upper dense in (0,1] if, for every point x ∈ (0,1] and any ε > 0, there exists δ ∈ D such that
δ ∈ [x, x + ε). Set D is lower dense in (0,1] if, for every point x ∈ (0,1] and any ε > 0, there exists δ ∈ D such that
δ ∈ (x − ε, x].

Definition 2. Set D is dense in (0,1] if, for every point x ∈ (0,1] and any ε > 0, there exists δ ∈ D such that
|x − δ| < ε.

It is evident that D is dense in (0,1] if D is upper dense or lower dense in (0,1]. The converse statement may be
wrong. In fact, a dense set in (0,1] may not be upper dense in (0,1] since D being upper dense in (0,1] implies 1 ∈ D

but 1 may not be in D even if D is dense in (0,1]. However, we have the following theorem.

Theorem 1. If D is dense in (0,1] and 1 ∈ D, then it is upper dense in (0,1].

Proof. Assume that D is dense in (0,1]. We only need to show that D is upper dense in (0,1) due to the fact
that 1 ∈ D. For any given x ∈ (0,1) and ε > 0, take y ∈ (x,min(x + ε/2,1)]. Since D is dense in (0,1], for ε′ =
min(y − x, ε/2) > 0, there exists δ ∈ D such that |y − δ| < ε′ � ε/2. Thus, δ ∈ [x, x + ε

2 + ε
2 ) = [x, x + ε), i.e., D is

upper dense in (0,1). �
Theorem 2. If D is dense in (0,1], then it is lower dense in (0,1].

Proof. For any given positive integer n, since D is upper dense in (0,1), we can find a real number yn ∈
(1 − 1/n,1) ∩ D. Since limn→∞ yn = 1 and D is dense in (0,1), we only need to show that D is also lower dense in
(0,1). The proof of this remaining part is similar to that of Theorem 1 and, therefore, is omitted here. �

From Theorems 1 and 2 we know that, in (0,1], any upper dense set is just a dense set containing real number 1
and is also lower dense.

Any infinite but countable set of real numbers can be expressed as an infinite sequence. Beyond the existence of
assigned ordering for their members, the difference between a countable set and a sequence is that the former contains
only distinct members but the latter allows repeated occurrences. For example, the collection of all positive integers
{1,2,3, . . .} is a set but (0,1,0,2,0,3, . . .), which can also be expressed as {ai | i = 1,2, . . .} with ai = (i+(−1)i i)/4,
is a sequence. Anyway, we may use the notations of belonging and set inclusion in set theory for sequences without
any confusion. For example, if S is a sequence consisting of points in set A, we may write S ⊆ A; if x is a term of
sequence S, we may write x ∈ S. In Sections 5 and 6, we use a given upper dense sequence consisting of infinitely but
countably many numbers in interval (0,1] to establish a new decomposition theorem for fuzzy sets and, then, define
total orderings on the set of all fuzzy numbers.

Two examples of upper dense sequences in (0,1] are given as follows.
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Example 1. Let Sb = {dbi | i = 1,2, . . .} be the sequence of all binary numbers in (0,1] with finitely many bits,
where db1 = 1, db2 = 1

2 = 0.5, db3 = 1
4 = 0.25, db4 = 3

4 = 0.75, db5 = 1
8 = 0.125, db6 = 3

8 = 0.375, db7 = 5
8 = 0.625,

db8 = 7
8 = 0.875, db9 = 1

16 = 0.0625, . . . , decimally. Generally, we may express

dbi = [
2
(
i − 2	log2 i
−1) − 1

]
/2	log2 i
, i = 1,2, . . . ,

where notation 	t
 denotes the value of the ceiling function at real number t , i.e., the smallest integer not smaller
than t [18]. Sequence Sb is upper dense in (0,1]. In the next two sections, it is used as the standard upper dense
sequences in (0,1] for defining total orderings on NF .

