
Graph Classification Based on Pattern Co-occurrence
Ning Jin

University of North Carolina

at Chapel Hill

Chapel Hill, NC, USA

njin@cs.unc.edu

Calvin Young
University of North Carolina

at Chapel Hill

Chapel Hill, NC, USA

youngc@cs.unc.edu

Wei Wang
University of North Carolina

at Chapel Hill

Chapel Hill, NC, USA

weiwang@cs.unc.edu

ABSTRACT

Subgraph patterns are widely used in graph classification, but
their effectiveness is often hampered by large number of patterns

or lack of discrimination power among individual patterns. We

introduce a novel classification method based on pattern co-

occurrence to derive graph classification rules. Our method
employs a pattern exploration order such that the complementary

discriminative patterns are examined first. Patterns are grouped

into co-occurrence rules during the pattern exploration, leading to

an integrated process of pattern mining and classifier learning. By
taking advantage of co-occurrence information, our method can

generate strong features by assembling weak features. Unlike

previous methods that invoke the pattern mining process

repeatedly, our method only performs pattern mining once. In
addition, our method produces a more interpretable classifier and

shows better or competitive classification effectiveness in terms of

accuracy and execution time.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications---data
mining; I.5.2 [Pattern Recognition]: Design Methodology---

Classifier design and evaluation; Feature evaluation and selection

General Terms
Algorithms, Experimentation, Performance

Keywords
Graph mining, graph classification, classification rule

1. INTRODUCTION
Graphs are powerful data structures for organizing vast quantities

of data. Mining for graph patterns has steadily grown as a topic of
interest and has found applications in a wide range of fields,

including bioinformatics and chemoinformatics [9, 15, 1],

database indexing [8], and web information management [17].

The interest of this paper is to utilize these graph patterns to
derive a classification model to distinguish between graphs of

different class labels. We focus on a binary classification that

assigns a graph to either a positive class or a negative class. Note

that this binary graph classification model has many applications.

For example, proteins, whose structures can be represented by

graphs, can be classified into two classes: those which perform a

certain function and those which do not. Similarly, chemical

compounds can be classified into two classes: those which are
active and those which are not. Note that in these applications, the

positive and negative classes may not necessarily contain

comparable number of graphs. It is also possible that graphs in the

negative class may be much more diverse than graphs in the
positive class.

Given a training set that contains both positive graphs and
negative graphs, the objective of graph classification is to build a

prediction model that separates these two classes. Early work [10,

7, 2] in graph classification took a straightforward two-step

approach, which first generates a set of subgraph patterns and then
employs a generic classification model in the feature space

constructed by mapping the occurrence of a graph pattern to a

feature. A major shortcoming of this approach is the decoupling

of the subgraph pattern mining and classifier construction. The
number of subgraph patterns generated in the first step is usually

very large and includes many patterns which may not correspond

to features of high classification power. This often leads to

prolonged running time and poor classification accuracy.

To overcome this drawback, recent approaches in graph

classification integrate subgraph pattern mining and classifier

construction. Several boosting algorithms have been proposed
which look for discriminative subgraph patterns without

examining all possible subgraphs [14, 16, 18]. These algorithms

mine patterns repeatedly in multiple iterations. During each

subsequent iteration, misclassified graphs are given higher
weights. However, this approach may take many iterations to

reach a high classification accuracy, resulting in long execution

time. The LEAP algorithm [22] takes a novel divergence from this

standard and introduces two concepts: (i) structural leap search
and (ii) frequency-descending mining. This method is faster than

previous methods because it is able to quickly locate patterns that

individually have high discrimination power, without exploring

the whole pattern space. Furthermore, it gives a much smaller
pattern set than traditional graph mining algorithms, which

facilitates classification model training. However, this method

focuses on the discriminative power of individual patterns and

hence does not work well in two scenarios. (1) When no
individual pattern has high discrimination power, a group of

patterns may jointly have higher discrimination power (see

example in Section 3.2). LEAP is not designed for evaluating joint

discrimination power of multiple patterns that have low individual
discrimination powers. LEAP is therefore apt to fail in

identifying these patterns. (2) Furthermore, the top-k patterns

found by LEAP may not necessarily compose the best classifier,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CIKM’09, November 2–6, 2009, Hong Kong, China.

Copyright 2009 ACM 978-1-60558-512-3/09/11...$10.00.

573

especially when these k patterns share most of their supporting

graphs. Therefore, LEAP is not a suitable stand-alone graph
classification algorithm. To construct a good classification model,

we need to invoke LEAP multiple times. We adjust the weight of

each graph after each invocation of LEAP so that the next

invocation will identify discriminative patterns that are
complementary to the ones returned by earlier invocations. The

union of these patterns can then be used as features to train a

classifier. Another algorithm gPLS [19] adapts the powerful

mathematical tool of PLS (Partial Least Squares) regression to
graph mining to collect informative subgraph patterns and build a

classifier directly with fewer iterations than typical boosting

methods. It creates latent variables involving response variables,

thus leading to better predictions. However, these latent variables
have the known disadvantage of poor interpretability. CORK [20]

is a subgraph-based algorithm for binary graph classification

which attempts to discover frequent subgraphs that remove

correspondence between graphs in the positive and negative
classes. Given a set of subgraphs, the number of correspondences

is the total number of pairs of graphs that cannot be discriminated

by these subgraphs. The number of correspondences is sub-

modular and can usually achieve good results. However, it is not
perfect since subgraphs of vastly different discrimination power

may have the same number of correspondences (see example in

Section 2).

Therefore, we propose to investigate the discrimination power of

co-occurrence of subgraph patterns and design a method to mine

co-occurrence rules that can be readily used to classify graphs into

positive and negative classes. These co-occurrence rules are able
to capture complex graph features that offer high discrimination

power. We propose an algorithm, COM (Co-Occurrence rule

Miner), which employs an efficient pattern exploration order to

locate subgraph patterns whose co-occurrence is indicative of
graph classification. These co-occurrence rules offer higher

classification accuracy as well as better interpretability than

previous approaches.

Table 1. Comparison of latest graph mining algorithms for

graph classification

 Repeated

mining

Generates

classifier

Classifier

interpretability

Joint

discrimination

power

LEAP Yes No Med No

gPLS Yes Yes Low Yes

CORK Yes No Med No

COM No Yes High Yes

The remainder of this paper is organized as follows. Section 2
reviews related work. We introduce the problem definition in

Section 3 and the pattern exploration order of COM in Section 4.

The COM algorithm is presented in Section 5. Experimental

results are given in Section 6. Section 7 concludes the paper.

