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Abstract: With the rapid growth of computational biology and e-commerce applications, 
high-dimensional data becomes very common.  Thus, mining high-
dimensional data is an urgent problem of great practical importance.  However, 
there are some unique challenges for mining data of high dimensions, 
including (1) the curse of dimensionality and more crucial (2) the 
meaningfulness of the similarity measure in the high dimension space. In this 
chapter, we present several state-of-art techniques for analyzing high-
dimensional data, e.g., frequent pattern mining, clustering, and classification.  
We will discuss how these methods deal with the challenges of high 
dimensionality. 
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1. INTRODUCTION 

The emergence of various new application domains, such as 
bioinformatics and e-commerce, underscores the need for analyzing high 
dimensional data.  In a gene expression microarray data set, there could be 
tens or hundreds of dimensions, each of which corresponds to an 
experimental condition.  In a customer purchase behavior data set, there may 
be up to hundreds of thousands of merchandizes, each of which is mapped to 
a dimension.  Researchers and practitioners are very eager in analyzing these 
data sets.  
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Various data mining models have been proven to be very successful for 
analyzing very large data sets.  Among them, frequent patterns, clusters, and 
classifiers are three widely studied models to represent, analyze, and 
summarize large data sets.  In this chapter, we focus on the state-of-art 
techniques for constructing these three data mining models on massive high-
dimensional data sets. 

2. CHANLLENGES 

Before presenting any algorithm for building individual data mining 
models, we first discuss two common challenges for analyzing high-
dimensional data.  The first one is the curse of dimensionality.  The 
complexity of many existing data mining algorithms is exponential with 
respect to the number of dimensions.  With increasing dimensionality, these 
algorithms soon become computationally intractable and therefore 
inapplicable in many real applications. 

Secondly, the specificity of similarities between points in a high 
dimensional space diminishes. It was proven in [3] that, for any point in a 
high dimensional space, the expected gap between the Euclidean distance to 
the closest neighbor and that to the farthest point shrinks as the 
dimensionality grows. This phenomenon may render many data mining tasks 
(e.g., clustering) ineffective and fragile because the model becomes 
vulnerable to the presence of noise.  In the remainder of this chapter, we 
present several state-of-art algorithms for mining high-dimensional data sets. 

3. FREQUENT PATTERN 

Frequent pattern is a useful model for extracting salient features of the 
data.  It was originally proposed for analyzing market basket data [2].  A 
market basket data set is typically represented as a set of transactions.  Each 
transaction contains a set of items from a finite vocabulary. In principle, we 
can represent the data as a matrix, each row represents a transaction and each 
column represents an item. The goal is to find the collection of itemsets 
appearing in a large number of transactions, defined by a support threshold t.  
Most algorithms for mining frequent patterns utilize the Apriori property 
stated as follows.  If an itemset A is frequent (i.e., present in more than t 
transactions), then every subset of A must be frequent.  On the other hand, if 
an itemset A is infrequent (i.e, present in less than t transactions), then any 
superset of A is also infrequent.  This property is the basis of  all level-wise 
search algorithms.  The general procedure consists of a series of iterations 
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beginning with counting item occurrences and identifying the set of frequent 
items (or equivalently, frequent 1-itemsets). During each subsequent 
iteration, candidates for frequent k-itemsets are proposed from frequent (k-
1)-itemsets using the Apriori property. These candidates are then validated 
by explicitly counting their actual occurrences. The value of k is incremented 
before the next iteration starts. The process terminates when no more 
frequent itemset can be generated. We often refer to this level-wise approach 
as the breadth-first approach because it evaluates the itemsets residing at the 
same depth in the lattice formed by imposing the partial order of subset-
superset relationship between itemsets. 

It is a well-known problem that the full set of frequent patterns contains 
significant redundant information and consequently the number of frequent 
patterns is often too large.  To address this issue, Pasquier et al. [9] proposed 
to mine a selective subset of frequent patterns, called closed frequent 
patterns. If the number of occurrences of a pattern is the same to all its 
immediate subpatterns, then the pattern is considered as a closed pattern.  In 
[10], the CLOSET algorithm is proposed to expedite the mining of closed 
frequent patterns.  CLOSET uses a novel frequent pattern tree (FP structure) 
as a compact representation to organize the data set.  It performs a depth-first 
search, that is, after discovering a frequent itemset A, it searches for 
superpatterns of A before checking A’s siblings. 

A more recent algorithm for mining frequent closed pattern is CHARM 
[14].  Similar to CLOSET, CHARM searches for patterns in a depth-first 
manner. The difference between CHARM and CLOSET is that CHARM 
stores the data set in a vertical format where a list of row IDs is maintained 
for each dimension.  These row ID lists are then merged during a “column 
enumeration” procedure that generates row ID lists for other nodes in the 
enumeration tree.  In addition, a technique called diffset is used to reduce the 
length of the row ID lists as well as the computational complexity of 
merging them. 

All previous algorithms can find frequent closed patterns when the 
dimensionality is low to moderate.  When the number of dimensions is very 
high, e.g., greater than 100, the efficiency of these algorithms could be 
significantly impacted.  CARPENTER [8] is therefore proposed to solve this 
problem.  It first transposes the matrix representing the data set.  Next, 
CARPENTER performs a depth-first row-wise enumeration on the 
transposed matrix.  It has been shown that this algorithm can greatly reduce 
the computation time especially when the dimensionality is high. 
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4. CLUSTERING 

Clustering is a widely adopted data mining model that partitions data 
points into a set of groups, each of which is called a cluster.  A data point 
has a shorter distance to points within the cluster than those outside the 
cluster. In a high dimensional space, for any point, its distance to its closest 
point and that to the farthest point tend to be similar. This phenomenon may 
render the clustering result sensitive to any small perturbation to the data due 
to noise and make the exercise of clustering useless.  To solve this problem, 
Agrawal et. al. proposed a subspace clustering model [1].  A subspace 
cluster consists of a subset of objects and a subset of dimensions such that 
the distance among these objects is small within the given set of dimensions.  
The CLIQUE algorithm [1] is proposed to find the subspace clusters.  

