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Abstract

Nowadays, high throughput experimental techniques
make it feasible to examine and collect massive data
at the molecular level. These data, typically mapped
to a very high dimensional feature space, carry rich
information about functionalities of certain chemical
or biological entities and can be used to infer valuable
knowledge for the purposes of classification and predic-
tion. Typically, a small number of features or feature
combinations may play determinant roles in functional
discrimination. The identification of such features or
feature combinations is of great importance. In this pa-
per, we study the problem of discovering compact and
highly discriminative features or feature combinations
from a rich feature collection. We employ the support
vector machine as the classification means and aim at
finding compact feature combinations. Comparing to
previous methods on feature selection, which identify
features solely based on their individual roles in the
classification, our method is able to identify minimal
feature combinations that ultimately have determinant
roles in a systematic fashion. FExperimental study on
drug activity data shows that our method can discover
descriptors that are not necessarily significant individ-
ually but are most significant collectively.

Keywords: Feature Selection, Support Vector Ma-
chine, Drug Activity

1 Introduction

Due to the high throughput of modern experimental
techniques, analyzing and modeling the massive chemi-
cal and biological data becomes increasingly important
and has become a crucial step to derive useful knowl-
edge. During the past a few years, many computa-

tional models have been built and deployed to perform
functional classification and annotation. It is often the
case that all potentially relevant features are collected
and used to build the classification model. Such model
is typically very complicated as it captures the depen-
dency of the target function to features or feature com-
binations. It has been well known that only a subset
of features may play determinant roles in the target
function and that many collected features may be cor-
related. How to evaluate the importance of a feature or
a feature combination with respect to the target func-
tion and how to discover the set of essential features
has become an active research topic. This will lead to
a deeper understanding of the system and a more suc-
cinct model. Correlation mining and feature selection
methods are two popular approaches to tackle these
issues.

e Correlation mining techniques find most dis-
criminative rules (or feature combinations) using a
statistical metric (e.g., chi-square test). However,
those rules are not very compact nor very discrim-
inative since they do not take into account mutual
information between feature or feature combina-
tions, that is, they evaluate each rule indepen-
dently. Also the complexity of those methods is
fundamentally exponential to the number of fea-
tures since considering feature combinations is a
combinatorial problem.

e Feature selection methods using support
vector machine (SVM) extract a highly dis-
criminative feature set using a discriminative clas-
sifier (i.e., SVM) In terms of discrimination (or
classification) quality, these methods are better
than correlation mining methods based on statis-
tical metrics. However, due to the fact that the
SVM model is “hidden”, these methods do not
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disclose the relations within the feature set. Also
the classification accuracy of the derived feature
set is unreliable especially when the total number
of features is large.

In this paper, we focus on finding a compact set
of features or feature combinations that mostly dis-
criminates (or classifies) the target class. For exam-
ple, in Figure 1(A), there are eight data records in a
seven dimensional binary feature space. Each row rep-
resents a data record, and each column denotes a fea-
ture. “1” indicates the presence of the feature in the
record, and “0” indicates the feature’s absence. Let
d be the target feature and the rest ({a,b,c,e, f,g})
are input features. We want to find a set of features
or feature combinations that discriminates the target
feature d (or highly correlated with the target feature
d). In this example, the set {{f},{a,b}} is a most dis-
criminative compact set of feature combinations. The
set {{f},{a,b},{a,b,e}} is also discriminative but not
compact since the feature combination {a,b,e} is re-
dundant of {a,b}.

1.1 Keyideasof our method

1. We take advantage of the SVM’s kernel trick (poly-
nomial kernel) to find the minimum degree, &'
(<< k), of feature combinations that needs to
be considered to generate the highest classifica-
tion performance, where k is the total number of
features. In other words, considering more than
k' feature combinations would not generate higher
classification performance but decrease the gener-
alization performance. (An example of “redun-
dant” feature sets is given at the end of Section
2.1.) SVM’s kernel trick allows us to find &' in
linear time with respect to k.