2. RELATED WORK
Early graph mining researches focused on finding all patterns with

frequency higher than a user-specified threshold. Such work

includes AGM [12], FSG [13], gSpan [23], FFSM [11] and so on.
They successfully solved the problem of efficient enumeration of

patterns without repetition. Since then, the research focus has

shifted to investigating sensible ways to confine the pattern space.

gPrune [24] carried out an extensive study on graph pattern

mining with constraints in which users can specify additional
criterions defining the subset of patterns they are interested in.

However, most of the constraints are conformation-based, so it

does not work well when users have little knowledge about the

graph set. Besides, only a few types of constraints can be
effectively adopted in graph pattern mining. Chen et al. [6]

proposed a method to represent similar patterns which have

similar conformations and supporting sets by using a

representative pattern. This can effectively reduce the number of
patterns that must be investigated, but there is still much

redundancy when these patterns are used in graph classification.

Additionally, the process of finding representative patterns is

performed after graph pattern mining, so it still suffers from the
inefficiency of examining a huge pattern space. Yan et al. [22]

made binary graph classification much more efficient by

proposing the LEAP algorithm, which finds the top-k patterns

evaluated using an objective function score that measures each
pattern’s significance. However, the set of top-k patterns may

have a high level of redundancy if there is significant overlap in

their supporting graphs, therefore forming a poor classification

set. To solve this problem, an iterative mining framework is used
in the LEAP experiments, mining optimal patterns iteratively until

all graphs are covered by some patterns. Although adopting an

iterative feature selection strategy can lead to high accuracy, it

makes the process less efficient because LEAP needs to be called
repeatedly. Furthermore, when there are few discriminative

patterns, the effectiveness of LEAP may also be compromised.

Shortly after LEAP, Saigo et al. [19] proposed a graph

classification algorithm called gPLS by using PLS (Partial Least
Square) regression, which also showed high efficiency and

accuracy. Partial least squares regression has strong prediction

power, but in its model PLS uses latent variables, generated from

analysis of both observations and predictors, that are difficult to
interpret. Thoma et al. [20] proposed a subgraph-based binary

graph classification algorithm CORK. The goal is to find the most

discriminative subgraph set instead of individual discriminative

subgraphs. CORK uses the number of correspondences as quality
criterion to measure the discrimination power of a subgraph set. It

enables CORK to achieve near-optimal result because the number

of correspondence is submodular. However, this criterion may be

problematic in measuring discrimination power, because two
subgraph sets can have exactly the same correspondence score but

significantly different discrimination power. For example, if there

are two subgraph sets A and B. A fails to discriminate 1 positive

graph and 9 negative graphs; B fails to discriminate 3 positive
graphs and 3 negative graphs. Then the number of

correspondences of A and B are 9 in both scenarios, but A leads to

a much better classifier than B as A only misclassifies one graph

while B may misclassify three graphs.

3. PROBLEM ANALYSIS
We first introduce the terminology and notations used in this

paper.

574

3.1 Definitions

Figure 1. An example of two sets of graphs

DEFINITION 1 (Undirected Graph). A graph is denoted by

g = (V, E), where V is a set of nodes (vertices) and E is a set of
edges connecting the nodes. Both nodes and edges may have

labels.

Figure 1 shows eight undirected graphs: N1, N2, N3, N4 and P1, P2,
P3, P4. For these simple illustrations, the edges are unlabeled,

although our work handles graphs with labeled edges. The node

set of a graph g is denoted as V(g) and the edge set of g is denoted

as E(g). For example, in graph N1, the node set V(N1) is {A, B, D,
E} and the edge set E(N1) is {A-B, A-D, D-E, B-E}.

DEFINITION 2 (Connectivity). For two nodes v0 and vn in
graph g, if there exists a sequence of nodes v0, v1, v2, …, vn such

that there is an edge in g connecting vi and vi+1, for any i, 0 ≤ i <

n, then v0 and vn are connected. For a graph g, if every two nodes

in g are connected, then g is connected.

All graphs in Figure 1 are connected graphs.

DEFINITION 3 (Subgraph Isomorphism). The label of a node
u is denoted as l(u) and the label of an edge (u, v) is denoted as

l((u, v)). For two graphs g and g’, if there is an injection f: V(g)

V(g’), such that for any node v in V(g), l(u) = l(f(u)) and for any

edge (u, v) in E(g), l((u, v)) = l((f(u), f(v))), then g is a subgraph of
g’ and g’ is a supergraph of g, or g’ supports g.

In this paper, a subgraph is also called a pattern and we are only
interested in connected subgraphs with at least two nodes. For

example, A-D is a pattern in Figure 1 because A-D is a 2-node

connected subgraph of N1, N2 and P1.

A pattern is frequent if it is supported by some threshold

proportion of graphs in a graph set.

DEFINITION 3 (Frequency). Given a graph set S, for a
subgraph g, let S’ = {g’ | g’ is in S and g’ supports g}, then the

frequency of g is |S’| / |S|.

For example, in graph set {N1, N2, N3, N4} in Figure 1, the

supporting set of A-D is {N1, N2} and its frequency is 0.5.

In order to build a classification model, we use a training set
containing a positive graph set and a negative graph set to

generate rules that discriminate between graphs in the two sets.

Without loss of generality, we assume that the positive set is the

interesting set and the negative set is the decoy. In this paper, we

use graph set {N1, N2, N3, N4} in Figure 1 as the negative set and
graph set {P1, P2, P3, P4} as the positive set to illustrate our

intuition and algorithm.

3.2 Challenges
The first and perhaps biggest challenge in using patterns in graph
classification is feature selection. The number of patterns in a

graph set may be exponential to the graph size. It is infeasible and

unnecessary to use all of them in learning a classification model.

Therefore, some measurement needs to be adopted to choose a
subset of patterns as features. However, even if a measurement is

given, applying it to all patterns is often an extremely time-

consuming process because of the exponential pattern space.

In addition to the enormous pattern space, another challenge is

that the graph set may not have many individual patterns that are

highly discriminative. In a binary classification, for instance, all

patterns may occur equally frequently (or infrequently) in both the
positive set and negative set, which makes it difficult to separate

the two sets merely based on individual patterns. In the example

in Figure 1, there is no individual subgraph that occurs in more

than one positive graph and cannot be found in negative graphs.
Thus, we propose to consider pattern co-occurrence in building

classification model. Even if all patterns occur almost equally

frequently in both positive and negative sets, co-occurrence of

several patterns may still be discriminative. For example, in
Figure 1, pattern A-B and pattern B-C both occur in half of the

positive graphs and half of the negative graphs. Normally these

two patterns are not considered discriminative by most previous

methods. However, A-B and B-C always occur together in positive
graphs but never co-occur in negative graphs. Therefore the co-

occurrence of A-B and B-C is very discriminative.

