Towards Automatic Clustering of Protein Sequences

Jiong Yang
T.J. Watson Research Center

Wei Wang

Department of Computer Science

IBM University of North Carolina, Chapel Hill

jiyang@us.ibm.com

Abstract

Analyzing protein sequence data becomes increasingly
important recently. Most previous work on this area has
mainly focused on building classification models. In this pa-
per, we investigate in the problem of automatic clustering of
unlabeled protein sequences. As a widely recognized tech-
nique in statistics and computer science, clustering has been
proven very useful in detecting unknown object categories
and revealing hidden correlations among objects. One diffi-
culty that prevents clustering from being performed directly
on protein sequence is the lack of an effective similarity mea-
sure that can be computed efficiently. Therefore, we pro-
pose a novel model for protein sequence cluster by exploring
significant statistical properties possessed by the sequences.
The concept of imprecise probabilities are introduced to the
original probabilistic suffix tree to monitor the convergence
of the empirical measurement and to guide the clustering pro-
cess. It has been demonstrated that the proposed method can
successfully discover meaningful families without the neces-
sity of learning models of different families from pre-labeled
“training data”.

1 Introduction

During recent years, many efforts have been carried
out on analyzing protein sequences. Research (Apos-
tolico&Bejerano, 2000, Bailey&Grundy, 1999, Bejer-
ano&Yona, 1999, Dorohonceanu&Nevill-Manning, 2000) in
this area focuses on modeling and classifying protein families
based on function, structure, and homology. Despite the dif-
ferences in model definition and/or algorithm details, a major
assumption of previous work is that the protein families or
functional categories are known in advance and the protein
sequences used to build the classification model are properly
labeled with the corresponding families/categories. In this
paper, we are studying a slightly different but more challeng-
ing problem — clustering unlabeled protein sequences into

weiwang@cs.unc.edu

groups/families/categories automatically.

Clustering has been widely recognized as a powerful tech-
nique in statistics and computer science, and has been stud-
ied extensively during recent years. The major goal of clus-
tering is to create a partition of objects such that objects
in each group have similar features. The result can po-
tentially reveal unknown object groups/categories that may
lead to a better understanding of the nature. Most research
on clustering focused on numerical domains and assumed
metric space in many cases. In many of these models, the
similarity between objects can be defined in a clear and
relatively straightforward way. In most of previous work,
the similarity between two protein sequences is measured
by the maximum alignment between them, e.g., ProtoMap
(http://www.protmap.cs.huji.ac.il). To employ the maximum
alignment method, the similarity between each pair of se-
quences is computed and based on the pair-wise similarity,
a directed graph is constructed with the vertices representing
the sequence and the edges representing the similarity. Fi-
nally, the clusters of sequences are the strongly connected
components in the graph. However, this approach suffers
from two aspects. (1) The computation is costly. To com-
pute the pairwise similarity of each sequence, the complexity
is at least O(N?2 x I?) where N and [are the number of se-
quences and the average length of a sequence in the database,
respectively. The second step of finding the strongly con-
nected component may also be time consuming depending
on the actual method used. (2) The incremental clustering
would be very inefficient. After clustering a set of unlabeled
sequences, if more sequences need to be clustered, then all
the pair-wise similarity between the unclustered and clus-
tered sequences, and among the unclustered sequences need
to be computed. The complexity is at least O(N x M x 1?)
where M is the number of new sequences. In reality, the pro-
tein sequences are not available at once. Almost there are
new sequences available at each month. As a result, it is ben-
eficial to employ a method which combines the model and
clustering of protein sequence together so that once a new
sequence needs to be clustered, we can simply compare to
the discovered models of the clusters to identify which clus-

ter it should be in or it belongs to a new cluster (if it does not
fit to any model).

An alternative approach is to utilize the suffix tree struc-
ture to explore significant patterns of the protein sequences
and use these patterns to evaluate the similarity, originally
introduced in Bejerano&Yona(1999) and Ron et al.(1996).
More specifically, these patterns can be used to assess the
similarity between a pair of protein sequences and between a
protein sequence and a cluster (of protein sequences). Under
this model, protein sequences belonging to one cluster may
subsume to the same (or a similar) probability distribution
of amino acids (conditioning on the preceding segment of a
certain length), while different clusters may follow different
underlying probability distributions. This feature, typically
referred to as short memory, which is common to many ap-
plications, indicates that, for a certain sequence, the empirical
probability distribution of the next symbol given the preced-
ing segment can be accurately approximated by observing no
more than the last L symbols in that segment. Significant
features of such probability distribution can be very pow-
erful in distinguishing different clusters (Bejerano & Yona,
1999). The suffix tree (or its variations) (Farach, 1997,
Grossi&Vitter, 2000, Gusfield, 1997, McCreight, 1976, Ron
et al., 1996, Ukkonen, 1995) has been proven to be a very
successful model to capture significant patterns in symbol se-
quences. With regard to the problem addressed in this paper,
the suffix tree structure can be utilized to serve as a com-
pact representation to summarize significant patterns shared
by members of each cluster. The model can be easily used
to identify and organize significant appearances of segments
among a cluster of sequences, regardless of the relative po-
sitions of these segments within different sequences. These
significant patterns imply certain features that is commonto a
large subset of sequences in the cluster and reveal important
statistical properties of the cluster. In practice, they induce
a (conditional) probability distribution of the next symbol
given the preceding segments, which can be used in estimat-
ing the similarity between a sequence and a cluster. The key
idea is that, by extracting and maintaining significant patterns
characterizing (potential) sequence clusters, one can easily
determine whether a sequence should belong to a cluster by
calculating the likelihood of (re)producing the sequence un-
der the probability distribution that characterizes the given
cluster.