2. After we generate a SVM model using the poly-
nomial kernel of degree k', we extract the ranked
features or feature combinations from the model,
which would be much less time-consuming since k'
is known to be much smaller than &.

3. To find a small subset of highly discriminative fea-
ture combinations, we can perform the recursive
feature elimination of [11] but with the polynomial
kernel of degree k'.

Our experiments in Section 5 show that our method
identifies better feature sets which give higher classifi-
cation accuracy than the state-of-the-art feature selec-
tion method. In addition, our method provides more
information — the relations between those feature sets.

1.2 Paper layout

The remainder of this paper is organized as follows.
Section 2 gives an overview of research related to our
work. The behavior of the SVM polynomial kernel and
our method of discriminative feature combination dis-
covery are presented in Sections 3 and 4, respectively.
Section 5 shows the experimental study on drug activi-
ties and discuss the results. The conclusions are drawn
in Section 6.

2 Related Work
2.1 Correlation mining techniques

Association rule mining

Let I be a feature set, and let Pr(I) denote the ratio
of the number of data records that include I to the
number of all records. We call Pr(I) the support of
I. An association rule has the form Iy — I, where
I, and I, are disjoint feature sets. The support of
I — I, is defined as Pr(I; N I3), while the confidence
is Pr(Iy N Iy)/Pr(I;). For example, the support and
the confidence of {a,b} — {c} are 12.5% and 50% re-
spectively.

The support of a feature set is anti-monotone w.r.t.
set-inclusion of feature sets; that is, for any pair of fea-
ture sets I C J, Pr(I) > Pr(J) always holds. Thus,
whenever the support of a feature set is below a mini-
mum support threshold, neither is any of its supersets.
The Apriori algorithm uses this heuristic to effectively
prune away a substantial number of unproductive fea-
ture sets [1, 2]. There have been numerous further work
of the association rule mining based on the support-
confidence framework.

The support-confidence framework is weak at catch-
ing correlations between feature sets. For example, the
first and second rules of Figure 1(B) statistically do not
make sense because in each rule the assumptive feature
set, say I, and the conclusive feature set (or target
class), say C, are independent. On the other hand, in
the third rule of Figure 1(B), the assumption and the
target class are highly and positively correlated.

Correlation mining

Discovering correlation of feature sets which discrimi-
nates the target class typically calls for statistical mea-
sures such as chi-squared value, entropy information
gain, gini index, or interclass variance. A user-specified
threshold is often employed to distinguish significant
feature sets from the rest.
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(A) Examples of Transactions

I-C support | confidence | correlated ?
{a} — {b} 25% 50% No
{a} = {e} 50% 100% No
{a,b} — {d} 25% 100% Yes
{a,b,e} = {d} 25% 100% Yes
{f} = {d} 0% 0% No
{f} = {d} 100% 100% Yes

(B) Examples of Association Rules

Figure 1. Transactions and Association Rules

The revision of the Apriori algorithm adopting the
chi-squared test has been investigated [4]. This method
suffers from generating too many uncorrelated rules be-
cause it still uses the support threshold [4]. S. Mor-
ishita suggested a scalable statistical pruning method
by computing an upper bound of a statistical metric
such as chi-squared value, but the upper bound of the
statistical metric is only valid for binary feature set
[15].

Correlation techniques have the following limita-
tions:

e They are not scalable with respect to the size of
features: considering every possible combination
of features is a combinatorial problem.

e They do not yield compact feature sets. For ex-
ample, in Figure 1, although the third and fourth
rules have the same correlation values, the fourth
one ({a,b,e} — {d}) is a redundant rule of the
third rule ({a,b} — {d}).

e Complementary feature sets that individually do
not separate well the data are missed. Evaluating
the discrimination power of an individual feature
set does not take into account mutual information
between feature sets.