A third challenge arises from the asymmetry of the positive and

negative graph sets in terms of the number of graphs in each set

and the similarity of these graphs. This requires the classification

model to be able to give different treatments for positive and
negative graphs.

3.3 Our Contribution
We propose a method COM to mine co-occurrence rules. Our

method can be integrated into any commonly used subgraph
mining algorithms. In this paper, we use FFSM [11] as an

example algorithm for frequent subgraph mining to illustrate the

principle of COM. Several key features of the FFSM algorithm

make it an ideal choice for this purpose: (i) a simple graph
canonical form, (ii) an algebraic graph framework to guarantee

that all frequent subgraphs are enumerated unambiguously, and

(iii) completely avoiding subgraph isomorphism testing by

maintaining an embedding set for each frequent subgraph.

The COM algorithm starts with the set of single-edge patterns and

incrementally extends these patterns using the candidate-
proposing operation FFSM-Extension [11]. The discrimination

score is then defined as 𝑑 𝑝 = 𝑙𝑜𝑔
𝑓𝑝 (𝑝)

𝑓𝑛 (𝑝)
 , where fp(p) and fn(p)

represent the pattern’s frequency in the positive set and the

negative set, respectively. Focusing on discriminative patterns

reduces the pattern space significantly.

COM organizes patterns into teams of co-occurrence rules to form

a rule set. Whenever a new pattern is generated, the

A

H

F

D

E B

D B

A

C

G

B E

D H

B F

D H

G

N1 N2

N3

N4

A D

B B

E

D

C

A E

B B

D

D

G
G D

G H

P1

P2

P3

P4

C C

G

G

G

575

discrimination score of every rule is calculated with the pattern’s

inclusion and then the pattern is inserted into the rule that yields
the greatest increase in discrimination score. The algorithm

terminates when either all patterns have been found or the rule set

can successfully identify all positive graphs. A graph g is

classified to be positive if it satisfies at least one rule from the
rule set. Taking advantage of co-occurrence information of

patterns enables us to find features with high discrimination

power even when there are few discriminative patterns because it

is possible that the co-occurrence of several patterns may be
frequent in the positive set and rare in the negative set when each

individual pattern is almost equally frequent in both sets. Using

co-occurrence information may also improve time efficiency since

co-occurrence of several weakly discriminative patterns can be as
powerful as a strongly discriminative pattern, therefore our

method does not require global optimization. Additionally, co-

occurrence rules are formed by co-occurring patterns, and thus

have better interpretability than most other classifiers, such as
SVM, based on mathematical models. The idea of subgraph co-

occurrence rules may seem similar to CBA (Classification Based

on Association) or the usage of co-occurrence in text mining.

However, in our graph classification problem, subgraph patterns
(analogous to “items” in CBA or “units of text” in text mining)

are not available prior to mining and it is impractical to enumerate

all of them due to the exponential pattern space. Our subgraph co-

occurrence discovery task is more challenging than CBA and text
mining using co-occurrence because we need to efficiently

integrate subgraph mining and co-occurrence mining, which, as

far as we know, has not been thoroughly studied before.

4. PATTERN EXPLORATION ORDER

4.1 Pattern Exploration Order Based on

CAM
All patterns in a graph set can be organized in a tree structure.

Each tree node represents a pattern and is a supergraph of its

parent node, with the root node being an empty graph. Traversing

this tree can enumerate all distinct patterns without repetition. To
facilitate this, a graph canonical code is often employed. Several

graph coding methods have been proposed for this purpose. We

adopt the CAM (Canonical Adjacency Matrix) code [11] in this

paper, but our method can be easily applied to other graph coding
strategies.

DEFINITION 4 (Code). The code of a graph g is the sequence
formed by row-wise concatenating the lower triangle entries of an

adjacency matrix M of g.

The code of a graph g is not unique because g may have up to (n!)
different adjacency matrices. So we use standard lexicographic

order on sequences to define a total order on all possible codes.

The matrix that produces the maximal code for a graph g is called

the Canonical Adjacency Matrix of g and the corresponding code
is the CAM code of g. The CAM code of a graph g is unique. It is

proved that exploring a pattern tree with the CAM codes [11] can

enumerate all patterns without repetition.

A 1 0

1 D 1

0 1 E

adjacency matrix M

D 1 1

1 A 0

1 0 E

adjacency matrix N

Figure 2. An example of adjacency matrices

For example, in Figure 1, A-D-E is a pattern in graph P1. Figure 2

shows two different adjacency matrices of A-D-E. A “1” indicates
the existence of an edge between two nodes while a “0” indicates

the absence of an edge. Adjacency matrix M leads to code

A1D01E and adjacency matrix N leads to code D1A10E. Although

both of them are correct codes of A-D-E, D1A10E is less than
A1D01E lexicographically. In fact, A1D01E is the largest code for

A-D-E, so it is the CAM code and adjacency matrix M is the

canonical adjacency matrix.

4.2 Scoring Function
Even with an efficient graph coding scheme, it is still intractable

to find graph features by exploring the entire pattern tree because

of its prohibitive size. However, not all patterns are suitable to be

used as graph features and usually a small number of
discriminative patterns are sufficient for effective classification.

Therefore, we only need to find a subset of patterns that can

promise an effective classifier.

Selecting graph features by answering whether a subset of

patterns can lead to an effective classifier is extremely inefficient

because of the huge number of pattern combinations. Therefore,
in most cases, individual patterns are evaluated for their

effectiveness in classification rather than pattern combinations.

Let 𝑓𝑝 be the frequency of a pattern 𝑝 in the positive set and 𝑓𝑛 be

the frequency in the negative set. The effectiveness of 𝑝 in

classification is usually measured by the value of a scoring

function 𝑑 𝑓𝑝 ,𝑓𝑛 . The larger this value is, the more effective 𝑝 is

in classification. Most scoring functions require balanced

contributions of 𝑓𝑝 and 𝑓𝑛 to the value. However, in many

applications, such as those considered in this paper, graphs in the
positive set shared some (unknown) commonality but the negative

set are much more diverse and lacks common patterns. Thus, there

may not exist any discriminative patterns in the negative set. In

addition, discriminative patterns found in the positive set are of
much more interest to users. In this paper, we choose the

following function:

𝑑 𝑝 = 𝑑 𝑓𝑝 ,𝑓𝑛 = 𝑙𝑜𝑔
𝑓𝑝

𝑓𝑛

The rationale for this simple scoring function is that the more

frequent p is in the positive set and less frequent 𝑝 is in the

negative set, the more discriminative 𝑝 is. For example, in Figure
1, the positive frequency of pattern A-B is 0.5 and its negative

frequency is also 0.5, so the score of A-B is 𝑙𝑜𝑔
0.5

0.5
 = 0 .

