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ABSTRACT
Pseudogenes have long been considered to be nonfunctional
segments in the genome, but recent studies have provided
evidence to support their novel regulatory roles in biolog-
ical processes. With the growing interests in pseudogene
research, scientists rely on RNA sequencing technology to
estimate expression level of pseudogenes at di↵erent tissues
or cell lines. The major challenge of RNASeq on pseudo-
gene quantification falls in the high sequence similarity be-
tween pseudogenes and their homologous parents. Reads
can be ambiguously aligned to multiple homologous regions.
In this article, we present PseudoLasso, a genome-wide ap-
proach to accurately estimate the abundance of pseudogenes
and their parents, and correctly align reads to their origins.
Our approach focuses on learning read alignment behaviors,
and leveraging this knowledge for abundance estimation and
alignment correction. Compared to the read count estimates
reported by TopHat2, PseudoLasso is able to provide esti-
mates with a reduced error rate of 10-fold.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Correlation and regres-
sion analysis; J.3 [Life and Medical Sciences]: Biology
and genetics

General Terms
Bioinformatics

Keywords
Pseudogene, L1 Regularization, RNASeq
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Prior to the ENCODE project, pseudogenes had hitherto
been considered to be dysfunctional genomic segments, and
were only of interests to suggest evolutionary evidence of an-
cient molecules encoded by the genome. Recent studies have
revealed that many pseudogenes are transcribed and play
di↵erent important regulatory roles in biological processes
[6, 12, 17, 23, 24]. This rising evidence has broadened the
range of interests in pseudogene-related research, which in-
cludes elucidating their functional impacts and quantifying
their transcript abundance. Currently, genome-wide stud-
ies of pseudogenes have been extensively focused on iden-
tifying their genomic locations. The knowledge from these
studies are comprehensively integrated into publicly avail-
able databases, such as the GENCODE pseudogene resource
[15] and Yale pseudogene resource [7]. On the other hand,
genome-wide analyses of pseudogene expression remain chal-
lenging due to the highly sequence similarity of their homol-
ogous protein-coding genes.

In this article, we first present the novel biological func-
tions of pseudogenes. These findings have fostered the grow-
ing attentions in pseudogene expression profiling. We then
discuss the RNA Sequencing technology to estimate tran-
script abundance, and address its challenges on pseudogene
analysis. Since the bottleneck lies on high sequence similar-
ity between a pair of pseudogene and its protein-coding gene,
we propose a linear regression model to learn the behavior of
reads from any given gene aligning to di↵erent regions with
sequence homology. Subsequently, we leverage this behav-
ior to reassign read alignments to acquire a more accurate
transcripts quantification.

1.1 Pseudogene
Pseudogenes arise from duplication of a set of protein-

coding genes, and they can be categorized into two forms,
unprocessed and processed, based on their copying mech-
anisms [21]. Unprocessed pseudogenes derive from a direct
genomic duplication of gene, and thus retain the intron-exon
structure. Processed pseudogenes are the products of retro-
transposition, where the mRNA transcripts of original genes
are reverse transcribed and reintegrated into the genome at
new locations. As a result, processed pseudogenes lose the
introns and the 5’ -end promoter sequence. Regardless of the
mechanism, they all bear a substantial amount of mutations
over time, which may cause deficiencies in gene expression
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and protein coding. For this reason, they are often labeled
as “junk” DNA.

Referencing the ENCODE project, Zheng et al.[23] per-
formed an extensive analysis to demonstrate that at least
a fifth of the 201 ENCODE pseudogenes were transcribed.
In addition, many gene-by-gene functional assays through
knockdown and overexpression experiments have suggested
that pseudogenes may interact with functional protein cod-
ing genes, and regulate di↵erent biochemical processes in
cells [5, 6]. Pink et al.[16] have summarized these potential
mechanisms into three models:

1. Antisense transcripts generated from pseudogenes can
combine with sense-stranded mRNA from a homolo-
gous coding gene, and interfere with the translation of
the coding gene.

2. Pseudogene transcripts can be processed into small in-
terfering RNA (siRNA), and silence the expression of
other functional genes.

3. The sense strand of pseudogene transcripts can behave
as a competing endogenous RNA (ceRNA) to its ho-
mologous functional gene in cis. It competes with the
functional gene for a shared trans-acting molecule, ei-
ther a stability factor or a miRNA for degradation, and
thus regulates the stability of the functional gene.