2.2 Featureselection methodsusing SVM

Many feature ranking algorithm using correlation
coefficients have been explored with many applications
to bioinformatics [8, 10, 9]. Recently, feature selection
methods using SVM have been researched to find a
small subset of features that maximize the classifica-
tion performance.

The recursive feature elimination (RFE) algorithm
for gene selection for cancer classification was proposed
by I. Guyon et al. [11]. The RFE algorithm normalizes
each feature value into the same range, trains a SVM
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model from the normalized data, and uses the weight
of each feature as the indication for the importance of
the feature. When the feature values are normalized
well, the weight of each feature derived from the SVM
model implies the contribution of the feature for dis-
criminating the target class. However, their method is
limited to a linear kernel which is often too restrictive
to express a good discriminative function for many bi-
ological data. Moreover, linear kernels do not take into
account feature combinations so it can rank only indi-
vidual features. Our method is similar to RFE in the
sense that we also utilize the weight information to find
a set of most discriminative features, but is different in
the sense that we discover feature combinations using
SVM polynomial kernels.

J. Weston et al. have recently proposed a feature se-
lection method for nonlinear kernels. Feature selection
for nonlinear kernels is fundamentally a combinatorial
problem which requires searching over all possible sub-
sets of features. They use gradient descent method to
approximate the results. However, the gradient descent
method introduces another parameters, and improper
setting of the parameter could cause jig-jag effect or
slow convergence. Even when the parameter is opti-
mized well, the converged point is still a local mini-
mum. When the kernel is complex nonlinear and the
number of features are large, there could exist numer-
ous local minima in which the performance of the gra-
dient descent method is strongly dependent on the ran-
domly chosen starting point. In our experiments, com-
pact feature sets generated by our method show higher
classification accuracy than the feature sets found by
the local minimum search method. Moreover, the local
minimum search methods cannot discover the relations
between the features. That is, they are for data classi-
fication not for data interpretation.

We discover the compact subsets of highly discrim-
inative features or feature combinations by exploring
SVM polynomial kernels. Our method has higher dis-
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crimination (or classification) power than the local such as polynomial kernel (z7z; +1)? or Gaussian ker-

minimum search methods, and also disclose the rela- nel e=9lzi=zl>  The use of an advanced kernel is an
tions of the feature sets that are crucial to data inter- attractive computational short-cut, which foregoes an
pretation. expensive creation of a complicated feature space. An

advanced kernel is a function that operates on the input
3 Behavior of SVM Polynomial Kernel data but has the effect of computing the scalar product
of their images in a usually much higher-dimensional
feature space (or even an infinite-dimensional space),
which allows one to work implicitly with hyperplanes
in such highly complex spaces.

3.1 SVM Overview

In machine learning theory, the “optimal” class
boundary function (or hypothesis) h(z) given a lim- 32 Noteson SVM kernds
ited number of training data set {(x,y)} (y is the label '
of z) is considered the one that gives the best gener-
alization performance which denotes the performance
on “unseen” examples rather than on the training data.
The performance on the training data is not regarded
as a good evaluation measure for a hypothesis because
the hypothesis ends up overfitting when it tries to fit
the training data too hard. When a problem is easy
to classify and the boundary function is complicated
more than it needs to be, the boundary is likely overfit.
When a problem is hard and the classifier is not power-
ful enough, the boundary becomes underfit. (Figure 2
shows examples of overfitting and underfitting.) SVM
is an excellent example of supervised learning that tries

to maximize the generalization by maximizing the mar- : ;
gin and also supports nonlinear separation using ad- whereas linear kernel only takes into account each fea-

vanced kernels, by which SVM tries to avoid overfit- ture independently. (We describe the behavior of this
ting and underfitting [5, 17, 7). The margin in SVM polynomial kernel in details in the next section.) It is

denotes the distance from the boundary to the closest also possible to extract the feature weights from the
data in the feature space. polynomial kernel because it is possible to express the

In SVM, the problem of computing a margin max- kernel as an inner product of two ®(z) functions. (An

imized boundary function is specified by the following example of extracting the &(z) function from a poly-
quadratic programming (QP) problem: nomial kernel is shown in Chapter 6 of [12], and we de-

scribe the algorithm of extracting feature weights from
a polynomial kernel in Section 4.)