In this paper, we also adopt the suffix tree structure as the
foundation to support our similarity measure. In addition, we
introduce a novel technique to determine the convergence of
each cluster and to incorporate available prior knowledge. A
pair of upper and lower probabilities is used to quantify the
range of the true probability. It has been proven that such
probability range is guaranteed to converge to a single value
after sufficient trials if the underlying probability distribution
remains static. An open gap between the upper and lower

probabilities (after sufficient trials) is indeed a good indi-
cation of the heterogeneity of the probability distributions,
which in turn implies that the corresponding sequences be-
long to multiple clusters. Therefore, the convergence of the
imprecise probabilities can well serve as the touchstone to
trigger necessary cluster split and to determine the termina-
tion of the clustering process. This provides the opportunity
to design an integrated clustering process that allows a more
flexible and systematic switch between model training and
splitting, comparing to the annealing method proposed in Be-
jerano et al. (2001) which consists of iterations of soft clus-
tering and progressive refinement.

As we shall explain in more detail later, a suffix tree is
maintained for each (potential) cluster of protein sequences
in our proposed scheme. Each node z in the suffix tree is
associated with an occurrence count count(z) and a vector
of n entries, each of which corresponds to a distinct sym-
bol, d, and consists of an empirical probability prob(d) and a
pair of lower and upper probabilities (prob(d), prob(d)). The
counter count(x) keeps track of the number of occurrences
of the path label o(z) of 2. The probability vector monitors
both the empirical value and the potential range of the condi-
tional probability of observing the symbol, say d, right after
o(z) ina protein sequence. Starting from [0, 1] or some other
initial range based on the prior knowledge, the range defined
by the lower and upper probabilities will be continuously re-
fined and eventually converge during the clustering process.

The remainder of this paper is organized as follows. Sec-
tion 2 gives some background knowledge of the imprecise
probabilities. The formal definition of the protein sequence
cluster is provided in Section 3. Section 4 presents the clus-
tering algorithm while Section 5 discusses some implemen-
tation issue. Some experimental results are shown in Section
6. The conclusions are drawn in Section 7.

2 Background on Imprecise Probability

The concept of imprecise probability was introduced in
Walley (1991) to accommodate uncertainty due to the lack
of knowledge or information conflict. In contrast to the tra-
ditional probability measure that utilizes a single number to
represent the likelihood of an event, the imprecise probability
measure employs a pair of numbers, namely a lower proba-
bility and an upper probability, to represent the range of the
likelihood of an event. This provides the opportunity to rep-
resent the degree of uncertainty in addition to the probability
expectation. The difference between the upper probability
and the lower probability is defined as the degree of impre-
cision. For instance, the probability (of traditional meaning)
of the event that a “head” occurs from a toss of a coin is 0.5 if
no information is available on the fairness of the coin while
the imprecise probability of the event is [0, 1] and the degree
of imprecision is 1.

Let P(y) and P(y) be the (prior) upper and lower proba-
bilities of the event y, the posterior upper and lower proba-
bilities after observing a occurrences out of a set of b trials
(b > a) can be obtained as follows.

Tx Ply)+a , TXP(y)+a
-— P =
T+b P'{y) T+b

7 is called the learning parameter and is used to control
the weight of the prior probabilities in calculating the poste-
rior probabilities. For example, if the prior probability and
the current experiments (i.e., observing a occurrences out of
a set of b trials) have equal weight towards the posterior prob-
ability, then we have 7 = b and

P(y) + ¢ P(y) + ¢
7 ;O

The higher the value of , the more the weight of the prior
probabilities and the less the weight of the current experi-
ments. It has been proven (Walley, 1991) that

1. if P(y) < ¢ < P(y) (that is, the result of the exper-
iments is consistent with the prior probabilities), then
the posterior degree of imprecision P'(y) — P'(y) is
less than or equal to the prior degree of imprecision

P(y) — P(y); and

Pi(y) =

P'(y) = Pl(y) =

2. limp_y00 P'(y) = limp_y00 P'(y) = limp_ 0o 7 regard-
less of the prior probabilities.

These two properties are very important and provide the mo-
tivation and justification of our cluster splitting strategy and
guarantee the termination of our clustering algorithm in prac-
tice.

3 Protein Sequence Cluster

We now formalize the problem that we try to solve in this
paper. Let & = {s1,82,...,8,} be the set of all possible
symbols. In the domain of protein sequences, there are totally
20 amino acids, each of which is represented by a distinct
symbol. A sequence is an ordered list of symbols in &. The
number of symbols in a sequence is referred to as the length
of the sequence. Given a sequence, a segment is defined as
a consecutive portion of the sequence. For example, “ba” is
a substring of “abab” while “aa” is not. Conventionally, we
use the term “sequence” to refer to a whole symbol sequence
in the database while the term “segment” to denote a portion
of some sequence in this paper. A sequence database is a
set of sequences. Given a sequence database, our objective is
to categorize these sequences into clusters according to their
structural similarities. The similarity measure is built upon
statistical properties of the sequences. More precisely, the
conditional probability distribution (CPD) of the next sym-
bol right after some preceding segment is employed to rep-
resent the structural properties of a single sequence or a set

of sequences. One way to evaluate the similarity between
two sequences or among a set of sequences is to compute
the difference between the corresponding conditional prob-
ability distributions. There have been many methods (e.g.,
the Kullback-Leibler Divergence (Lin, 1991)) to assess the
difference between two probability distributions. The main
theme is that the difference between two probability distribu-
tions is measured as an aggregation of difference defined on
each possible segment (up to a certain length). The longer
the segment considered in the computation, the more accu-
rate the difference measure. If we consider segments up to
length L, then there are O(||F) distinct segments. The com-
putational complexity of calculating the difference between
two probability distributions is exponential with respect to
the length of the segment considered. This is very time con-
suming when the segment length is reasonably long, which
is typically the case in the problems in which we are inter-
ested. Looking ahead, the operation of difference calculation
will be performed numerous times during the clustering pro-
cess and contributes the majority of the entire execution time.
To avoid the expensive distance computation, we employ an
alternative method (Bejerano&Yona, 1999). The key idea is
that, given a sequence cluster S and the conditional probabil-
ity distribution P modeling it, a sequence should subsume to
a similar conditional probability distribution if the sequence
can be predicted under P with relatively high probability.
The probability to predict a sequence o = s182 .. .57 iS