Advancing to genome-wide studies of pseudogenes, mi-
croarray and the next generation sequencing (NGS) tech-
nology provide a high-throughput screening for gene ex-
pression profiling. However, the design of the microarray
chip presents a limitation for studying pseudogenes, as many
pseudogene probes are often missing from commercially avail-
able arrays [16]. RNA sequencing yields a more unbiased ap-
proach, but current aligners fall short on correctly assigning
reads among high sequence similarity regions.

1.2 RNASeq Challenges
RNASeq experiments start with converting purified and

sheared RNA molecules to cDNA. cDNA fragments are se-
quenced and read out by sequencers, producing millions of
short reads, ranging from 50bp to 300bp in length. The frag-
ment can be read from one end only, single-end sequencing,
or from both ends, paired-end sequencing. Following a series
of data analysis, the amount of reads from a transcript can
be used to estimate the expression abundance.

Data analysis for most of the current RNASeq pipeline
can be divided into three stages [4]: read mapping, transcrip-
tome reconstruction, and expression quantification. Millions
of short reads are first aligned either to a reference transcrip-
tome or a genome. In transcriptome reconstruction, over-
lapped alignments from the first stage are aggregated and
assembled into transcripts. The abundance of each tran-
script is quantified based on the number of mapped reads,
and normalized to account for transcript size and total num-
ber of mapped reads. Statistical analysis can be further ap-
plied to identify significant changes in gene expression across
di↵erent experiments. Intuitively, each stage has a cascad-
ing e↵ect, and the outcome from read mapping can predomi-
nantly change the results of any downstream analysis. Thus,
we focus on the computational challenges of read mapping.

Paralogous and homologous genes contain low-complexity
sequences within their families, and as a result, reads from

these genes may align equally well to multiple places, known
as the “multireads”. Similarly, pseudogenes share a high
sequence similarity with the functional genes they are de-
rived from. In the case of processed pseudogenes, which
contain uninterrupted sequence without introns, reads from
spliced transcripts of their functional genes can yield a bet-
ter alignment at these pseudogene regions. In Figure 1, we
use simulated data to illustrate this issue on the Tuxedo
Pipeline [19]. Paired-end reads are generated from one of
the human transcripts for diacylglycerol kinase (DGKZ ),
ENST00000421244, with two di↵erent coverages, 10X and
30X. Reads are aligned by TopHat2 [8], and the abundance
is estimated by Cu✏inks [20]. PGOHUM00000248578 is
the processed pseudogenes of this transcript, and is not ex-
pressed in our simulation. Cu✏ink reports a relatively high
abundance in terms of FPKM for this processed pseudogene
compared to DGKZ. As we observe from the read align-
ments, most of the reads are assigned to the pseudogene.

1.3 Related Work
Sequence similarity poses the biggest challenge in RNASeq

analysis for pseudogene expression quantification. To ad-
dress the multiple alignment issue, one of the common ap-
proaches is to discard all multireads. Tonner et al. [18]
developed a special method to quantify the expression levels
of ribosomal protein pseudogenes. Their method only kept
uniquely mapped read for abundance estimation. This idea
is easy to apply, but tosses out information that is critical
for quantification step. Consequently, it creates a bias to-
ward genes or pseudogenes with a more unique sequence in
the genome. Another approach is to assign the multireads
based on the mapping quality. Nevertheless, there may be
more than one alignment that shares the same quality score
due to sequence similarity. Other approaches include assign-
ing the multireads to the best locus based on local coverage
estimation from uniquely mapped reads [13], or based on
probabilistic models [10, 14]. However, none of these ap-
proaches leverages the relationship of read alignment among
homologous regions.

Here, we present PseudoLasso, an analysis pipeline that
keeps all multireads and correctly reassigns both unique
reads and multireads between pseudogenes and their homol-
ogous regions. Our approach is based on an observation that
reads from a given gene are linearly distributed to di↵erent
genomic loci (Section 2). Since the homologous regions are
sparse throughout the genome, this relation can be modeled
by linear regression with L1 regularization (Section 3). Once
the read count of each region is accurately estimated, reads
are reassigned to regions in which the observed read count is
lower than the estimation. Results show that PseudoLasso
is able to accurately estimate the expression abundance and
correctly assign reads among homologous loci (Section 4).