Additionally, in our experiments this scoring function led to better
classification accuracy than G-test score [22] and Delta criterion

[20].

This scoring function cannot give a value when 𝑓𝑝 or 𝑓𝑛 is equal to

zero. We solve this problem as follows:

576

 If 𝑓𝑝 of a pattern p is 0, then we do not consider this pattern

because we are only interested in patterns found in the
positive set

 If 𝑓𝑛 of a pattern 𝑝 is 0, we replace it with a positive value

very close to zero.

4.3 A Better Pattern Exploration Order
With a given scoring function, we can rank all patterns by their

scores. Unlike LEAP, which looks for patterns with the top-k
scores, we want to reorganize the pattern tree to increase the

probability that we visit patterns with higher score ranks earlier

than those with lower score ranks. The need for a more effective

pattern exploration order is due to the fact that most pattern
enumeration algorithms tend to visit patterns with similar

conformations together since they usually have similar codes.

This does not cause any side effect on effectiveness of pattern

enumeration, but it has a huge negative impact on finding
complementary discriminative patterns because patterns with

similar conformations are much more likely to have overlapping

supporting sets.

We want to take advantage of the following observation: let p be

a pattern in the pattern tree and 𝑝′ be the parent pattern of p, the

score rank of 𝑝 is correlated with the value of ∆ 𝑝 = 𝑑 𝑝 −
𝑑(𝑝′). For patterns with two nodes, we set their Δ values equal to

their scores 𝑑 𝑝 .

Therefore, when we explore the pattern space, we first enumerate
all patterns with 2 nodes as candidates and insert them into a heap

structure with the candidate having the highest ∆ value at the top.
Ties are broken by favoring higher positive frequency and then by

CAM code order. Then we always take the pattern at the top of

the heap and generate all of its super-patterns with one more edge

by performing the CAM extension operation [11]. We insert new
patterns into the heap structure. In this way, we are able to visit

patterns with high score ranks early and patterns with overlapping

supporting sets late. The algorithm is as follows:

1. 𝑃 ← 𝑎𝑙𝑙 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑤𝑖𝑡 2 𝑛𝑜𝑑𝑒𝑠
2. 𝑝 ← 𝑛𝑒𝑥𝑡 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑛 𝑃 𝑤𝑖𝑡max∆(𝑝)

3. 𝑤𝑖𝑙𝑒 𝑝 ≠ 𝑁𝑈𝐿𝐿
4. 𝑒 ← 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑝
5. 𝑃 ← 𝑃 ∪ 𝑒

6. 𝑃 ← 𝑃 − {𝑝}
7. 𝑝 ← 𝑛𝑒𝑥𝑡 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑛 𝑃 𝑤𝑖𝑡max∆(𝑝)

5. GENERATING CO-OCCURRENCE

RULES

5.1 Classification Rules
DEFINITION 5 (Co-occurrence Rule). Given a positive graph

set 𝑆𝑝 and a negative graph set 𝑆𝑛 , let P = {p | p is supported by at

least one graph in Sp} be the set of all subgraphs in Sp, any subset

P’ of P can form a co-occurrence rule P’ → PositiveGraph. Since
all co-occurrence rules we are interested in have the same right

hand side, in the following discussion, we omit the right hand side

of the rule and use the pattern set at the left hand side to represent

the rule.

For example, {A-B, B-C} is a co-occurrence rule in Figure 1.

DEFINITION 6 (Satisfying a Rule). Given a graph g and a rule

r, g satisfies r iff g supports all patterns in r.

In Figure 1, {A-B, B-C} is satisfied by P1 and P2.

Let Sp’ be the set of all positive graphs that satisfy r and 𝑆𝑛 ′ be the
set of all negative graphs satisfying r, the positive frequency of r

is denoted as 𝑓𝑝 𝑟 =
 𝑆𝑝 ′

 𝑆𝑝
; the negative frequency of r is denoted

as 𝑓𝑛 𝑟 =
 𝑆𝑛 ′

 𝑆𝑛
. Scoring functions can be applied to a co-

occurrence rule 𝑟:𝑑 𝑟 = 𝑑 𝑓𝑝 𝑟 ,𝑓𝑛(𝑟) .

The output of our algorithm is a set of co-occurrence rules R =

{r0, r1, …, rn}. It is straightforward to use R as a classifier to
classify graphs. Given graph g, if g satisfies at least one rule in R,

then it is classified as positive; otherwise g is classified as

negative. In addition, because each co-occurrence rule is formed

by co-occurred patterns, these pattern co-occurrences can be
treated as complex graph features.

5.2 Co-occurrence Rule Generation
Any set of patterns can form a co-occurrence rule, but not all of
them have high classification accuracy. Ideally, we want co-

occurrence rules consisting of patterns with high frequency in the

positive graph set and low frequency in the negative graph set. On

one hand, as long as a graph g satisfies a rule, it will be classified
as positive, so a strong rule should have low negative frequency;

on the other hand, co-occurrence rules are prone to the overfitting

problem if each of them is satisfied by only a small portion of the

positive set. Therefore, we use two user-specified parameters tp
and tn to quantify the quality of a rule, where tp is the minimal

positive frequency allowed for a resulting rule and tn is the

maximal negative frequency permitted. The goal of our algorithm

is to find a co-occurrence rule set R to maximize the number of
graphs that can be classified correctly, where each rule in R has

positive frequency no less than tp and negative frequency no

greater than tn.

This problem can be proved to be equivalent to the set cover
problem and is therefore NP complete. It is intractable to find an

optimal solution in the enormous pattern space. Therefore, we

adopt a greedy approach for rule generation. Let the candidate

rule set be Rt and the resulting rule set be R. The algorithm
explores the pattern space with the heuristic order in Section 4 and

whenever it comes to a new pattern p that has not been processed

before, if there exists one positive supporting graph of p that does

not satisfy any rule generated so far, the algorithm generates a
new candidate co-occurrence rule containing only p and examines

the possibility of merging this new rule into existing candidate

rules. Given a new pattern p and a candidate rule𝑟𝑡 ,∆ 𝑝, 𝑟𝑡 =
𝑑 𝑟𝑡 ∪ 𝑝 − 𝑑(𝑝). Pattern p is to be inserted into candidate rule

𝑟 ′, 𝑟 ′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟𝑡∈𝑅 ′(∆(𝑝, 𝑟𝑡)), ∆(𝑝, 𝑟𝑡) ≥ 0. If there are patterns

in r’ whose supporting sets are supersets of the supporting set of

p, then inclusion of p into r’ will make these patterns redundant.