Example 2. Let Sr = {dri | i = 1,2, . . .}, the set of all rational numbers in (0,1], where dr1 = 1, dr2 = 1/2, dr3 = 1/3,
dr4 = 2/3, dr5 = 1/4, dr6 = 3/4, dr7 = 1/5, dr8 = 2/5, dr9 = 3/5, . . . . Sequence Sr is upper dense in (0, 1] too. If
we allow a number to have multiple occurrences in the sequence, the general members in upper dense sequence
S′

r = {d ′
ri | i = 1,2, . . .} can be expressed by

d ′
ri = i

k
− k − 1

2
, i = 1,2, . . . ,

where

k =
⌈√

2i + 1

4
− 1

2

⌉
.

That is, d ′
r1 = 1, d ′

r2 = 1/2, d ′
r3 = 2/2, d ′

r4 = 1/3, d ′
r5 = 2/3, d ′

r6 = 3/3, d ′
r7 = 1/4, d ′

r8 = 2/4, d ′
r9 = 3/4, . . . . In

sequence S′
r , for instance, d ′

r3 is the same real number as d ′
r1. Though sequences Sr and S′

r are different, we can see
in Section 6 that the two total orderings defined on NF by using them are the same.

Obviously, for a given upper dense sequence in (0, 1], there are infinitely many different rearrangements that are
still upper dense in (0,1]. For example, (1,1/2,3/4,1/4,7/8,5/8, . . .) is a rearrangement of Sb in Example 1. Each
upper dense sequence in (0,1] can be used to define a total ordering on NF .

Even though a lower dense sequence is necessary for establishing a new decomposition theorem in the next section,
we still prefer to use an upper dense sequence since number 1 plays a very important role for identifying fuzzy numbers
and number 1 may not be included in a lower dense sequence in interval (0,1].

5. A new decomposition theorem for fuzzy sets

Before establishing a new decomposition theorem, we recall existing decomposition theorems [6,13,21,23] for
fuzzy sets.

Let X be the nonempty universal set and A be a fuzzy subset of X with membership function mA. The α-cut and
the strong α-cut of A are denoted by Aα and Aα+ respectively, that is, Aα = {x | mA(x) � α, x ∈ X} and Aα+ = {x |
mA(x) > α, x ∈ X} for α ∈ [0,1]. The level-value set of A is defined by LA = {α | mA(x) = α for some x ∈ X}, i.e.,
the range of membership function mA. For any crisp (not fuzzy) subset B of X, we use αB to denote the fuzzy set
having membership function mB = αχB for any α ∈ [0,1].

Decomposition Theorem I.

A =
⋃

α∈[0,1]
αAα =

⋃
α∈(0,1]

αAα.

Decomposition Theorem II.

A =
⋃

α∈[0,1]
αAα+ =

⋃
α∈(0,1]

αAα+ =
⋃

α∈(0,1)

αAα+.

Decomposition Theorem III.

A =
⋃

α∈LA

αAα.
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Regarding fuzzy numbers as special fuzzy subsets of R, these decomposition theorems are also available for fuzzy
numbers. Unfortunately, none of them can be used to define a total ordering on NF since they identify a fuzzy
number by uncountably many real-valued parameters generally and, therefore, the lexicography cannot be used any
more. Thus, establishing a new decomposition theorem, which identifies any fuzzy number by only countably many
real-valued parameters, for fuzzy numbers is essential.

Theorem 3 (Decomposition Theorem IV). Let A be a fuzzy set with membership function mA and S be a given upper
dense sequence in (0,1]. Then

A =
⋃
α∈S

αAα.

Proof. On one hand, since S ⊆ [0,1], we have
⋃

α∈S αAα ⊆ ⋃
α∈[0,1] αAα = A. On the other hand, we need to show

that

mA(x) � sup
α∈S

αχAα (x)

for every x ∈ X. In fact, for each given x ∈ X, by Decomposition Theorem II,

mA(x) = sup
α∈(0,1)

αχAα+(x) = sup
α∈(0,mA(x))

αχAα+(x).

For each α ∈ (0,mA(x)), since S is also lower dense in (0,1], we may find a real number βα ∈ (α,mA(x)) ∩ S so
that

αχAα+(x) < βαχAα+(x) = βα = βαχAβα
(x) � sup

β∈S

βχAβ (x).