Ps(U) = Ps(sl) X P5(82|81) X PS(S3|8182) X ...

x Ps(si|s182...81-1)
= HézlPS(sﬂsl . Si—l)

where Pgs(s;|s152 . . . s;—1) is the conditional probability that
the symbol s; is the next symbol right after the segment
s182...8;—1 in the sequence cluster S. This predict prob-
ability can serve as an indicator of the similarity between
the sequence o and the cluster S. If the value of Pg(o) is
sufficiently high, then we may conclude that the sequence
o subsumes a similar CPD to that of S and may be consid-
ered a member of S. To accommodate sequences of differ-
ent lengths, the value of Ps(c) should be normalized by the
length of &. The probability P,(o) that o is generated by
a random generator according to the symbol distribution in
the sequence database can be used as the basis of the nor-
malization. We have P,(c) = IIL_, p(s;) where p(s;) is the
probability of observing the symbol s; in any give position of
any sequence in the entire database. The similarity between
the sequence o and the cluster S can then be defined as

— Ps(o) — Hi=1P5(s,-|sl...si_1)
P () l_, p(si)

—T, (Ps(s,-\sl...s;_l)) '

p(si)

simg (o)

Note that this similarity measure works well under the as-
sumption that the entire sequence of o follows a single CPD.

This may not be always true. Sometimes different portions
of a sequence may subsume to different CPDs. (An exam-
ple would be the multi-domain proteins.) The above similar-
ity needs to be modified to accommodate this situation. The
similarity between a sequence o and a cluster S is the maxi-
mum similarity between any continuous segment of ¢ and S.
That is

Simg(o) = 1Srrz;§a,])_(§l simg(s; --.5;)- 2
Simg(o) > 1 indicates that there is some evidence to show
that the sequence o subsumes the CPD of S; and the higher
the value of Simg(o), the stronger the evidence. If a se-
quence ¢ produces a small Sim(o) (e.g., less than 1) for ev-
ery cluster, then o is deemed to be an outlier. A threshold
t (t > 0) is employed to separate clustered sequences from
outliers. ¢ is referred to as the similarity threshold in the re-
mainder of this paper. If the value of Sim(o) exceeds ¢, we
may think that o has sufficiently high similarity to the clus-
ter S. This leads to our definition of sequence cluster, which
requires each sequence in a cluster to be predicted with high
probability from the CPD of the cluster.

Definition 3.1 A set of sequences, S, is a sequence cluster
if, for each sequence ¢ in S, the similarity Simg(c) between
o and S is greater than or equal to some threshold ¢.

The threshold ¢ is utilized to control the cluster quality. Intu-
itively, ¢ should be set to a value greater than 1 in order to pro-
vide a meaningful separation between clustered sequences
and outliers. In practice, the proper value of ¢ can be speci-
fied by the user due to its application dependent nature. An
extensive study regarding this issue is left to the full version
of this paper. Given a sequence database and a user specified
parameter k, our objective is to group these sequences into k'
clusters where k' > k. (The default value of k£ is 2.) Note
that it is possible that a sequence belongs to multiple clus-
ters since different portions of the sequence may deliver high
similarity scores to different clusters. Before we formally
present the clustering algorithm, we first give some terminol-
ogy used in the following discussion and describe the data
structure employed during the clustering process. A segment
o' of length I is called a suffix of a sequence o of length [
'<hifolil=oli+1-=1"fori =1,2,...,I". o' isalso
called a proper suffix of o if I’ < . Similarly, a segment
o' of length I’ is called a prefix of a sequence & of length [
(' <Difo'li] = ofd] fori = 1,2,...,1". Again, o' is also
called a proper prefix of o if I’ < 1. For example, a, ab, aba,
and abab are prefixes of abab, whereas abab, bab, ab, and b
are suffixes of abab. In the remainder of this paper, we some-
time omit the word “proper” if no ambiguity will be incurred.
Given a sequence database and a pre-specified threshold ¢, a
segment is called a significant segment if it appears at least ¢
times in the database, and is called an insignificant segment
otherwise. c is referred to as the significance threshold.

During the clustering process, a probabilistic suffix tree is
utilized to store the “summary information” of each cluster.
The probabilistic suffix tree (PST) was originally introduced
in Ron et al. (1996) and used later in Bejerano&Yona (1999)
for identifying and organizing significant segments among
input sequences. A PST on a set of sequences over an al-
phabet is a rooted directed tree where the path from the root
to each node corresponds to a distinct segment that appears
in the sequence set. Figure 1(a) shows a portion of a PST in
landscape mode. The concatenation of the edge-labels on
the path from a node to the root exactly spells out a seg-
ment in the sequence set. This segment will be referred to
as the path label of the node in the remainder of this pa-
per. We sometimes also say a node is labeled with a seg-
ment o’ if o' is the path label of the node. For example, ba
is the path label of node z in Figure 1(a). A key feature of
the PST is that each node is also associated with a proba-
bility distribution vector (prob(sy),prob(sz),...,prob(s,))
over the alphabet & = {s1, s2,..., s, }, which corresponds
to the probability distribution of the next symbol given the
path label of the node as the preceding segment. The tu-
ple (0.406,0.594) at node z represents that the probability of
observing a right after the segment ba and the probability of
observing b after ba are 0.406 and 0.594, respectively. (That
is, prob(a|ba) = 0.406 and prob(bjba) = 0.594.) In addi-
tion, a counter may be associated with each node to track the
number of occurrences of the corresponding path label. The
number inside each node (e.g., 96 in node 2) in Figure 1(a)
is the count of the corresponding path label (e.g., ba) in the
sequence set. A node is a significant node if its path label
occurs at least ¢ times in the sequence set and is an insignif-
icant node otherwise. The dashed line separates the signifi-
cant nodes from the rest if ¢ = 65 in Figure 1(a).