These patterns will be removed from r’ when p is inserted. Then,
for either the newly generated rule {p} or the updated r’, if it has fp

≥ tp and fn ≤ tn and it can cover at least one positive graph that

does not satisfy any rule in R, it will be removed from Rt and

inserted into R. The algorithm terminates either when all patterns
are explored or when all positive graphs can satisfy some resulting

rules. Although in the worst case the algorithm is still exhaustive,

experiments show that it is time efficient in practice.

577

Beginning of step 1 Beginning of step 2 Beginning of step 3

Beginning of step 4 Beginning of step 5 Beginning of step 6

Heap top = B-C

R’ = {{A-B}}

R = {}

Not yet covered
positive graphs

= {P1, P2, P3, P4}

Heap top = D-E

R’ = {}

R = {{A-B, B-C}}

Not yet covered
positive graphs

= {P3, P4}

Heap top = A-B

R’ = {}

R = {}

Not yet covered
positive graphs

= {P1, P2, P3, P4}

Heap top = G-H

R’ = {{D-G}}

R = {{A-B, B-C}}

Not yet covered

positive graphs

= {P3, P4}

Heap top = D-G

R’ = {}

R = {{A-B, B-C}}

Not yet covered

positive graphs

= {P3, P4}

Heap top = null

R’ = {}

R = {{A-B, B-C},

{D-G, G-H}}

Not yet covered

positive graphs
= {}

For example, let tp = 50% and tn = 0%, in Figure 1, the frequent

subgraphs of 2 nodes in the positive set are A-B, B-C, D-E, D-G,
and G-H. Only positive patterns with frequency no less than tp

need to be considered because (1) as mentioned earlier we only

consider positive patterns and (2) the frequency of a rule with

patterns less frequent than tp must be less than tp as well. We

initialize the rule sets to be empty: 𝑅′ = {} and 𝑅 = {}.

1. 𝑝 ← 𝑛𝑒𝑥𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

2. 𝑤𝑖𝑙𝑒 (𝑝 ≠ 𝑁𝑈𝐿𝐿 𝑎𝑛𝑑

𝑅 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑔𝑟𝑎𝑝𝑠)

3. 𝑟′ ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑟𝑡∈𝑅 ′(∆(𝑝, 𝑟𝑡))

4. 𝑖𝑓 ∆ 𝑝, 𝑟𝑡 ≥ 0
5. 𝑟 ′ ← 𝑝 ∪ 𝑟′

6. 𝑅′ = { 𝑝 } ∪ 𝑅′

7. 𝑖𝑓 𝑝 𝑐𝑜𝑣𝑒𝑟𝑠 𝑎𝑛𝑦 𝑔𝑟𝑎𝑝 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑅
8. 𝑅′ = 𝑅′ − { 𝑝 }
9. 𝑅 = 𝑅 ∪ { 𝑝 }
10. 𝑖𝑓 𝑟 ′𝑐𝑜𝑣𝑒𝑟𝑠 𝑎𝑛𝑦 𝑔𝑟𝑎𝑝 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑅

11. 𝑅′ = 𝑅′ − {𝑟′}

12. 𝑅 = 𝑅 ∪ {𝑟′}
13. 𝑝 ← 𝑛𝑒𝑥𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

According to the pattern exploration order introduced in Section

4, A-B is the first pattern to process. For simplicity, the example is

designed so that these edges cannot extend to any larger patterns

with fp no less than tp. A new candidate rule {A-B} is added into
R’. Note that R’ was empty and thus there does not exist any rule

in R’ to insert A-B. Next, {B-C} is added into R’ and B-C is added

into candidate rule {A-B} because Δ({B-C}, {A-B}) is no less than

0. The modified candidate rule {A-B, B-C} have fp ≥ tp and fn ≤ tn,
therefore it is removed from R’ and added into R. Next, D-E is at

the top of the heap, but there is no need to consider it because

both of its supporting graphs, P1 and P2, satisfy rule {A-B, B-C}

and therefore considering D-E cannot lead to a better classifier.
Then, following a similar procedure, we can generate rule {D-G,

G-H} and add it into R. Now the algorithm terminates because: 1)

the heap structure for candidate patterns is empty and 2) {A-B, B-

C} and {D-G, G-H} are sufficient to cover all graphs in the
positive set. For each step, the initial status of R’, R, the pattern at

the heap top and the set of positive graphs not yet covered by R

are shown in Figure 3.

Figure 3. An example of rule generation

6. EXPERIMENTS
The algorithm is implemented in C++ and compiled with g++.

The experiments are performed on a PC with 2.00 GHz dual core

and 3 GB memory. We use protein datasets and small molecule

datasets in our experiments. The protein datasets consist of protein
structures from Protein Data Bank 1 classified by SCOP 2

(Structural Classification of Proteins), which organizes protein

structures into a 4-level hierarchy: class, fold, superfamily and

family, from high level to low level. The lower the level is, the
more details are considered and thus more useful to the scientists.

We select protein structures in the same families as positive sets.

In order to remove redundancy and possible bias in graph sets, we

only use proteins with pairwise sequence identity less than 90%
from the culled PDB list created by Dunbrack Lab 3 . Table 2

shows the 6 protein families used in experiments. We then

randomly select 256 other proteins (i.e., not members of the 6

families) from the culled PDB list as a common negative set. To
generate a protein graph, each graph node denotes an amino acid,

whose location is represented by the location of its alpha carbon.

We perform 3-D Almost Delaunay Tessellation [3] on locations of

all alpha carbons in the protein to generate the edges. Nodes are
labeled with their amino acid type and edges are labeled with the

distance between the alpha carbons. We only consider edges

shorter than 11.5 angstroms because amino acids have little long-

distance interaction. On average, each protein graph has 250
nodes and 1600 edges. The small molecule datasets consist of

chemical compound structures from PubChem4 classified by their

biological activities, listed in Table 3. Each compound can be

either active or inactive (we do not consider inconclusive and
discrepant records) in a bioassay. For each bioassay, we randomly

select 400 active compounds as the positive set and 1600 inactive

compounds (the sample size is similar to what is used in the

original report of LEAP+SVM) as the negative set for
performance evaluation. The graph representation of compounds

is straightforward. Each atom is represented by a graph node

labeled with the atom type and each chemical bond is represented
by a graph edge labeled with the bond type. On average, each

compound graph has 47 nodes and 49 edges.