SVM polynomial kernel and Gaussian kernel have
been widely used in pattern recognition due to its high
expressible power [16, 3, 14]. Especially, Gaussian ker-
nel has an infinite VC dimension,' which implies that
it is basically able to draw any kinds of boundary func-
tions. (e.g., In [14], Gaussian kernel draws a checker-
board shape of boundary.) However, it is very hard to
extract the feature weights from Gaussian kernel be-
cause it is very hard to express the kernel as an inner
product of two ®(x) functions [7].

Polynomial kernel on the other hand also has a
higher expressive power than linear kernel? by concep-
tually considering feature combinations up to d degree

! [
minimize: W(a)=—-Y a;j+3 > Y yiyjoiaik(z, ;)
i=1 i=1j=1

3.3 Behavior of Polynomial Kernel

!
subject to : S yia; =0
=1 A polynomial kernel on feature set F generates the
Vi:0<a; <C

same classification results as a linear kernel on feature
set F'—the combinations of each feature in F—without
an explicit creation of the feature set F'. The polyno-
mial kernel has a parameter d which denotes the degree
of feature combinations. For instance, SVM with the
polynomial kernel of d = 3 computes the function f(z)

The volume of the training data is denoted by I, «
is a vector of [ variables, where each component «;
corresponds to a training data entry (z;, y;); x; is a
vector representation of an example, and y; is the class
label of the example ;. C' is the soft margin parameter

controlling the influence of the outliers (or noise) in Tn machine learning, the expressible power of a classification
training data. function type is often measured by VC dimension, and SVM

. allz—zl|2 . . .
Gaussian kernel e~9!17i==lI" ig proven to have infinite VC di-

The kernel k(z;,z;) for linear boundary function mension [5].

18 xi. " Tj, a scalar pr(.)duct of two data pomts.. The 2The VC dimension of polynomial kernel is (m+j_1) whereas
nonlinear transformation of the feature Space 1S per- that of linear kernel is 2m + 1, where m is # of dimensions in
formed by replacing k(z;, z;) with an advanced kernel, the feature space and d is the degree of polynomial kernel [5].
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Figure 2. Example of boundaries overfitting and underfitting

formulated as:

n n n n n n
f(:L‘) = E wW;T;+ E E Wi TiT 5+ E E E WijfTiTj T,

(1)
where z; is the ith feature of an example = and w; is the
weight of the feature z;. The classification function (1)
takes into account the combinations of every feature
up to the third degree. For instance, when d = 2, a
two-dimensional feature space of feature set {z1,z2}
will be transformed into a higher-dimensional space
that includes also the second degree of each feature
— {1, 22, 1172, T3, T3 }.

The boundary function becomes more powerful and
complicated as d increases, and at some point the
boundary function starts overfitting and degrading its
generalization performance. Figure 2(a) shows an ex-
ample of underfitting when d is too low. Figure 2(c)
is a case of overfitting when d is too high. Overfitting
due to high d corresponds to generating redundant fea-
ture sets in the correlation mining of Section 2.1. The
d showing the peak performance is different depending
on the data set.

4 Feature Combination
(FCD) Algorithm

Discovery

Considering all the combinations of features to dis-
cover a discriminative subset of feature combinations
fundamentally takes an exponential time in terms of
the number of features. However, SVM with a poly-
nomial kernel is able to draw a classification function
that considers d degree of feature combinations in lin-
ear time regardless of d. The key idea of our method is
first to find the d of best generalization performance.
(The best d is usually small in biological data sets.
In all our experiments, d < 3.) Then we compute the
weight of each feature combination up to d degree from
the SVM model and thus avoid the expensive and fruit-
less search of higher degrees of combinations. The com-

puted feature combinations will be compact and highly
discriminative.