Thus, taking the supremum with respect to α ∈ (0,mA(x)), we obtain

mA(x) = sup
α∈(0,mA(x))

αχAα+(x) � sup
β∈S

βχAβ (x) = sup
α∈S

αχAα (x).

The proof is now complete. �
6. Defining total orderings on the set of all fuzzy numbers

Decomposition Theorem IV established in Section 5 identifies any fuzzy number by using only countably many
real-valued parameters. It provides us with a powerful tool for defining total orderings on the set of all fuzzy numbers,
NF , by using the extended lexicography.

Given an upper dense sequence S = {αi | i = 1,2, . . .} in (0,1], for any given fuzzy number ẽ ∈ NF , from Section 2
we know that the α-cut of ẽ at each αi , i = 1,2, . . . , is a closed interval. Denote this interval by [ai, bi], and let
c2i−1 = ai + bi (the twice of the middle of the interval) and c2i = bi − ai (the length of the interval), i = 1,2, . . . . By
Decomposition Theorem IV, these countably many parameters {cj | j = 1,2, . . .} identify the fuzzy number. Using
these parameters, we define a relation on NF as follows.

Definition 3. Let ẽ and f̃ be two fuzzy numbers. For given upper dense sequence S = {αi | i = 1,2, . . .} in (0,1], we
use cj (e) and cj (f ) to denote above-mentioned c’s for ẽ and f̃ respectively. We say that ẽ = f̃ if and only if their
α-cuts at αi are equal to each other, that is, eαi

= fαi
, for all i = 1,2, . . . ; we say that ẽ ≺ f̃ if and only if ẽ = f̃ is not

true and there exists a positive integer j such that cj (e) < cj (f ) and ci(e) = ci(f ) for all positive integers i < j ; we
say that ẽ � f̃ if and only if ẽ ≺ f̃ or ẽ = f̃ .

Intuitively, integer j in Definition 3 is the smallest positive integer such that cj (e) �= cj (f ) and the ordering
relation of these two fuzzy numbers is determined by only the inequality between cj (e) and cj (f ). To be convenient
in the proof of the next theorem, we may use j = ∞ to denote the case that there is no positive integer j such that
cj (e) �= cj (f ), that is, the case ẽ = f̃ . We also define i < ∞ for any positive integer i and min(∞,∞) = ∞.
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Theorem 4. Relation � is a total ordering on NF .

Proof. We prove this conclusion by 4 steps as follows.
(1) Showing the reflexivity of relation � is trivial.
(2) To show the antisymmetry of �, let ẽ, and f̃ be two fuzzy numbers satisfying ẽ � f̃ and f̃ � ẽ. Assuming that

ẽ �= f̃ , we have both ẽ ≺ f̃ and f̃ ≺ ẽ. From the former, we can find j1, such that cj1(e) < cj1(f ) and cj (e) = cj (f )

for all positive integers j < j1; from the latter, we can find j2, such that cj2(f ) < cj2(e) and cj (f ) = cj (e) for all
positive integers j < j2. Then, j1 and j2 must be the same, denoted as j0. But holding both cj0(e) < cj0(f ) and
cj0(f ) < cj0(e) is impossible and, therefore, the above assumption is wrong, i.e., we must have ẽ = f̃ .

(3) To show that � is transitive, let ẽ, f̃ , and g̃ be three fuzzy numbers satisfying ẽ � f̃ and f̃ � g̃. From ẽ � f̃ ,
we can find j1, which may be ∞, such that cj1(e) < cj1(f ) and cj (e) = cj (f ) for all positive integers j < j1; from
f̃ � g̃, we can find j2, which may be ∞, such that cj2(f ) < cj2(g) and cj (f ) = cj (g) for all positive integers j < j2.
Taking j0 = min(j1, j2), we have cj0(e) < cj0(g) and cj (e) = cj (g) for all positive integers j < j0, that is, ẽ � g̃.
This means that relation � is transitive.

Up to here, we have shown that � is a partial ordering on NF . Furthermore, we need to show that any two fuzzy
numbers are comparable according to relation �.