2. APPROACH
We adopt the terminology from Yale pseudogene knowl-

edgebase (Pseudogene.org), and denote the functional genes
where pseudogenes derived from as parent genes. Pseudo-
genes are represented by their pseudogene IDs (prefix PGO-
HUM), and other genes are represented by their Ensembl
gene IDs [2].

We first examine the read alignments of TopHat2 between
homologous regions, specifically between the regions of a
pseudogene and its parent. A set of 100 parent transcripts
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ENST00000421244 PGOHUM00000248578 

30X 

10X 

Location 11:46369137-46401497 13:44542559-44545332 

Experiment 10X 30X 10X 30X 

Expected Count  109 348 0 0 

Expected FPKM  2923  3105 0 0 

Reported Count  9 15 153 159 

Reported FPKM 160 305 3519 3673 

Figure 1: FPKM and fragment counts reported by Cu✏ink after aligning reads from the DGKZ transcript
(ENST00000421244) using TopHat2. Two di↵erent coverages, 10X and 30X, are used in the simulation. The
peaks show the amount of reads (y-axis) covering across two genomic locations (x-axis), one for its pseudogene,
and the other for itself. A sub-region of ENST00000421244 is displayed in this figure. PGOHUM00000248578
is not expressed at all, but is reported to have high FPKMs. On the other hand, ENST00000421244 is reported
to have only 5% and 10% of the expected FPKMs.

that contain only one pseudogene are selected. The selec-
tion also ensure that there is no isoform in the set, and
these 100 parent-pseudogene pairs do not overlap with others
in their genomic locations. Paired-end reads are simulated
for parent genes only, with di↵erent coverages and abun-
dances (see method for data preparation). All the align-
ments, including multireads are used to estimate the number
of fragments mapped to the parent genes themselves, and
to their pseudogenes. Figure 2 shows an example of frag-
ment counts between four pairs of regions, and these regions
contain two processed pseudogenes (PGOHUM00000263241
- ENST00000580191, PGOHUM00000251182 - ENST00000
512485) and two unprocessed pseudogenes (PGOHUM00000
242685 - ENST00000527626, PGOHUM00000249020 - ENST
00000388957). The observed number of fragments are plot-
ted against the expected number of fragments from the par-
ents. For a given gene, a linear relationship is observed in
fragment count between two homologous regions, and the ra-
tio is consistent across di↵erent coverages and abundances.
However, the slope is di↵erent for each gene, implying that
the ratio varies from gene to gene.

We further investigate the e↵ect of read length on these
100 parents using 75bp and 100bp. Two of them are ran-
domly chosen to demonstrate this in Figure 3. The slopes
vary with di↵erent read length for both ENST00000580191
and ENST00000527626. Hence, with respect to the multi-
ple alignment issue, the linearity characteristic holds with
di↵erent read depths, but is sensitive to read lengths.

Based on these observations, mapped reads are linearly
distributed among homologous regions. The total number
of reads for a gene can be estimated from the reads aligned
to itself and its homologous loci with di↵erent weights. We
model this relationship through a linear regression model,
and the weight coe�cients are trained from simulated data
for a specific read length. Next, we formalize the mathe-
matical notations of this model. Table 1 summarizes the
symbols we used in this article.

2.1 Model
Let y

i

be the expected number of reads for a gene i among
n genes (0 < i  n) ; x

ij

be the observed number of reads

generated from gene i aligned to a locus j (0 < j  m),
where m is the total number of loci mapped by all reads
in an experiment. Each locus j is associated with a weight
�

i

contributing to the prediction. Number of reads for gene
i can be estimated by a weighted sum of observed counts
across all loci. We use the “ˆ” symbol to represent estimated
variables.

ŷ

i

= x

i1�1 + x

i2�2 + ...+ x

im

�

m

+ ✏, ✏ ⇠ N(0, 1) (1)

Putting all n genes and m loci in a matrix form (n  m),
we have

Ŷ

n⇥1 = X

n⇥m

�

m⇥1 + ✏

n⇥1 (2)

Y is a vector that contains the“ground truth” for n genes,
and we define X as the distribution matrix to keep track of
the aligned loci for each gene. We assume errors follow a
normal distribution with mean of zero.