Table 2. List of selected protein families

SCOP_ID Family name
Number of

selected proteins

56437 C-type lectin domains 38

48623 Vertebrate phospholipase A2 29

48942 C1 set domains (antibody constant

domain like)

38

52592 G proteins 33

88854 Protein kinases, catalytic subunit 41

56251 Proteasome subunits 35

1 http://www.rcsb.org/pdb/
2 http://scop.mrc-lmb.cam.ac.uk/scop/

3 http://dunbrack.fccc.edu/PISCES.php

4 http://pubchem.ncbi.nlm.nih.gov

578

Table 3. List of selected bioassays

Assay

ID
Tumor Description

Total Number

of Actives

Total

Number of

Inactives

1 Non-Small Cell Lung 2047 38410

41 Prostate 1568 25967

47 Central Nerv Sys 2018 38350

83 Breast 2287 25510

109 Ovarian 2072 38551

145 Renal 1948 38157

We evaluate the classification power using the following three

measures:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2

6.1 Comparison with Other Methods

We compare our method COM with two alternative approaches:

(1) LEAP+SVM [22] and (2) gPLS [19]. LEAP+SVM invokes
LEAP iteratively until every training example can be represented

by some discovered subgraphs and then takes the discriminative

subgraphs found by LEAP as features to train a Support Vector

Machine (SVM) [21] classifier. LIBSVM [5] is used in the
experiments. We use a linear kernel with parameter C selected

from {2-11, 2-10, …, 210, 211} by cross-validation on the training set

only. We use 5-fold cross validation in our experiments. We

could not furnish a thorough comparison with CORK because the
current release of CORK 5 entails very long execution time. It

takes hours to days (if not longer) to process a small dataset. As a

result, CORK is not able to finish its execution within reasonable

time except for one compound dataset (bioassay ID 1). We will
show its result in Section 6.1.2.

6.1.1 Protein datasets
For protein datasets, we use tp=30%, tn=0% for COM and leap

length = 0.1 for LEAP+SVM 6 . For gPLS, we use frequency

threshold = 30% and exhaustively examine all combinations from

m = {2, 4, 8, 16} and k = {2, 4, 8, 16} where m is number of
iterations and k is number of patterns obtained per search. This

candidate parameter set is adapted for protein datasets. For each

dataset, we report the best test accuracy among all settings7. In

5 http://www.dbs.ifi.lmu.de/~thoma/pub/sdm09/

6 Setting leap length = 0.1 significantly improved LEAP’s

efficiency with only minor impact to the resulting pattern’s
score. We also experimented with leap length = 0.05 which

delivered the same accuracy but required longer runtime.

7 Please note that, for COM and LEAP+SVM, we use the same

parameters for all protein datasets. We perform exhaustive
search and report the best result for gPLS because this is how

gPLS was evaluated originally in [23].

addition, we need to set a subgraph size threshold = 3 for gPLS

because it runs out of memory for higher subgraph size threshold.
Fortunately, this small size threshold has little impact on

classification accuracy as most subgraph patterns found by COM

and LEAP+SVM have size = 3 or 4.

Figure 4. Runtime comparison (protein datasets): COM vs.

gPLS vs. LEAP+SVM

Figure 4 compares the time efficiency of COM, gPLS 8 , and

LEAP+SVM. It shows that gPLS and LEAP+SVM have similar
runtime while COM is an order of magnitude faster than them for

most protein datasets. This is because COM finds discriminative

features sooner than LEAP and gPLS. Usually the early stage of

pattern exploration only enumerates weak pattern features. COM
can generate strong features from weak features in the early

exploration by taking advantage of co-occurrence information

while LEAP and gPLS only use these weak features to refine

further mining. The time difference is also due to COM’s heuristic
exploration order, greedy strategy and unnecessity of repeated

executions.

Figure 5. Normalized accuracy comparison (protein datasets):

COM vs. gPLS vs. LEAP+SVM

Figure 5 compares the normalized accuracy of the classifiers

generated by COM, gPLS and LEAP+SVM. COM outperforms

LEAP+SVM for all 6 protein datasets, although for most datasets
the margin may be small. Compared with gPLS, COM has

competitive result for the first 4 datasets, 5% lower accuracy for

dataset 52592 and 7% lower accuracy for dataset 56251.

Figure 6. Sensitivity comparison (protein datasets): COM vs.

gPLS vs. LEAP+SVM

8 The time for searching for optimal parameter setting is NOT

included.

1

10

100

1000

88854 56437 48942 48623 52592 56251

R
u

n
ti

m
e

 (
se

c)

SCOP ID

COM

gPLS

LEAP+SVM

0

0.2

0.4

0.6

0.8

1

88854 56437 48942 48623 52592 56251

N
o

rm
al

iz
e

d

A
cc

u
ra

cy

SCOP ID

COM

gPLS

LEAP+SVM

0

0.2

0.4

0.6

0.8

1

88854 56437 48942 48623 52592 56251

Se
n

si
ti

vi
ty

SCOP ID

COM

gPLS

LEAP+SVM

579

Figure 7. Specificity comparison (protein datasets): COM vs.

gPLS vs. LEAP+SVM

Figure 6 and Figure 7 decompose the normalized accuracy into

sensitivity and specificity to provide more insight. Compared with

LEAP+SVM, COM has higher sensitivity at the cost of slightly

lower specificity. The substantial difference in sensitivity between
COM and LEAP+SVM is because of the iterative feature

selection method that LEAP relies on. As soon as a positive graph

g is covered by a certain number of features, g becomes much less

important or even removed from the positive set completely. The
advantages of iterative feature selection are (1) positive graphs

that are relatively harder to discriminate will be emphasized and

(2) the positive set may shrink as the algorithm runs, which

reduces the runtime of the next execution of LEAP. However, it is
prone to the overfitting problem when most graphs in the dataset

are removed. This is because when most graphs can be covered by

discriminative patterns and removed from the dataset, the number

of remaining graphs is so small that LEAP tends to discover very
large subgraphs. An extreme example is that when there is only

one positive graph left against an enormous negative set, then the

positive graph itself is the optimal discriminative pattern which is,

however, useless in classifying other positive graphs. In contrast,
COM does not remove graphs from the positive set and thus will

always find features covering a large number of graphs. As a

result, COM is less likely to misclassify positive graphs. As for

specificity, it is understandable that COM has slightly lower
specificity because, as long as a graph satisfies one rule, it will be

classified as positive. Therefore, COM tends to correctly classify

more positive graphs and misclassify a few negative graphs as

positive graphs (yet only slightly lower than LEAP+SVM). This
explains why a simple classifier generated by COM can

outperform the sophisticated SVM.