Looking ahead, the clustering process terminates when
the probability distribution vector associated with each sig-
nificant node has been “stabilized”. The imprecise prob-
ability comes into play in determining the convergence of
each entry of the probability distribution vector. A pair
of lower probability and upper probability is maintained
for each entry during the course of clustering to quantify
the potential variation of the actual probability. Therefore,
each entry in the probability distribution vector now contains
a triple (prob(d),prob(d), prob(d)) where prob(d) is used
to store the (empirical) probability of observing symbol d
right after observing the path label of the node and the pair
[prob(d), prob(d)] represents the potential range where the
true probability fails in, which is computed from previous
experiments and/or prior knowledge. A probability entry is
considered stabilized if the gap between the lower and upper
probabilities diminishes. Given a pre-specified threshold e,
we said that a node converges if the difference between the
pair of upper and lower probabilities is below € for every en-
try in the probability distribution vector associated with this

03). + (0.45,0.55)
=7 root
(0883,0,111) (091700831 (0§7.013)
]
(45—2(60—21(e9

X2 b '

(0.231,0.769
a (%9
(0.25,0.75) 0:375,0625)
. X1
a (0.211,0.789) ~ «
— ~

(0.25,0.75) (0.167,0.833)

(a) A Probabilistic Suffix Tree

prob prob prob
a| 0406 03 05
0594 055 06

(b) Probability Distribution Vector of Node z

Figure 1. The Probabilistic Suffix Tree

node. e will be referred to as the convergence threshold in
the remainder of this paper. We refer to the tree with the
imprecise probabilities as the imprecise probability suffix
tree (IPST) in order to distinguish it from the original proba-
bility suffix tree (PST). An IPST is said to converge if every
significant node in the tree converges. Figure 1(b) shows an
example of the probability distribution vector of node z in
Figure 1(a) when the imprecise probabilities are employed.
it is easy to see that node z does not converge at this moment
if e = 0.01.

Given a segment ¢’ and a node z in the IPST, z is called
the prediction node of ¢’

1. if o' is significant, and

e o' is the path label of x or

e ¢’ is a proper suffix of z’s path label and the path
label of z’s parent is a proper suffix of ¢';

2. if o' is insignificant and the path label of z is the longest
significant suffix! of o”.

For example, the prediction node of ab is 2, while the pre-
diction node of abba is z in Figure 1(a).

4 Algorithm

Our proposed clustering algorithm (CLUSEQ) uses an im-
precise probability suffix tree to store significant features of
each sequence cluster. The pseudo-code is presented in Algo-
rithm A.1 (in the appendix). The CLUSEQ algorithm takes a

1Given a segment s15s3 . . . 85, a suffix s ...s; is called the longest sig-
nificant suffix if s; ... s; is significant and any longer suffix s,/ ... s; is
insignificant, where 1 < 5/ < j.

sequence database X together with four parameters &, ¢, t, €
as the input and produces a set of k'(k' > k) clusters. At the
beginning, all sequences in the database are unclustered. The
general idea of CLUSEQ is that, starting from a set of & ini-
tial clusters (Line 1), an iterative process (Line 4 to 43) is em-
ployed to continuously improve the quality of the clustering.
Each initial cluster contains only one sequence. To obtain
the & initial clusters, k sequences that have little similarity to
each other are drawn from the database . While an IPST
is maintained for each cluster during the mining process, an
IPST is constructed for each drawn sequence to represent
the status of the corresponding initial cluster. Later, during
each iteration, a sequence will be examined against the IPST
of every cluster (Line 7 to 16) to identify the similar one(s)
and to update the IPST(s) accordingly. Given a sequence o
and a cluster T}, the similarity can be calculated according
to Equation 2. A sequence is assigned to the cluster(s) that
produces sufficiently high similarity. If o has low similarity
to every cluster, then it would remain “unclustered” (i.e., as
an outlier). The similarity threshold ¢ is employed (Line 11)
to separate clustered sequences from the rest. The sequence
o can be considered a (new) member of some cluster only if
the similarity is greater than ¢. Then, a validation process is
performed (Line 20 to 38) to check the convergence of each
cluster and whether a split is necessary. At the end of each
iteration, we also check (Line 39 to 43) whether there exist a
large number of outliers (e.g., more than 10% of overall pop-
ulation). If so, it is possible that some cluster is still missing.
In this case, additional seed(s) will be generated from outliers
to initiate new clusters. The entire clustering procedure ends
when the every IPST converges. We now discuss each step
in detail in the following subsections.

4.1 Similarity Estimation

The similarity estimation is very crucial to both the accu-
racy and efficiency of the CLUSEQ algorithm. Given an im-
precise probabilistic suffix tree I PST that models the cluster
S, the similarity of a sequence o = s155 ... s;t0 S is defined
by Equation 2. A dynamic programming method can be used
to calculate Simg(o) viaasingle scan of o. Let

P5(8j|81 .- Sj_l)

Xi= =0

Y

Y; = max simg(s;...s;
7 1<i<j S(i J)7

Z; = max

stmgs(Si1 ... 852)-
1<i1<i2<j (5 i2)

Then, Simg(o) can be obtained by
Y = max{Yj_1 x Xj, X;},

Zj = max{Z; 1, Y},

and Simg(o) = Z;.