DEFINITION 1. (Distribution Matrix) Let R be a set
of reads in the experiment, R = {r1, r2, · · · rp}. G be a set of
genes, G = {g1, g2, · · · , gn}, and L be a set of genomic loci,
L = {l1, l2, · · · , lm}. X is a n⇥m distribution matrix with
n genes and m loci. We define R

gilj ⇢ R to denote a subset
of reads, such that r

k

2 R

gilj if and only if �(r
k

, g

i

, l

j

) = 1.
�(r

k

, g

i

, l

j

) is an indicating function as described in Equa-
tion (3). Each value in the distribution matrix represents the
number of reads from gene g

i

aligned to locus l

j

, and thus
x

ij

= |R
gilj |. We use the cardinality notation to represent

the number of element in a set.

�(r
k

, g

i

, l

j

) =

8
<

:

1 if read r

k

comes from gene g

i

and is aligned to locus l
j

0 otherwise
(3)

A good estimation can be evaluated by minimizing the
di↵erence between the predicted value ŷ

i

and the expected
value y

i

, which leads to our objective function,

argmin
�

kY �X�k2 (4)

For any given gene, there are only a few homologous loci
across the genome. Therefore, fragments from a gene are
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aligned to only a few regions, yielding a sparse distribution
matrix. This sparsity can be enhanced by L1 regularization,
and used as a constraint to augment our objective function.
Finally, these coe�cients (�) can be estimated as described
in Equation (5).

�̂ = argmin
�

kY �X�k2 + �k�k1 (5)

2.2 Distribution Matrix Reconstruction
In real RNASeq data, we do not know the distribution

matrix. Instead, we only know the total number of reads
aligned to each genomic locus after the alignment step. In
other words, we can only obtain a vector of column summa-
tion with respect to the distribution matrix from the real
data. According to Equation (4), we need to reconstruct
this distribution matrix first from the real data in order to
estimate the read count for each gene.

Given only the summation of each column j,
P

n

i=1 xij

,
there are infinite solutions for x

ij

. However, we observed
earlier that the amount of reads at x

ij

is proportional to
the expected number of reads y

i

for gene g

i

across di↵erent
replicates. Hence, this ratio is constant and can be inferred
from simulated data. We rewrite x

ij

as z

ij

c

i

, where c

i

is a
variable for gene i, and z

ij

corresponds to the constant ratio
related to c

i

. We define a pseudo matrix for these ratios
{z

ij

}, which is a transformation of the distribution matrix.

DEFINITION 2. (Pseudo Matrix) The pseudo matrix
Z

n⇥m

is defined by the proportion of reads mapped to locus
l

j

out of the total number of reads for a given gene g

i

. Let
Y be a vector of expected number of reads for genes G, Y =
{y1, y2, · · · , yn}. y

i

is defined as |R
gi |, such that r

k

2 R

gi

if and only if  (r
k

, g

i

) = 1.  (r
k

, g

i

) is another indicating
function described in Equation (6). Each value is computed
by z

ij

=
xij

yi
.

 (r
k

, g

i

) =

⇢
1 if read r

k

comes from gene g

i

0 otherwise
(6)

After the substitution, we reduce the unknown variables
down to {c1, c2, · · · , cn}. Since there are n variables and m

equations, and n  m, the variable c
i

can be estimated with
the following objective function and constraint.

arg min
{c1,c2,··· ,cn}

k
nX

i=1

x

ij

�
nX

i=1

↵

ij

c

i

k2, s.t. c
i

� 0, 8i (7)

If the pseudo matrix is not full rank, it implies that the
read distribution profiles are linearly dependent among a
subset of genes. The corresponding c

i

for these genes can
have more than one solution. In reality, it happens to a
group of genes that have extremely high sequence similari-
ties, and as a result, their distribution profiles are indistin-
guishable from each other. We calculate the pairwise cor-
relation for each gene based on the pseudo matrix. The
highest correlation coe�cient refers to the correlation of it-
self, so the second highest correlation coe�cient is selected
to reflect the likelihood of gene g

i

being linear dependent
to any others in the gene set G. Hence, a high correlation
coe�cient indicates a low confidence on the c

i

we estimated
from Equation (7).
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Figure 2: Comparing the number of fragments
mapped to a functional parent gene and its pseu-
dogene. Paired-end reads of 100bp are simulated
for four functional genes (ENST-) from 60 sets of
experiments. The expected number of reads from a
parent gene (y-axis) is plotted against the number
of reads mapped to either itself or its pseudogene
(x-axis). The parent-pseudogene pair is indicated
by the same color.