Figure 3 describes the FCD algorithm which ex-
tracts the most compact subset of feature combina-
tions that generates higher classification accuracy than
the user threshold #. The first part of the algorithm
— Steps 1 and 2 — finds the degree d of feature com-
binations showing the peak performance by using the
SVM polynomial kernel. As we discussed in Section 3,
a polynomial kernel with d on a feature set F gener-
ates the same effects as a linear kernel on d degree of
feature combinations over F. As d increases, the clas-
sification function starts overfitting and degrading the
performance at some point, at which we stop the itera-
tion. In our experiments in Section 5, the performance
start degrading after d = 2.

There are several ways to estimate the generalization
performance of SVM such as cross validation or esti-
mation of leave-one-out errors. Cross validation tech-
niques have been used for estimating the generalization
error of a decision rule. However, it is computationally
too expensive to perform iteratively in our framework.
Estimating the SVM generalization performance has
been researched actively based on a strong theoretical
foundation. One of the most recent methods, estima-
tion of leave-one-out errors [13], has shown to be effi-
cient and fairly accurate. We used this method in our
experiments.

Given the generated SVM model of d degree poly-
nomial kernel, Steps 3 to 5 extracts the most compact
subsets of feature combinations that generates higher
classification accuracy than the user threshold 6 as fol-
lows:

e Step 4.1. computes the weight of each feature com-
bination. Figure 4 describes how to extract the
weights from a SVM model of polynomial kernel
with degree d. First a hash table H is initial-
ized whose key will be an attribute combination
and the value will be the weight of the attribute
combination. The key of the combination of more
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Input: - Training data set X = [(1,91), -, (Zn, Yn)]
- Discrimination (classification accuracy)
threshold 6
Output: - A compact set of feature combinations F’
Algorithm:

/* Find d of the best performance */

1. Initialize d =1
2. Repeat
2.1. M =train.SVM(X,d)
2.2. estimate the performance of M
2.3. if the performance is estimated lower than that of
previous loop, then d = d — 1 and exit the loop
2.5. increase d by 1

/* Extract a compact set of feature combinations whose

Input: - Support vectors and corresponding coefficients
S =[(z1,c1), (®2,¢2), ey (Tn, )]
- Degree d
Output: - A hash table H of a ranked list of feature
combinations
Algorithm:

1. Initialize a hash table H.
/* each key is an attribute combination and the value is
the weight of the attribute combination */
2. Repeat for each support vector z; = (a1, as, ..., am)
2.1. Repeat for each attribute combination A whose
number of combination is equal to or less than d
2.1.1. Multiple the coefficient ¢; of s; to the value of
A and accumulate the results into the hash
table H[A]

classification accuracy is higher than the threshold 8 */ /* At this point, the hash table H includes the key-value

3. Initialize F' = the feature set
4. Repeat
4.1. H = compute_weight(M,d) /* See Figure 4 */

4.2. F' = return_top_feature(H,len(F) — )
4.3. X = rebuild(X, F")
44. M =train.SVM(X,d)
4.5. if test(M) is lower than 6, then exit the loop
46. F=F'
5. Return F’

Figure 3. Feature Combination Discovery
(FCD) Algorithm

than d degree will be excluded. An SVM model
is a collection of (z;,¢;), where ¢; is the non-zero
coefficient of an example x;, which corresponds to
y;; in the QP formula. Only support vectors will
have non-zero ¢;. The weight of a feature combina-
tion A will be determined by the support vectors
that includes the elements of A. For instance, if
A = ajay, then the weight of Ais ), c;a1a2, where
1 is all the support vectors that have both a; and
as.