The value of Pg(s;|s1s2...s;—1) can be obtained by lo-
cating the prediction node of sys2...s;_1 in IPST. This
can be done by traversing from the root of IPST along the
path s; 1 — ... = s3 — s; until any further advance
(along the path) would cause the count below the threshold
c. For example, during the estimation of P(b|bba), the pre-
diction node of bba in the tree in Figure 1(a) can be located
by traversing from the root along the patha — b — b. If
¢ = 65, then we stop at node z (pn = z) in Figure 1(a),
whose path label is ¢/ = ba. We can then obtain the value
of Ps(si|s182...8i—1) by retrieving the entry correspond-
ing to s; in the probability vector associated with the predic-
tion node pn. That is, Ps(s;|s182...8;—1) = Ps(si|o’) =
pn.prob[s;]. In the above example, P(b|bba) = P(blba) =
z.prob[b] = 0.594.

The computational complexity of estimating the similarity
is O(1%) where [is the length of the sequence. Nevertheless,
the actual computation time is significantly below this the-
oretical bound. With the help of some additional structure
(e.g., auxiliary links), the computational complexity could
be reduced to O(l). Due to the space limitations, we will
not discuss it in detail.

4.2 Seed Generation

Let k£ be the number of clusters that need to be initiated
at the beginning of the process. The goal of this step is
to generate the seed clusters. Since each cluster is repre-
sented by an imprecise probabilistic suffix tree. The function
InitialSeed() (Line 1 of Algorithm A.1) returns a set of k&
IPSTs. Intuitively, each seed should have as little similarity

to other seeds as possible. A straightforward way to gener-
ate seeds is to compute the pairwise similarity between ev-
ery pair of sequences and then choose & sequences with least
similarity to each other to serve as the & initial clusters. This
would require ©(|%|?) similarity computation which is very
inefficient when ¥ is a large database. To expedite the pro-
cess, we employ a sampling technique and restrict the scope
of seed selection to the set of sample sequences. At the begin-
ning, a set of m sequences Sy, Ss, ..., Sy, are selected ran-
domly from the sequence database X where m > k. For each
sample sequence S;, an IPST IPST; is constructed. From
these m IPSTs, k trees will be chosen as the initial seeds.
The following heuristics can be used to choose the optimal
seeds. Let T" be the set of seeds. 7' is initialized to be empty.
A greedy algorithm is carried out, which consists of k steps.
At each step, each remaining sample sequence is examined to
calculate the highest similarity to any seed in T, and among
them, the sequence with the least similarity to all seeds in
T is selected and put in T'. At the end of this procedure, T’
would consists of & seeds.

One question that may be raised at this point is how to
set the value of m. A very large value of m would assure
a promising quality of the generated seeds but incur signifi-
cant computation, while a very small m would generate less
optimal seeds, which in turn may cause the algorithm to con-
sume longer time to reach the termination condition. (This
can be observed from the experimental result in Section 6.)
The best scenario is that a sequence in each of the & clusters
is selected as a seed. To make it possible, at least one se-
quence in each cluster should be in the sample set. For the
sake of simple explanation, let’s assume that all clusters are
of the same size and a randomly drawn sequence has 1/k
probability to belong to each cluster. The probability that no
sequence has been drawn from a given cluster after m trials is
(E=1)™. Then the probability that there exists a cluster from
which no sequence has been drawn in the sample is less than
k x (£21)™. Thus the probability that at least one sequence
is drawn from each cluster is greater than 1 — & x (42)™.
As we can see from the plot in Figure 2, this probability ap-
proaches 1 quickly with increasing value of m and the prob-
ability is sufficiently high when m = 5k. (The x-axis in
Figure 2 represents the ratio 7*.) Note that the curves in Fig-
ure 2 are (conservative) lowerbounds of the actual probabil-
ities. (The actual probabilities should be much higher.) In
the remainder of this paper, we set m = 5k unless otherwise
specified. The computational complexity of the seed gener-
ation process is O(m? x %) = O(k? x [?) where k and [
are the number of clusters and the average sequence length,
respectively.

During the course of clustering, it may be necessary to ini-
tiate additional clusters. In this case, additional seed(s) (Line
42 in Algorithm A.1) can be generated in a similar fashion to
the generation of initial seeds with one exception: the addi-

Probability

i

|
~ A~ X

o
o
+ <

0o
o AN
T T

%

©H

.
1 2 3 4 5 6 7 8 10
Ratio of sample size over the number of clusters

Figure 2. The Probability of Drawing at least
one Sequence from each Cluster

tional seed(s) (chosen from the set of outliers) need to have
low similarities not only to each other but also to existing
clusters.

4.3 Imprecise Probabilistic Suffix Tree Construc-
tion for a Sequence

Given a sequence o = s183 - . - 8;_15;, an imprecise prob-
abilistic suffix tree can be constructed by in a similar way to
build a probabilistic suffix tree (Bejerano&Yona, 1999). The
only difference is that, in an IPST, each probability entry as-
sociates with a pair of lower and upper probability bounds.
The values of these lower and upper probabilities are initial-
ized to be 0 and 1 respectively. The computational complex-
ity of building an imprecise probabilistic suffix tree is lin-
early proportional to the length of the sequence. Due to the
space limitations, we will not elaborate on these algorithms.
Interested readers please refer to the individual papers for a
detailed description.

4.4 Updating the Imprecise Probabilistic Suffix
Tree

Every time a sequence is considered similar to a cluster,
the imprecise probabilistic suffix tree of the cluster should
be updated accordingly (Line 13 in Algorithm A.1). Instead
of inserting the entire sequence to the imprecise probabilistic
suffix tree, only the portion that produces the high similar-
ity scores will be used. This procedure is exactly the same
as maintaining a probabilistic suffix tree since the imprecise
probability ranges only need to be recalculated once for each
iteration and can be performed (Line 26 to 27) during the
cluster validation. The computational complexity of updating

the probabilistic suffix tree(s) to reflect the change regarding
asequence o is O(I2) where [is the length of .