3. IMPLEMENTATION
We present PseudoLasso, which learns the behavior of

reads distributed among homologous regions. Leveraging
that knowledge, it estimates read abundance of each gene,
and reassigns reads to the corresponding loci. The final read
alignments are outputted in BAM format. The workflow is
illustrated in Figure 4. The training stage uses simulated
reads from a set of pseudogenes and their parents to learn
the pseudo matrix and the lasso coe�cients. In the valida-
tion stage, lasso coe�cients and pseudo matrix are evaluated
using a di↵erent set of simulated experiments. We describe
our method below, starting with data preparation.

3.1 Data Preparation
RNA sequencing simulator from GeneScissors [22], RNAse-

qSim, is used to generate paired-end reads for a list of genes
with fragment size ranging from 100bp to 400bp. Gene def-
initions are based on the annotation from Ensembl release
74 of Human Genome GRCh37. Each transcript is assigned
with an abundance level, and the simulator uniformly sam-
ples fragments up to the given abundance. In order to mark
the origin of each read, the software is modified to inherit
the gene ID in read names. Ten di↵erent levels of read cov-
erage are used to imitate low (5X, 7X, and 10X), medium
(13X, 15X, 17X, and 20X) and deep (23X, 27X, and 30X)
sequencing. Transcript abundance is assigned either with
a fix number across all transcripts (4A, 6A, 8A)1, or with
three di↵erent sets of random numbers (from 3A to 20A) for
each transcript. In total, the combination yields 60 sets of
data. Six data sets are randomly chosen for validation, and
the remaining sets serve as replicates during training.

1To distinguish from ‘X’ in coverage, the letter ‘A’ is used to
denote the magnitude of abundance level. 4A, 6A, and 8A
mean that transcripts are expressed 4,6,8 times respectively.
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Table 1: Mathematical Notations
Symbol Description

G = {g1, g2, · · · , gn} a set of gene g

i

, where 1 < i  n

L = {l1, l2, · · · , lm} a set of mapped loci l
j

, where 1 < j  m and n  m

Y = {y1, y2, · · · , yn} read counts or fragment counts y

i

for gene g

i

R = {r1, r2, · · · , rp} a set of reads in an experiment
R

gi 2 R a subset of reads come from gene g

i

R

gilj
2 R

gi a subset of reads come from gene g

i

and aligned to locus l

j

X

n⇥m

an n by m distribution matrix
Z

n⇥m

an n by m pseudo matrix that is a transformation of X
n⇥m

.

� = {�1,�2, · · · ,�m} a vector of weights indicate the contribution of loci l
j

toward Ŷ

C = {c1, c2, ..., cn} a set of variables associated with gene i for distribution matrix reconstruction
U = {u1, u2, ..., un

} number of missing reads in locus l

j

V = {v1, v2, ..., vm} v

j

represents a set of leftover uniquely aligned reads for locus l

j

after Algorithm 1
 (r

k

, g

i

) an indicating function for read r

k

comes from gene g

i

�(r
k

, g

i

, l

j

) an indicating function for read r

k

comes from gene g

i

and aligned to locus l

j
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Figure 3: Read length e↵ect on fragment counts.
Paired-end reads are simulated from 60 sets of ex-
periments, with read length of 75bp and 100bp
for ENST00000580191 and ENST00000527626. The
expected number of fragment (y-axis) is plotted
against the observed number of fragment (x-axis).
Read lengths are marked by di↵erent symbols, and
genes are depicted by di↵erent colors.

3.2 Read Alignment
Reads are aligned to the reference genome using TopHat2.

With the default settings, multiple alignments are reported
up to 20 records, and these multireads are kept for analysis.

In simulated data, the name of each read is tagged with
a gene ID of its origin, thus expected number of reads for
a gene can be counted directly by the number of unique
read names containing this tag. We use gene IDs instead
of transcript IDs to simplify the distribution matrix. These
counts provide the“ground truth”of read count for all genes.
For each gene, we iterate through all alignment records to
construct the distribution matrix. Each aligned locus is
matched to a gene based on the span of genomic coordi-
nates. We use Samtools [11] to retrieve the alignment in-
formation for mapped reads, and Bedtools to facilitate the
gene matching.