Comparing COM and gPLS, we find that gPLS generally

produces classifiers with competitive accuracy and better

sensitivity (1-7% for 5 protein families and 25% higher for family

56251) at the cost of lower specificity in most cases, but it
requires exhaustive search for the best parameter setting. While

COM and LEAP+SVM use the same parameter setting for all

protein families, gPLS requires different parameter settings for

different training sets of a family to generate classifiers with high
classification power on the corresponding test sets. We take

protein family 48942 as an example. As we use 5-fold cross

validation, we have 5 different pairs of training set and test set for

protein family 48942. Below we list the optimal parameter setting
for each pair and the average normalized accuracy for each pair if

its optimal parameter setting is used for all 5 training-test pairs.

Table 4. List of optimal parameter settings for gPLS and their

average normalized accuracy for 5 training-test pairs of

family 48942

Training-test pairs
Optimal parameter

setting (m, k)
Average normalized
accuracy using (m, k)

1 (8, 4) 0.8377

2 (2, 2) 0.8377

3 (2, 4) 0.6847

4 (4, 16) 0.6847

5 (2, 8) 0.6963

The normalized accuracy reported in Figure 5 is 92.11% as we use
the optimal parameter setting for each training-test pair. We can

see from Table 4, if we use one of the optimal parameters for all 5

training-test pairs, then we will have at least 8% drop in

normalized accuracy. In fact, for family 48942, m=16, k=8 leads
to the best average normalized accuracy 86% if all 5 pairs use the

same parameter setting, still 6% lower than the 92.11% which is a

result of using the best parameter setting for each training-test

pair. In addition, the relationship between the parameters and
classification result is obscure, making it very difficult to tune

parameters.

6.1.2 Compound datasets
For compound datasets, we only compare COM and LEAP+SVM

because gPLS needs exhaustive parameter search with a much

larger search space for the compound datasets and it runs out of

memory when the subgraph size threshold is larger than 9. We use
tp = 1%, tn = 0.4% for COM because the datasets are much larger

and more diverse than the protein datasets. Leap length for

LEAP+SVM is still set to 0.1. We also set a subgraph pattern size

threshold s = 5 for COM. The size of patterns found by LEAP is
typically 10-20 and the number of patterns in a co-occurrence rule

is usually 2-4.

Figure 8. Runtime comparison (compound datasets): COM vs.

LEAP vs. SVM

Figure 8 compares the runtime of COM and LEAP+SVM. Here

we divide the runtime of LEAP+SVM into runtime of LEAP and
runtime of SVM because, for the compound datasets, the

computational cost of SVM is no longer trivial compared with the

computational cost of COM. It shows that COM is 40-120 times

faster than LEAP. In fact, even the SVM classifier building step
takes much longer time than COM because the compound datasets

have a large number of graphs and subgraph features.

0

0.2

0.4

0.6

0.8

1

88854 56437 48942 48623 52592 56251

Sp
e

ci
fi

ci
ty

SCOP ID

COM
gPLS
LEAP+SVM

1

10

100

1000

10000

1 41 47 83 109 145

R
u

n
ti

m
e

 (
se

c)

Bioassay ID

COM
LEAP
SVM

580

Figure 9. Normalized accuracy comparison (compound

datasets): COM vs. LEAP+SVM

Although COM uses much less time to generate classifiers, its

classifiers are still very competitive to the classifiers by

LEAP+SVM in terms of normalized accuracy. Figure 9 shows the

normalized accuracy of these two approaches. LEAP+SVM has
slightly higher normalized accuracy than COM for 5 compound

datasets, but the difference is merely 2.45% on average and is

always less than 5%.

Again we decompose the normalized accuracy into sensitivity and

specificity, shown in Figure 10 and Figure 11 respectively. Figure

10 demonstrates that COM has more than 10% higher sensitivity
than LEAP+SVM and its disadvantage in specificity (15% lower)

is also obvious as shown in Figure 11, which is similar to what we

have from the protein datasets except that the difference in

specificity between COM and LEAP+SVM is larger for the
compound datasets than that for the protein datasets. The larger

difference in specificity is a result of the relatively high negative

frequency threshold tn (0.4%) used for compound datasets. If we

further lower tn and have higher specificity, then the sensitivity
drops because the classifier overfits the training set and the

normalized accuracy is barely affected. Figure 12 compares the

average normalized accuracy, sensitivity and specificity between

using tn=0.4%, tn=0.25% and tn=0.1%.

Figure 10. Sensitivity comparison (compound datasets): COM

vs. LEAP+SVM

Figure 11. Specificity comparison (compound datasets): COM

vs. LEAP+SVM

Figure 12. Comparison of average normalized accuracy,

sensitivity, specificity between using tn = 0.4%, tn = 0.25% and

tn = 0.1% for COM (tp = 1%, subgraph size threshold = 5,

compound datasets)

We also run CORK on all of our datasets and are only able to get

its result on one dataset (bioassay ID=1) with frequency
threshold=10%, due to its long runtime (more than 20 hours).

Additionally, because LIBSVM is too slow to train a classifier

using subgraph features from CORK, we use Random Forests [4]

instead. We generate 100 trees and examine all possible values for
the number of features used to split a node. The best result is

comparable to COM, with normalized accuracy=71.6% (72.8%

for COM), sensitivity=49% (64%) and specificity=94.2%

(81.5%). Clearly, COM is far more efficient than CORK.

6.2 COM Performance Analysis
We first study the effectiveness of the pattern exploration order

used in COM with tp = 0.3 and tn = 0 on the protein datasets. In

COM, patterns are explored in the descending order of ancestors’
Δ values (illustrated in Section 4.3). An alternative is to explore

patterns in the descending order of their ancestors’ scores (by

replacing Δ in Section 4.3 with score value d). Figure 13 shows

that exploration in the order of Δ values is more efficient than in
the order of scores. The runtime difference seems marginal for

some protein families mainly because standard operations such as

collecting occurrences of frequent edges dominate the overall

runtime for those families. We observe that using score value d
causes patterns with similar supporting sets to be explored

together, which is not ideal to the generation of rules. Let p and q

be two patterns complementary to each other and the score of p is

higher than that of q. If we explore pattern space guided by
ancestors’ scores, all superpatterns (or supergraphs) of p are

examined before q because they have higher scores than q.

However, they cannot complement pattern p because their

supporting sets are subsets of p’s supporting set. However, if we
use ancestors’ Δ values, there is a much better chance that q is

explored before many of p’s superpatterns.

Figure 13. COM runtime comparison between different

exploration orders (protein datasets): by delta value vs. by

score

Now we study the relationship between performance and the two

parameters tp and tn. We fix tp and adjust tn for the compound

datasets and fix tn and adjust tp for the protein datasets. The

difference in average runtime using different parameters is
marginal. We compare the average normalized accuracy,

sensitivity and specificity in Figure 12 and Figure 14. Figure 12

shows that when tn decreases, the specificity increases accordingly

and the normalized accuracy remains the same while the
sensitivity drops. Figure 14 demonstrates that, when tp decreases,

the sensitivity goes down but the specificity is almost unaffected.