(4) For any two fuzzy number ẽ and f̃ , they are either ẽ = f̃ , or this equality is not true, i.e., ẽ �= f̃ . In the latter
case, there are some integers j such that cj (e) �= cj (f ). Let J = {j | cj (e) �= cj (f )}. Then J is lower bounded and,
therefore, according to the Well-Ordering Property [18], J has a unique smallest element, denoted by j0. Thus, we
have cj (e) = cj (f ) for all positive integers j < j0, and either cj0(e) < cj0(f ) or cj0(e) > cj0(f ), that is, either ẽ ≺ f̃

or f̃ ≺ ẽ in this case. So, for these two fuzzy numbers, either ẽ � f̃ or f̃ � ẽ. This means that partial ordering � is a
total ordering on NF .

The proof is now complete. �
Similar to the case of total orderings on the real line (−∞,∞) and the total orderings on sets consisting of special

types of fuzzy numbers shown in Section 3, infinitely many different total orderings on NF can be defined. Even using
a given upper dense sequence in (0,1], there are still infinitely many different ways to determine a total ordering
on NF . A notable fact is that each of them is consistent with the natural ordering on the set of all real numbers.
This can be regarded as a fundamental requirement for any practice ordering method on the set of all fuzzy numbers.
Nevertheless, it is intuitive and convenient to adopt sequence Sb = {dbi | i = 1,2, . . .} shown in Example 1 and use the
way presented in Definition 3 as the default. This is because the core, at which the membership degree is 1 everywhere,
of fuzzy numbers is used in the first step of the comparison, and is the most important factor to identifying and ranking
fuzzy numbers.

We can also see that, in Example 2, though sequences Sr and S′
r are different, by Definition 3, the defined two total

orderings on NF are the same.
In comparison with the Hurwicz criterion in economic decision [5,11,12], each term c2i−1 = ai + bi (i = 1,2, . . .)

shown above is just the twice of weighted average with weight w = 0.5 in his model. It is the mutualism (neither
pessimism nor optimism) of consideration. In Hurwicz’s economic decision model, since only a ranking on the set
of all closed intervals is required, one index is sufficient for this purpose. However, we now want to define a total
ordering on the set of all fuzzy numbers, only taking one index to order intervals is not sufficient. As one of the
reference systems, we should take another index c2i = bi − ai after the first criterion as a supplementary one for each
i = 1,2, . . . . Of course, selecting any two weighted averages with different weights from Hurwicz’s model as indexes
and assigning their order to form a reference system also work in the above-mentioned approach for defining a total
ordering on NF .

7. Ranking fuzzy numbers by total orderings

The following two examples show how the total orderings work for ranking fuzzy numbers. In fact, any total
ordering is a special ranking. Unlike the previously existing ranking methods, by which people can always cite some
different fuzzy numbers with the same rank and, therefore, they cannot be ordered, the proposed total ordering can
order any given fuzzy numbers.
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Fig. 1. The membership function of fuzzy numbers in Example 3.

Example 3. Let ẽ and f̃ be fuzzy numbers with membership functions

me(x) =

⎧⎪⎨
⎪⎩

0.5x − 0.5 if x ∈ [1,3)

1 if x ∈ [3,4]
3 − 0.5x if x ∈ (4,6]
0 otherwise

and

mf (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.25x − 0.25 if x ∈ [1,2)

0.25x + 0.25 if x ∈ [2,3)

1 if x ∈ [3,4]
2 − 0.25x if x ∈ (4,5]
1.5 − 0.25x if x ∈ (5,6]
0 otherwise

shown in Fig. 1 respectively. The total ordering � defined by using upper dense sequence Sb given in Example 1 and
the way shown in Definition 3 are now adopted. We have c1(e) = c1(f ) = 7, c2(e) = c2(f ) = 1, c3(e) = c3(f ) = 7,
c4(e) = c4(f ) = 3, c5(e) = c5(f ) = 7, but c6(e) = 4 while c6(f ) = 3, which correspond to the length of the intervals
as the respect α-cut of ẽ and f̃ at α = 1/4. So, f̃ ≺ ẽ. It should be noted that the defined total ordering depends on
the choice of the upper dense sequence. For instance, if we choose (1,1/2,3/4,1/4,7/8,5/8, . . .) as the upper dense
sequence, then a different conclusion ẽ ≺ f̃ will be obtained. This is similar to the fact that choosing different ranking
indices people may obtain different conclusion on the rank of some fuzzy numbers.