4.5 Cluster Convergence and Split

A validation process (Line 20 to 38 in Algorithm A.1) is
carried out to on each cluster to check whether the imprecise
probabilistic suffix tree converges and whether a cluster split
needs to be performed. The convergence of an IPST can be
tested via a traversal of the IPST. For each node in the tree,
the lower and upper probabilities of each symbol d is updated
according to Equation 1 (Line 26, 27). Here, we assume that
the prior probability and empirical probability of the current
iteration have the same weight towards the posterior proba-
bility for the sake of simplicity. If the node is a significant
node and these two probabilities differ more than e for any
symbol, then the node is considered not converged (Line 32
to 34). If any significant node does not converge, then the
IPST is considered not converged. It is possible that an IPST
will never converge. This may happen when the IPST indeed
represents a mixture of multiple CPDs. To address this sce-
nario, during the convergence test, if the average degree of
imprecision? of significant nodes fails to improve from pre-
vious iteration(s) (Line 34), a split procedure (Line 37) will
be invoked. Two sequences of this cluster, which have (rel-
atively) low similarity to each other, are chosen as the seeds
of the new clusters.

Finally, if a large number of sequences are labeled as out-
liers at the end of an iteration, there is a chance that some of
these outliers may actually belong to some cluster that fails to
be identified. This scenario may happen during the first sev-
eral iterations of the mining process since the initially picked
k clusters may be inadequate to represent all clusters in the
database. A new cluster seed will then be picked from out-
liers. Consequently, the number of clusters increases.

4.6 Complexity Analysis

The entire process terminates when all IPSTs converge.
The overall computational time greatly depends on the num-
ber of iterations (Line 4 to 43 in Algorithm A.1) actually ex-
ecuted. The computational complexity of each iteration is
O(N x (K'I? +1%2)) = O(N x k' x I?) where N, k', and
[are the number of sequences in the database, the number
of clusters, and the average sequence length, respectively. If
the number of iterations used is M, then the overall com-
putational complexity is O(k"212 + M x N x k' x [2) =
O(M x N x k' x I2) since k' < N.

2By definition in Section 2, the average degree of imprecision is equal to
the average of the gaps between lower and upper probabilities.

5 Discussion

In this section, we discuss some issues that influence the
accuracy and efficiency of CLUSEQ.

5.1 Limited Memory Space

In practice, the memory space is usually limited and the
size of each imprecise probabilistic suffix tree is also re-
stricted by the available memory. In CLUSEQ, & trees need
to be maintained throughout the entire process, one for each
cluster. Each tree can occupy up to % of the entire mem-
ory. Even though the significant nodes play a decisive role in
similarity estimation, both significant and insignificant nodes
are kept until the size of the tree reaches the memory limit.
This is because an insignificant node in a tree may turn into
a significant one if more sequences join the corresponding
cluster. Once the size of a tree grows beyond this limit, some
nodes have to be pruned. Several strategies can be employed
to conduct the node pruning so that the remaining portion of
the tree keeps as much information as possible.

1. Prune node with smallest count first. Intuitively, node
with smaller count would have less chance to become
significant node. Therefore, the pruning of such node(s)
will be less likely to impact accuracy of similarity esti-
mation.

2. Prune node with longest path label first. This is in-
spired by the short memory property that exhibits in
many applications. This property implies that the empir-
ical probability distribution on the next symbol given the
preceding segments of length L has less chance to dif-
fer substantially from the probability distribution condi-
tioning on preceding segments of length greater than L
as L increases. Therefore, the pruning of a node with
longer path label is expected to have less impact to the
similarity estimation (than the pruning of a node with
shorter path label).

3. Prune node with expected probability vector first. This
strategy only applies to the scenario where all insignifi-
cant nodes have been pruned already. Consider two sig-
nificant nodes x and z' where z is a child of 2’ in the
imprecise probabilistic suffix tree. Let o and ¢’ be the
path labels of z and z', respectively. By definition, o’ is
a suffix of o. The probability vector P(s;|o) (of node
x) is considered as expected if it does not differ substan-
tially from the probability vector P(s;|o") (of node z').
If the node z is pruned, the node z' will be used as the
substitute in the future similarity estimation. The less
the difference between P(s;|o) and P(s;|c’), the more
accurate the estimated similarity.

With the above three strategies, little degradation of the accu-
racy of the similarity estimation can be observed in practice,
even though a large number of nodes are pruned.

5.2 Probability Smoothing

The problem of “under sampling” has been observed and a
smoothing process was proposed in Bejerano&Yona (1999).
The purpose of the smoothing process is to assure that no
symbol is predicted to have a zero probability, no matter what
suffix is observed before it, even though the empirical count
may be zero. This can achieved by enforcing a minimal
probability ~y,,:, for all symbols and each nonzero empiri-
cal probability is decreased such that a total of n X Y4 IS
“collected” to be later shared by all symbols, where n is the
number of distinct symbols. The decrement of each empir-
ical probability is done in proportion to its value. Formally,
the probability after smoothing can be obtained through the
formulap = (1 — 1 X Ymin)P + Ymin. The proper value of
Ymin Can be determined according to some domain knowl-
edge. We shall mention that this smoothing technique can
also be applied to the IPST model to address the under sam-
pling problem.

5.3 Incremental Clustering

If we already have a set of clustered sequences, the com-
putation of clustering new sequences would be efficient. In
such a case, we would compare the sequence with the proba-
bility suffix tree of each cluster. If the new sequence is sim-
ilar to a cluster based on the similarity estimation, then this
sequence is grouped to that cluster. On the other hand, if no
group is similar to the new sequence, the new sequence is
classified as an outlier. To take into account of the existence
of new clusters, we generate new seed from all outliers af-
ter a significant number of new sequences has been classified
as outliers. Then we employ the clustering algorithm on the
set of outliers to determine whether there exists a new cluster.
Due to space limitations, we will omit the detailed discussion
of this aspect of CLUSEQ.