3.3 Coefficient Training

We organize the distribution matrix X so that the first n
columns represent the genomic locus of n genes. The diag-
onal values (x

ii

) in the first half of the matrix (up to the
n

th column) describe the read count of self-alignment. We
assume all of the pseudogenes and their homologous par-
ents are expressed, and the sparsity is enforced on the un-
expressed loci, which correspond to {l

n+1, ln+2, · · · , lm}.
As denoted in Equation (5), lasso regression is solved via

coordinate descent, which is implemented in the GLMNET
package by Friedman et al. [3]. The penalty strength pa-
rameter is adjusted to suppress the unexpressed loci.

3.4 Distribution Matrix Reconstruction
The distribution matrix is constructed by iterating through

all ID-tagged reads in simulation, but can only be inferred
through pseudo matrix in real data. Taking account of
the variations among data sets, we use the average values
of pseudo matrix from the training sets. Based on Equa-
tion (7), it is a non-negative least-squares constraints prob-
lem [9], and can be solved by a default function in Matlab,
lsqnonneg.

3.5 Alignment Correction
After we obtain the estimated read count for each gene,

we sort through all the read alignments and assign them to
the location of these genes up to the estimated amount. The
algorithm involves three stages. Uniquely mapped reads are
retained in the first stage, and multireads are assigned to the
most likely gene region in the second stage. Reconstructed
distribution matrix is used to guide the realignment of the
remaining reads in the third stage.

The first stage is summarized in Algorithm 1. The al-
gorithm collects all the uniquely mapped reads that fall
within the genomic locus l

j

. These reads are sorted from
good to bad based on the sequence quality (MAPQ) and
whether the mate read is properly mapped for paired-end
sequencing. This sorting procedure is described in Algo-
rithm 2. Since the distribution matrix is ordered, each locus
{l1, l2, · · · , ln} is associated with a gene g

i

, and the top ŷ

i

uniquely mapped reads are kept for locus l
i

. The remaining
loci {l

n+1, ln+2, · · · , lm} are assumed to be not expressed,
with zero estimated read count, {ŷ

n+1, ŷn+2, · · · , ŷm} = 0.
For locus l

j

, we use count u

j

to keep track of the di↵er-
ence between estimated abundance and the number of kept
reads. If the remaining count u

j

reaches zero, then locus l

j

is resolved. If the number of uniquely mapped reads exceeds
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Figure 4: The workflow of PseudoLasso

the estimated abundance ŷ

j

, the leftover reads v

j

are writ-
ten to a di↵erent file and are subjected to be reassigned to
a di↵erent locus in the third stage.

In the second stage, Algorithm 3, the“unresolved loci” are
sorted based on their remaining counts. Unassigned multi-
reads are retrieved for these loci and sorted using the criteria
mentioned above. We start the correction from a locus with
the least amount of remaining counts, and assign the top u

j

multireads to locus l
j

. Once a multiread has been assigned,
it is removed from the multireads pool. The remaining count
is updated after each assignment, and if it reaches zero, the
corresponding locus is resolved.

The remaining unresolved loci do not have enough aligned
reads, and thus require realignment of leftover reads from
the homologous loci. For gene g

i

, homologous loci can be
uncovered from the distribution matrix, where x

ij

(i 6= j)
is greater than zero for locus l

j

. We sort x

ij

in descending
order for each gene g

i

, and retrieve the leftover reads from l

j

.
These reads are aligned back to the sequence spanned loci
l

i

using Blastn [1]. The top u

i

alignments with e-value 
1.00E�05 are assigned to g

i

and converted to BAM format.
u

i

is updated again after each assignment. The process is
repeated for each homologous loci l

j

until u
i

reaches zero or
there are no more leftover reads from homologous loci. This
step is described in Algorithm 4.

The final list of alignments is acquired by removing the
records from DList and adding the newly assigned align-
ments from SList to the original results reported by TopHat2.
The corrected alignments are stored in BAM format, and can
be processed for downstream analyses, such as transcriptome
reconstruction and statistical analysis.