Example 4. Let g̃ and h̃ be fuzzy numbers with membership functions

mg(x) =

⎧⎪⎨
⎪⎩

x if x ∈ [0,1]
0.8 if x ∈ (1.3,1.4]
1.5 − 0.5x if x ∈ (1,1.3] ∪ (1.4,3]
0 otherwise

and

mh(x) =

⎧⎪⎨
⎪⎩

x if x ∈ [0,1]
0.85 if x ∈ (1.3,1.4]
1.5 − 0.5x if x ∈ (1,1.3] ∪ (1.4,3]

0 otherwise
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Fig. 2. The membership function of fuzzy numbers in Example 4.

shown in Fig. 2 respectively. We use the same total ordering � adopted at the beginning of Example 3, and obtain that
cj (g) = cj (h) for j = 1,2, . . . ,14, but c15(g) = 1.925 while c15(h) = 2.025. So, g̃ ≺ h̃.

When the above default total ordering is adopted for ranking fuzzy numbers, restricted on the set of all rectangular
fuzzy numbers, only parameters c1 and c2 are concerned; restricted on the set of all triangular fuzzy numbers, only
parameters c1, c3, and c4 are concerned; while restricted on the set of all trapezoidal fuzzy numbers, only parameters
c1, c2, c3, and c4 are concerned. From here, we can also see the rationale of favoring an upper dense sequence over a
lower dense sequence, for defining a total ordering on NF .

The total ordering discussed above can also be used as a supplementary means for ordering fuzzy numbers when
other intuitive ranking methods fail. The following example shows how the above total ordering works when the
ranking method based on the centroid [20] fails.

Example 5. Let s̃ and t̃ be triangular fuzzy numbers with membership functions

ms(x) =
⎧⎨
⎩

1
2 (x − 1) if x ∈ [1,3]
1
2 (5 − x) if x ∈ (3,5]
0 otherwise

and

mt(x) =
{

1
3 (x − 1) if x ∈ [1,4]
0 otherwise

shown in Fig. 3 respectively. Fuzzy numbers s̃ and t̃ have the same centroid (3, 1
3 ) and, therefore, they have the same

rank, i.e., they cannot be ordered by using the method of centroid shown in [4,20]. However, using the total ordering
introduced in Section 6 of this work, we have s̃ ≺ t̃ since c1(s) = 3 < 4 = c1(t).

8. Conclusions

On the contrary to previous studies on ranking fuzzy numbers in literature, which define total orderings either on a
quotient space according to some equivalence relation for fuzzy numbers or on a set consisting of only some special
types of fuzzy numbers, based on a given upper dense sequence in (0,1] and a new decomposition theorem for fuzzy
sets, we present a method for defining total orderings on the set of all fuzzy numbers directly. Some existing total
orderings on special types of fuzzy numbers can be regarded as restrictions of our total orderings.
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Fig. 3. The membership function of fuzzy numbers in Example 5.

Similar to the situation of other total ordered infinite sets, even if the upper dense sequence is fixed, we still have
infinitely many different ways to define a total ordering on the set of all fuzzy numbers. In this work, we suggest a
default of choosing an upper dense sequence and a common way used to order closed intervals for defining a total
ordering on the set of all fuzzy numbers with geometric intuition according to the location of their membership curves.

The total orderings introduced and discussed in this work are consistent with the natural ordering of real numbers
and, therefore, is a real generalization of the total ordering on the set of all real numbers to the set of all fuzzy numbers.
This method can order fuzzy numbers, either alone or as a supplementary means with other ranking methods, and may
be adopted in decision making with fuzzy information.
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