6 Results

We implemented the CLUSEQ algorithm in C program-
ming language. All experiments were run on a Sun Ultra-
Sparc 10 machine with 128 MB main memory and a 300
MHz CPU.

6.1 Correctness of CLUSEQ Model
The real dataset we applied the CLUSEQ algorithm is

a database of 8000 well documented protein randomly se-
quences selected from the SWISS-PROT data bank. These

protein sequences belong to 30 different biological families,
single domain and multi-domain families. The size of each
family ranges from 140 to 900. The sequence length is be-
tween 285 and 895. In this experiment, we want to find the re-
sults produced by our algorithm via the label provided by the
SWISS-PROT database. The result produced by CLUSEQ
with parameters £k = 5, ¢ = 10, ¢t = 1.25, ¢ = 0.001 was
compared with the standard protein family label and the av-
erage length of a significant segment in the probabilistic is
13.8. Table 1 shows the false positives and false negatives
of nine families due to space limitations. In this experiment,
we treat all these 8000 protein sequences as unlabeled se-
quences, i.e., no priori knowledge of the number of families,
etc..

For all protein families, the corrected labeled proteins are
over 90%. It is easy to see that the CLUSEQ algorithm per-
forms well consistently for clusters of diverse sizes. Further-
more, since we initially set & = 5 (which is much less that
the actual number of clusters), the CLUSEQ algorithm still
can successfully identify all clusters with high accuracy, own
to the cluster validation procedure. This is very important
because the number of clusters is often unknown in advance.

We also compare the results of CLUSEQ with that pro-
duced by maximum alignment method (e.g., ProtoMap) for
the set of protein sequences in Table 1. We can see that the
number of false positives and negatives is very similar be-
tween the two approaches. However, CLUSEQ takes much
less time (about 420 seonds) than the maximum alignment
approach (5600 seonds), which makes CLUSEQ a better
choice.

6.2 Effects of e

In our CLUSEQ algorithm, e plays an important role. It
does not only effect the results of our algorithm, but also
effect the response time of our algorithm, i.e., how fast the
results are returned. With larger €, the quality of results
degrades, but the response time shortens. Figure 3(a) and
(b) shows the average accuracy and response time of the
CLUSEQ algorithm with respect to e. Since the average ac-
curacy and average recall over all families are the same, we
omit the curve corresponding to the average recall. The test
dataset is the same 8000 protein sequences. From the fig-
ures, we can see that when the e is sufficiently small, e.g.,
10~4, the improvement of the results quality is diminished
with smaller e while the response time increases dramatically
because more iterations are needed for the convergence of the
upper and lower probabilities. Based on this result, if we set
€ = 0.0001, the results will be sufficiently good and the re-
sponse time is relatively fast.

6.3 Sensitivity Analysis

To understand the sensitivity of the CLUSEQ algorithm to
the sample size m, we experiment with various m on the data
set. The convergence threshold is set to e = 10~%. Figure 4
shows the effect of the initial sample size m to the quality
and response time of the CLUSEQ algorithm. The results
confirm with our previous discussion. The quality (i.e., aver-
age accuracy) of the CLUSEQ algorithm improves with the
increase of m due to the fact that better initial clustering can
be obtained. The improvement slows down whenm > 5 x k
where k is the number of clusters. On the other hand, the
response time of the CLUSEQ falls into a valley as shown
in Figure 4(b). When m > 3 x k, the response time grows
along with the increase of m in general, while the response
time presents an opposite trend m < 3 x k. After further
investigation, we found that, with a small sample size, the
quality of the initial cluster is very poor and it takes a longer
course for CLUSEQ to reach the final clustering.

In addition, we also analyze the sensitivity of CLUSEQ
with respect to the significant threshold ¢. As long as it is
within a reasonable range, both the cluster quality and the
performance of CLUSEQ show stability to the variance of c.
The parameter ¢ controls how similar a sequence should be to
its peers in a cluster and its appropriate value is application-
dependent and should be specified by an expert. A further
study regarding the parameters ¢ and ¢ is left to the full ver-
sion of the paper.

7 Conclusions

In this paper, we investigated in the problem of auto-
matic clustering of protein sequences. A novel model is pro-
posed for sequence cluster by exploring significant statisti-
cal properties possessed by the sequences. The imprecise
probabilities are introduced to monitor the convergence of
the empirical statistics. This clustering framework can ei-
ther (1) be applied directly to partition unlabeled sequences
into meaning families/groups (without first building models
on labeled sequences), or (2) be coupled with some classifica-
tion tools to refine the classification. An important advantage
is that the clustering model can potentially detect unknown
(sub)family/(sub)group or even outliers (perhaps due to some
unexpected mutations). Biological considerations (such as
the a-priori probability distribution of amino acids and the
probabilities of amino acids mutation) can also be easily in-
corporated into the clustering model in a similar manner as
discussed in Bejerano&Yona (1999).

References

Apostolico, A. and Bejerano, G. (2000) Optimal amnesic
probabilistic automata or how to learn and classify pro-

Table 1. Results for CLUSEQ on Protein Database

Family ig | pkinase | globin | 7tm_1 | homeobox | efhand | RuBisCO_large | ... | actin | rrm
Size 884 725 681 515 383 320 311 .| 142 | 141
CLUSEQ | False Positive | 44 71 14 41 22 30 14 4 9
False Negative | 53 8 25 34 27 21 17 5 6
Max. Alig. | False Positive | 51 60 24 31 17 30 15 4 7
False Negative | 43 24 25 30 33 25 13 4 7
(g; ok _\glzoo
2 701 é 800
10 10 . (a) 10 10 . (b)

Figure 3. The effects of €

950

Average accuracy (%)
Average response time (sec.)