3.6 Validation
A separate set of replicates is used to validate our esti-

mated read count for pseudogenes and parent genes. The
prediction error is evaluated by the relative error with re-

Algorithm 1 Retain Uniquely Mapped Read

Input: R, L, Ŷ
Output: U , V
1: Let {ŷ

n+1, ŷn+2, · · · , ŷm} = 0
2: for l

j

2 L do
3: Let u

j

= ŷ

j

, v
j

= ;

4: Let R

lj
= set of reads aligned to locus j

5: R

0
lj

= QualitySort(R
lj
)

6: for r

k

2 R

0
lj

do

7: if r

k

is an uniquely mapped read then
8: if u

j

> 0 then
9: u

j

= u

j

� 1
10: else
11: Add r

k

to v

j

12: end if
13: end if
14: end for
15: end for

Algorithm 2 QualitySort Procedure
Input: R

lj

Output: Sorted R

lj
based on read quality

1: Let Qscore = {0, 0, · · · , 0}1⇥|Rlj
|

2: for r

k

2 R

lj
do

3: if r

k

is paired and mate is properly paired then
4: Qscore

k

= MAPQ(r
k

) + 100
5: else
6: Qscore

k

= MAPQ(r
k

)
7: end if
8: end for
9: for r

k

, r

k+1 2 R

lj
do

10: if Qscore

k+1 > Qscore

k

then
11: swap(r

k+1, rk)
12: end if
13: end for
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Algorithm 3 Select Multiread

Input: R, L, U
Output: DList, SList, U
1: Let M = a list of multireads with

m

k

= (readName, alignment)
2: U

0 = ascending sort(U)
3: for u

j

2 U

0 do
4: Let M

lj 2 (M \R

lj )
5: M

0
lj

= QualitySort(M
lj )

6: while u

j

> 0 and M

0
lj

6= ; do

7: r

k

= M

0
lj
(1)

8: u

j

= u

j

� 1
9: Add r

k

.alignment to SList

10: for r

a

2 M do
11: if r

a

.readName == r

k

.readName then
12: Add r

a

.alignment to DList

13: Remove r

a

from M

14: if r

a

2 M

0
lj

then

15: Remove r

a

from M

0
lj

16: end if
17: end if
18: end for
19: end while
20: end for

Algorithm 4 Realign Reads from Homologous Loci

Input: V , X, U
Output: DList, SList
1: U

0 = ascending sort(U)
2: for u

i

2 U

0 do
3: if u

i

> 0 then
4: x

0
i.

= descending sort(x
i.

)
5: for x

0
ij

2 x

0
i.

do
6: if x

0
ij

6= 0 and v

j

6= ; then
7: if u

i

> 0 then
8: for r

k

2 v

j

do
9: b = Blastn(r

k

, sequence(l
i

))
10: if b.evalue < 1.00E � 05 then
11: u

i

= u

i

� 1
12: bam = BLAST2BAM(b)
13: Add bam to SList

14: Add r

k

to DList

15: Remove r

k

from v

j

16: end if
17: end for
18: end if
19: end if
20: end for
21: end if
22: end for

Table 2: Prediction Error for 128 Gene Set
Data Set Overall Error

Validation 1 0.0091
Validation 2 0.0093
Validation 3 0.0070
Validation 4 0.0037
Validation 5 0.0041
Validation 6 0.0038

spect to the true count. We compare our read count and
FPKM to the traditional Tuxedo pipeline.

4. RESULTS
According to Pseudogene.org knowledgebase (Build 74),

there are 16367 pseudogenes and 6251 parent genes located
on the canonical chromosomes (Chr1-22, X, Y, and mito-
chondira). We removed the pseudogenes that overlap with
any of the parents in their genomic locations. Our method
used paired-end reads with a read length of 100bp, and frag-
ment size from 100bp to 400bp. Thus, pseudogenes with
read length less than 100 were discarded, resulting in 14246
candidate pseudogenes and 5979 parent genes.

We first examined our approach using a small number
of genes where a portion of the homologous pairs were ex-
pressed at the same time. The gene set was expanded upon
the 100 parents we used earlier to examine the read align-
ment behavior between homologous regions (Section 2). Ad-
ditional 8 more parent genes and 10 pairs of pseudogenes
along with their homologous parents were randomly chosen
from the candidate gene sets, resulting in a total of 128 genes
expressed in our initial experiment.

In the second set of experiment, we assumed all of the
pseudogenes were expressed at the same time as the par-
ent genes. Since a parent gene could have more than one
pseudogene, the 118 parents from the first experiment were
associated with 206 pseudogenes, forming a set of 324 genes.