Therefore, these two parameters can be used by users to adjust the

trade-off between the sensitivity and specificity.

0
0.2
0.4
0.6
0.8

1

1 41 47 83 109 145

N
o

rm
al

iz
e

d

A
cc

u
ra

cy

Bioassay ID

COM

LEAP+SVM

0

0.2

0.4

0.6

0.8

1

1 41 47 83 109 145

Se
n

si
ti

vi
ty

Bioassay ID

COM

LEAP+SVM

0
0.2
0.4
0.6
0.8

1

1 41 47 83 109 145

Sp
e

ci
fi

ci
ty

Bioassay ID

COM

LEAP+SVM

0

0.2

0.4

0.6

0.8

1

Norm. Acc. sensitivity specificity

tn=0.4%

tn=0.25%

tn=0.1%

0

2

4

6

88854 56437 48942 48623 52592 56251

R
u

n
ti

m
e

 (
se

c)

SCOP ID

by delta
by score

581

Figure 14. Comparison of average normalized accuracy,
sensitivity, specificity between using tp = 0.3, tp = 0.2 and tp =

0.1 for COM (tn = 0%, no size limit, protein datasets)

7. CONCLUSIONS
In this paper, we investigate the problem of using subgraph

patterns for graph classification and propose the algorithm COM

to meet the pressing need for efficient graph classification

methods. By using an efficient pattern exploration order and
grouping patterns into co-occurrence rules, COM is easy to

implement and understand. Even though we adopt FFSM as the

basic subgraph mining routine in COM, the pattern exploration

order and co-occurrence rule generation routine can be integrated
with any other subgraph mining algorithm. In spite of its

seemingly simple classification model, experiments show that

COM is time-efficient and delivers high classification accuracy.

Another advantage of COM is the high interpretability of its
classifiers. In the future, we plan to incorporate the connectivity

between subgraph patterns into the classification model.

8. REFERENCES
[1] C. Borgelt and M.R. Berhold. Mining molecular fragments:

Finding relevant substructures of molecules. In ICDM’02.

[2] D. Bandyopadhyay, J. Huan, J. Liu, J. Prins, J. Snoeyink,

W.Wang, and A. Tropsha. Structure-based function inference

using protein family-specific fingerprints, Protein Science,
vol. 15, pp. 1537-1543, 2006.

[3] D. Bandyopadhyay and J. Snoeyink. "Almost Delaunay

Simplices: Nearest Neighbor Relations for Imprecise Points".

ACM-SIAM Symposium On Discrete Algorithms (SODA
2004), New Orleans, Jan 11-13, 2004, pages 403-412.

[4] L. Breiman. “Random Forests”. Machine Learning 45 (1): 5-

32, 2001.

[5] C. Chang and C. Lin. LIBSVM: a library for support vector

machines, 2001. Software available at:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[6] C. Chen, C. X. Lin, X. Yan, and J. Han, On Effective

Presentation of Graph Patterns: A Structural Representative

Approach, in Proc. 2008 ACM Conf. on Information and

Knowledge Management (CIKM'08), Napa Valley, CA, Oct.
2008.

[7] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis.

Frequent Sub-structure Based Approaches for Classifying

Chemical Compounds. IEEE Trans. Knowl. Data Eng.
17(8): 1036-1050, 2005.

[8] R. Goldman and J. Widom. Dataguides: Enabling query

formulation and optimization in semistructured databases. In

VLDB’97.

[9] C. Helma, T. Cramer, S. Kramer, and L.D. Raedt. Data
mining and machine learning techniques for the

identification of mutagenicity inducing substructures and

structure activity relationships of noncongeneric compounds.

J. Chem. Inf. Comput. Sci., 44:1402-1411, 2004.

[10] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins,

and A. Tropsha. Mining spatial motifs from protein structure
graphs, Proceedings of the 8th Annual International

Conference on Research in Computational Molecular

Biology (RECOMB), pp. 308-315, 2004.

[11] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent

subgraph in the presence of isomorphism, Proceedings of the
3rd IEEE International Conference on Data Mining (ICDM),

pp. 549-552, 2003.

[12] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based

algorithm for mining frequent substructures from graph data.
In Proc. of 2000 European Symp. Principle of Data Mining

and Knowledge Discovery, pages 13-23, 2000.

[13] M. Kuramochi and G. Karypis. Frequent subgraph discovery.

In Proc. of ICDM, pages 313-320, 2001.

[14] T. Kudo, E. Maeda, and Y. Matsumoto. An application of
boosting to graph classification. In Advances in Neural

Information Processing Systems 17, pages 729–736. MIT

Press, 2005.

[15] J. Kazius, S. Nijssen, J. Kok, and T. Back A.P. Ijzerman.

Substructure mining using elaborate chemical representation.
J. Chem. Inf. Model., 46:597-605, 2006.

[16] S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir.

Weighted substructure mining for image analysis. In IEEE

Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE Computer Society, 2007.

[17] S. Raghavan and H. Garcia-Molina, Representing web

graphs. In Proceedings of the IEEE Intl. Conference on Data

Engineering, 2003.

[18] H. Saigo, T. Kadowaki, and K. Tsuda. A linear programming
approach for molecular QSAR analysis. In International

Workshop on Mining and Learning with Graphs (MLG),

pages 85–96, 2006.

[19] H. Saigo, N. Kraemer and K. Tsuda: Partial Least Squares
Regression for Graph Mining, In Proceedings of the 14th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD2008), 578-586, 2008.

[20] M. Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A.

Smola, L. Song, P. Yu, X. Yan, K. Borgwardt. "Near-optimal
supervised feature selection among frequent subgraphs", In

SDM 2009, Sparks, Nevada, USA.

[21] V. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag, 1995.

[22] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant

graph patterns by leap search. In Proceedings of the ACM

SIGMOD International Conference on Management of Data,

pages 433–444, 2008.

[23] X. Yan and J. Han. gSpan: graph-based substructure pattern
mining. In Proceedings of the 2002 IEEE International

Conference on Data Mining, pages 721–724. IEEE

Computer Society, 2002.

[24] F. Zhu, X. Yan, J. Han, and P. S. Yu, gPrune: A Constraint
Pushing Framework for Graph Pattern Mining, in Proc. 2007

Pacific-Asia Conf. on Knowledge Discovery and Data

Mining (PAKDD'07), Nanjing, China, May 2007.

0
0.2
0.4
0.6
0.8

1

Norm. Acc. sensitivity specificity

tp=0.3
tp=0.2
tp=0.1

582