e Step 4.2. removes the least discriminative § fea-
tures from the previous feature set F' by taking
the highest ranked len(F) — § features. This re-
moving step is equal to that of recursive feature
elimination in [11]. For computational reasons, it
may be more efficient to remove several features at
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pairs of every feature combination less than d degree
and the corresponding weight of the attribute */

3. Sort the hash table H by its values
4. Return H

Figure 4. compute_weight(M,d)

a time at the expense of possible classification per-
formance degradation. With lower ¢, it is likely to
generate more compact set [11]. Our experiments
in Section 5 also show that a more compact set
generated 100% accuracy with 6 = 1 or 5 than
with § = 10.

e Steps 4.3. and 4.4. re-construct the training set
with the reduced feature set and train another
SVM model from the training set.

e Asiterating Step 4., the classification performance
may start decreasing at some point, and we return
the feature set before the performance becomes
lower than the user threshold. Our experiments
show that the classification performance stays sta-
ble until the point that the performance starts de-
creasing rapidly (See Figure 5).

We discuss the computational complexity of our al-
gorithm at the end of Section 5.
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5 Experimental Evaluations

In this section, we experimentally evaluate our
method (the FCD algorithm). To evaluate the discrim-
ination quality and the compactness of the feature com-
binations derived by the FCD algorithm, we compare
the classification performance of the derived feature set
with the state-of-the-art feature selection method [18].
The relations within the subset are disclosed as a by-
product in the FCD algorithm.

We use a dataset of 294 chemical compounds. A
total of 264 features are collected. Each feature is a
numerical descriptor that represents a property of the
compound structure, such as mass, diameter, etc. The
target classification is on whether the compound is an
active drug.

We used LIBSVM? version 2.36 for the SVM imple-
mentation. We used v-SVM because of its semantically
meaningful parameter. The soft margin parameter v in
v-SVM denotes the upper-bound of noise rate in train-
ing data set [6]. We fixed v = 0.01; the classification
accuracy is insensitive to the parameter when it is set
in a reasonable range and the data set does not have a
significant amount of noise.

The SVM with linear kernel showed less than 30%
accuracy on this data set, which implies that the data
set is not linearly separable and thus considering only
each individual feature is not enough for classifying the
drug activity. The RFE method thus will not generate
good results.

When we use SVM with polynomial kernel, it
showed 100% accuracy with d > 2, which implies that
the drug activity is only characterized well by combi-
nations of features. Thus, we run the recursive elimi-
nation with the polynomial kernel with d = 2, and the
results are shown in Figure 5.

As we discussed in Section 2.2, the classification per-
formance of the local minimum search method is unsta-
ble because the performance depends on the starting
point and there exists numerous local minimum points
when the SVM involves a large number of features with
nonlinear kernels. In Figure 5, FCD with 6 = 1 or 5
shows 100% accuracy with 50 features whereas the local
minimum search method requires at least 80 features
to achieve 100% accuracy. (We report the average ac-
curacy of five runs of their method.) The feature sets
generated by the local minimum search show lower clas-
sification accuracy than those generated by FCD with
varying number of features.

Table 5 shows the 50 features that the FCD (with
d = 5) extracts, and Table 5 shows within the 50 fea-
tures the top 10 positive and negative feature combina-

3http://www.csie.ntu.edu.tw/~cjlin/libsvm

accuracy

1 » » , » .
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0.8 1
FCD with delta =10 ——
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Figure 5. Classification performance (d = 2)
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Figure 6. Classification performance (d = 3)

tions respectively sorted by their absolute weights. It is
obvious that the best descriptor combinations are not
necessarily composed of the most important individual
descriptors.