70 700
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Ratio of sample and clusters (m/k) (@) Ratio of sample and clusters (m/k) (b)

Figure 4. The effects of the number of initial sample

teins in linear time and space. Proc. of ACM RECOMB, Baldi, P. (2000) On the convergence of a clustering al-

25-32. gorithm for protein-coding regions in microbial genomes.
Bioinformatics, 16(4), 367-371.

Bailey, T. and Grundy, W. (1999) Classifying proteins by

family using the product of correlated p-values. Proc. of Baldi, P. and Baisnee, P. (2000) Sequence analysis by ad-

ACM RECOMB, 10-14. ditive scales: DNA structure for sequences and repeats for
all lengths. Bioinformatics, 16(10), 865-889.

The SWISS-PROT protein sequence data bank.
Bejerano, G. and Yona, G. (1999) Modeling protein fam-

10

ilies using probabilistic suffix trees. Proc. of ACM RE-
COMB, 15-24.

Bejerano, G., Seldin, Y., Margalit, H., and Tishby, N.
(2001) Markovian domain fingerprinting: statistical seg-
mentation of protein sequences. Bioibformatics, 17(10),
927-934.

Bergeron, A. and Hamel, S. Vector algorithms for ap-
proximate string matching. To appear in Intern. Journal
of Foundation of Computer Science.

Cole, R. and Hariharan, R. (1999) Approximate string
matching: a simpler faster algorithm. Proc. of SODA, 235-
244,

Cole, R. and Hariharan, R. (2000) Faster suffix tree con-
struction with missing suffix links. Proc. of ACM STOC,
407-415.

Dorohonceanu, B. and Nevill-Manning, C. (2000) Accel-
erating protein classification using suffix trees. Proc. of
Intelligent Systems for Molecular Biology.

Farach, M. (1997) Optimal suffix tree construction with
large alphabets. Proc. of 38th Sym. on FOCS, 137-143.

Farach, M., Ferragina, P., and Muthukrishnan, S. (1998)
Overcoming the memory bottleneck in suffix tree con-
struction. Proc. of IEEE FOCS, 174-183.

Grossi, R. and Vitter, J. (2000) Compressed suffix ar-
rays and suffix trees with applications to text indexing and
string matching. Proc. of ACM STOC, 397-406.

Gusfield, D. (1997) Algorithms on Strings, Trees, and Se-
quences. Cambridge University Press.

Lin, J. (1991) Divergence measures based on the Shannon
entropy. IEEE Tran. on Information Theory, 37(1), 145-
151

McCreight, E. (1976) A space-economical suffix tree con-
struction algorithm. J. of ACM, 23, 262-272.

Ron, D., Singer, Y., Tishby, N. (1996) The power of
anmesia: learning probabilistic automata with variable
memory length. Machine Learning, 25(2-3), 117-149.

Silverstein, K., Shoop, E., Johnson, J., and Retzel, E.
(2001) MetaFam: a unified classification of protein fami-
lies. Bioinformatics, 17(3), 249-271.

11

A

Ukkonen, E. (1995) On-line construction of suffix trees.
Algorithmica, 14, 249-260.

Walley, P. (1991) Statistical Reasoning with Imprecise
Probabilities. Chapman and Hall.

Wang, J., Rozen, S., Shapiro, B., Shasha, D., Wang, Z.,
and Yin, M. New techniques for DNA sequence classifi-
cation. J. of Computational Biology.

Wang, J., Ma, Q., Shasha, D., Wu, C. (2000) Application

of neural networks to biological data mining: a case study
in protein sequence classification. Proc. ACM SIGKDD.

The CLUSEQ Algorithm

Algorithm A.1 Algorithm for Sequence Clustering

CLUSEQ(Z, k, ¢, t, €)
{ I* 2 is a database of sequences;

N~ ONE

10:
11:
12:

13:
14:
15:
16:

20:
21:
22:
23:
24:
25:

26:

27:

k is the minimum number of clusters;
c is the significance threshold;
t is the similarity threshold;
e is the convergence threshold. */
T « InitialSeed(X, k, c) [* Generate k seeds from X */
continue < true
k' < k I* k' tracks the actual number of clusters */
while continue do {
continue + false
outliers + |X|
for each sequence o € X do { /* cluster training */
o.cluster < 0
/* 1..k" denote cluster 1Ds while 0 represents outlier */
for j < 1tok' do
sim <+ Similarity(T[j], o, ¢)
if sim >t
then
/* Only the segment in o which delivers similarity
sim is used in updating T'[5] */
Update(T[j], o)
o.cluster < j
if a.cluster > 0 /* ¢ is similar to at least one cluster */
then outliers < outliers — 1
}
for j « 1tok’ do { /*cluster validation */
gap <0
gapnum < 0 /* tracks the number of gaps accumulated */
convergence < true
for each node z in T'[j] do

for each symbol d do
z.prob[d] < —E'M[d];m'pmwd]
/* update lower probability */
2.prob[d]+z.prob[d]
2

z.prob[d] «

28:
29:
30:
31:
32:
33:
34:
35:
34:

35:
36:
37:
38:

39:
40:
41:
42:

43:

}

[* update upper probability */
if z.count > ¢
then /* z is a significant node */
gap < gap + x.prob[d] — x.prob|[d]
gapnum < gapnum + 1
if z.probld] — z.probld] > €
then /* = does not converge on symbol d */
convergence + false
continue < true
if convergence = falseand gaiff;m > T[j].gap
I* T[] does not converge yet and the degree
of imprecision does not improve */
then /* split cluster T'[5] */
EF+K+1
Split(S, T[4, T[K'], ¢)
eseT[j].gap + 2L

gapnum

if outliers > |X| x 10%

then /* A large number of outliers exist */

K+« K +1

T[k'] «+ AdditionalSeed(Z, c)
/* A new cluster is initiated */
continue < true

: return T /* T contains k' clusters */

12