In many applications, users are more interested in the objects that exhibit 
a consistent trend (rather than points having similar values) within a subset 
of dimensions.  One such example is the bicluster model [4] proposed for 
analyzing gene expression profiles.  A bicluster is a subset of objects (U) and 
a subset dimensions (D) such that objects in U have the same trends (i. e., 
fluctuating simultaneously) across dimensions in D.  This is particular useful 
in analyzing gene expression levels in a microarray experiment since the 
expression levels of some genes may be inflated/deflated systematically in 
some experiments.  Thus, the absolute value is not as important as the trend.  
If two genes have similar trends across a large set of experiments, they are 
likely to be co-regulated.  In the bicluster model, the mean squared error 
residue is used to qualify a bicluster.  In [4], Cheng and Church used a 
heuristic randomized algorithm to find biclusters.  It consists of a series of 
iterations, each of which locates one bicluster. To prevent the same bicluster 
from being reported again in subsequent iterations, each time when a 
bicluster is found, the values in the bicluster are replaced by uniform noise 
before the next iteration starts. This procedure continues until a desired 
number of biclusters are discovered.   

Although the bicluster model and algorithm have been used in several 
applications in bioinformatics, it has two major drawbacks: (1) the mean 
squared error residue may not be the best measure to qualify a bicluster. A 
big cluster may have small mean squared error residue even if it includes a 
small number of objects whose trends are vastly different in the selected 
dimensions; (2) the heuristic algorithm may be interfered by the noise 
artificially injected after each iteration and hence may not discover 
overlapped clusters properly.  To solve these two problems, the authors of 
[12] proposed the p-cluster model.  A p-cluster consists of a subset of 
objects U and a subset of dimensions D where for each pair of objects u1 and 
u2 in U and each pair of dimension d1 and d2 in D, the change of u1 from d1 
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to d2 should be similar to that of u2 from d1 to d2.  A threshold is used to 
evaluate the dissimilarity between two objects on two dimensions.  Given a 
subset of objects and a subset of dimensions, if the dissimilarity between 
every pair of objects on every pair of dimensions is less than the threshold, 
then these objects constitute a p-cluster in the given dimensions. In [12], a 
novel deterministic algorithm is developed to find all maximal p-clusters, 
which utilizes the Apriori property held on p-clusters. 

5. CLASSIFICATION 

The classification is also a very powerful data analysis tool.  In a 
classification problem, the dimensions of an object can be divided into two 
types.  One dimension records the class type of the object and the rest 
dimensions are attributes. The goal of classification is to build a model that 
captures the intrinsic associations between the class type and the attributes so 
that an (unknown) class type can be accurately predicted from the attribute 
values. For this purpose, the data is usually divided into a training set and a 
test set, where the training set is used to build the classifier which is 
validated by the test set. There are several models developed for classifying 
high dimensional data, e.g., naïve Bayesian, neural networks, decision trees 
[7], SVMs, rule-based classifiers, and so on. 

Supporting vector machine (SVM) [11] is one of the newly developed 
classification models.  The success of SVM in practice is drawn by its solid 
mathematical foundation that conveys the following two salient properties.  
(1) The classification boundary functions of SVMs maximize the margin, 
which equivalently optimize the general performance given a training data 
set.  (2) SVMs handle a nonlinear classification efficiently using the kernel 
trick that implicitly transforms the input space into another higher 
dimensional feature space.  However, SVM suffers from two problems.  
First, the complexity of training an SVM is at least O(N2) where N is the 
number of objects in the training data set. It could be too costly when the 
training data set is large.  Second, since an SVM essentially draws a hyper-
plain in a transformed high dimensional space, it is very difficult to identify 
the principal (original) dimensions that are most responsible for the 
classification.   

Rule-based classifiers [6] offer some potential to address the above two 
problems.  A rule-based classifier consists of a set of rules in the following 
form: A1[l1, u1]∩A2[l2, u2]∩…∩Am[lm, um]→C, where Ai[li, ui] is the range of 
attribute Ai’s value and C is the class type.  The above rule can be interpreted 
as that, if an object whose attributes’ values fall in the ranges in the left hand 
side, then its class type is likely to be C (with some high probability).  Each 
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rule is also associated with a confidence level that depicts the probability 
that such a rule holds.  When an object satisfies several rules, either the rule 
with the highest confidence (e.g., CBA[6]) or a weighted voting of all valid 
rules (e.g., CPAR[13]) may be used for class prediction. However, neither 
CBA nor CPAR are targeted for high dimensional data.  In [5], an algorithm 
called FARMER is proposed to generate rule-based classifiers for high 
dimensional data set.  It first quantizes the attributes into a set of bins.  Each 
bin is treated as an item subsequently. FARMER then generates the closed 
frequent itemsets using a method similar to CARPENTER. These closed 
frequent itemsets are the basis to generate rules.  Since the dimensionality is 
high, the number of possible rules in the classifier could be very large.  
FARMER finally organizes all rules into compact rule groups. 
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