Using higher degree of polynomial kernel could al-
low to extract even more compact features — less than
50 features — which generates 100% accuracy. For in-
stance, in our experiments, SVM with d = 3 reduced
into 30 features needed to generate 100% accuracy.
(See Figure 6.) However, as we discussed in Section 3,
the generalization performance of the function would
degrade. The 50 features we extracted here with d = 2
can be viewed as the most compact set that generates
the same classification and generalization performance
as the original data set which also generates the best
performance with d = 2.

Computational Considerations

The FCD algorithm runs SVM iteratively whose train-
ing time is quadratic to the size of data set (n) and lin-
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VRm2, D_Dr07, D_Dr11, T_N_S_

ZML1V, SNar, Xt, RHyDp, Jhetp, X0, X5A, X0v, X1v, X0Av, X2Av, X3Av,
PW3, PW4, PW5, PJI2, CSI, ECC, MDDD, UNIP, IDE, IDM, IDET, HVcpx,
Uindex, SICO, BICO, SIC1, BIC1, IC2, SIC2, BIC2, IC3, SIC3, BICS3,

IC4, BIC4, IC5, BIC5, LP1, SEigv, SEige, SEigp, AEigm, VRA1, VRZ2,

Table 1. The 50 Discriminative Feature Derived by FCD

Positively Discriminative Combination

Negatively Discriminative Combination

IDET - SIC1 (15.99)
ECC - HVcpx (14.08)
PW4 - HVcepx (12.41)
ECC - ECC (10.81)
PJI2 - ECC (10.59)
ECC - IDM (10.34)
UNIP - LP1 (9.86)
IDET - BIC1 (9.84)
CSI - IC3 (9.79)
Xt - CSI (9.63)

UNIP - IDET (-11.88)
X0v - X2Av (-10.98)
ECC - SEigp (-10.79)
RHyDp - ECC (-10.64)
IDET - BICO (-10.38)
IDE - IDE (-10.34)
ECC - AEigm (-9.96)
ECC - Uindex (-9.91)
CSI - ECC (-9.89)
X0v - X3Av (-9.74)

Table 2. Positively and Negatively Discriminative Feature Combinations and Their Weights

ear to the number of features (m). Our experiments in-
dicated that better features are obtained with smaller ¢
in the iteration of FCD. However, there are only signifi-
cant differences for the smaller subset of features (e.g.,
less than 100), which suggests that, without trading
accuracy for speed, one can remove chunks of features
at the beginning of the iterations and remove smaller
number of features as it iterates. Then, we can ap-
proximate the total number of iterations into log(m).
Extracting the weights from a polynomial kernel with
d degree takes m? time. Thus the complexity of FCD
becomes O(n? * m4*+! x log(m)) if the complexity for
training a SVM is O(n? x m).

In our experiments on the 294 data records of 264
features, using the LIBSVM, training a SVM with poly-
nomial kernel with d = 2 takes less than two seconds
in a Pentium III 800Mhz machine. Running the FCD
on the data set took about two hours in the same en-
vironment. However, it is quite acceptable in bioinfor-
matics that the data analysis takes a few hours because
the data collection and preparation usually take several
much longer, e.g., several months or years.

When the data set needs a high degree of combi-
nations, our current method could run slow because,
as we see from the complexity, the time for extract-
ing the weights from a SVM model has an exponential
dependency to the degree of the combinations. Ap-
proximating the weights for fast extraction could be
an interesting further research for this feature selection
problem.

6 Conclusions

In this paper, we present a new method that uses
SVM weight information to extract discriminative fea-
ture combinations from a rich feature space. We have
shown that this method delivers a promising result on
the drug activity data that has a large number of fea-
tures and a relatively small number of instances. It
successfully identifies a much smaller set of features
that produce a better classification quality than the
(larger) set of features selected by other methods. As
one direction of our future work, we shall evaluate the
trend of the classification quality as the number of fea-
tures increases and develop a more systematic solution
to determine the form of kernel functions. We also plan
to deploy the proposed method on other biological data
such as the gene expression data and the protein sub-
cellular location data.
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