Applying our approach to a larger set of data, we ran-
domly selected 709 genes from the candidate parent gene
set. Assuming their pseudogenes were also expressed, 949
pseudogenes were added to the list, resulting a set of 1658
genes.

4.1 Results from 128 Gene Set
Read alignment behavior was modeled using 54 replicates,

and validated by other 6 replicates. Relative errors were
computed to evaluate the accuracy of our model. Table
2 summarized the average error rate of our predictions for
these 128 genes. The low error rates showed that our model
was able to recover the distribution matrix and provide an
accurate estimation of the fragment count. Carrying on with
the alignment correction, we used the DGKZ transcript to
compare our approach with the Tuxedo pipeline. In Figure
5, reads were generated from the DGKZ transcript only, but
TopHat2 aligned most of the reads to its pseudogene, PGO-
HUM00000248578. Our approach used the reconstructed
distribution matrix to correct read alignments. The dimin-
ished amount of reads at the PGOHUM00000248578 locus
along with the increased number of reads at the ENST-
00000421244 locus showed that our algorithm was able to
successfully reassign reads to the correct region.
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ENST00000421244 PGOHUM00000248578 

PseudoLasso 

TopHat2 

Location 11:46369137-46401497 13:44542559-44545332 

Experiment TopHat2 PseudoLasso TopHat2 PseudoLasso 

Expected Count  1366 1366 0 0 

Expected FPKM  624 624 0 0 

Reported Count  118 297 1356 333 

Reported FPKM 343 582 2407 698 

Figure 5: Comparing the FPKM and fragment counts reported by Cu✏ink with TopHat2 and PseudoLasso.
Reads are simulated from the DGKZ transcript (ENST00000421244) only. TopHat2 aligns most of the reads
to it pseudogene, PGOHUM0000024857, whereas PseudoLasso is able to correctly reassign reads back to its
origin.
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Figure 6: The average error rate of prediction is
plotted against di↵erent number of replicates for
two gene sets. The error rate (y-axis) is in loga-
rithmic scale of base 10. As we increase the number
of replicates (x-axis), we see a sharp decrease at 2
replicates, and a stable pattern after 5 replicates.
Standard deviations are shown from 6 validations.

4.2 Replicates Determination
In order to scale up our approach to model more homolo-

gous genes, we used two small gene sets (128 and 324 gene
sets) to determine the number of replicates that was su�-
cient for training. Six replicates with deep sequencing (30X)
were used for validation, and the remaining 54 replicates
were randomly selected for training. Figure 6 showed that
the average error rate dropped dramatically after 2 repli-
cates, and reached a plateau at 5 replicates. The standard
deviations among the 6 validation sets are displayed.

4.3 Results from 1658 Gene Set

Table 3: Prediction Error for 1658 Gene Set
Data Set Overall Error Dependency < 98%

Validation 1 1.05E-02 7.80E-03
Validation 2 9.94E-03 7.21E-03
Validation 3 1.04E-02 7.74E-03
Validation 4 1.10E-02 5.68E-03
Validation 5 8.89E-03 7.24E-03
Validation 6 1.23E-02 8.68E-03

We used 5 replicates to model the alignment behavior for
the 1658 gene set. Five replicates were randomly selected
from the data pool for training, and additional 6 replicates
were selected for validation. We compared the estimated
fragment count with the expected number of fragments for
these 1658 genes. Table 3 showed that the overall errors were
below 1.3% for all validations. Among these 1658 genes,
there were 11 genes with a likelihood of dependency greater
than 98%, which reflects a low confidence on their coe�-
cients estimated by the model. After filtering out these 11
genes, the relative errors dropped below 1% as indicated in
Table 3.

We used a subset of genes to demonstrate our fragment
count estimation in detail in Tables 4 and 5. Genes with
a low likelihood of dependency were accurately predicted
across all validation data sets, with errors smaller than 1.34E�
03. On the other hand, the predictions for genes with a high
likelihood of dependency (> 98%) were inconsistent among
data sets, and tended to present a high error rate (> 30%).

We further compared the errors of fragment count at each
locus between TopHat2 and our approach after read assign-
ment. Table 6 showed that our approach performed better
than TopHat2 in terms of aligning reads to the correct loci.
After removing the genes with a high likelihood of depen-
dency, the error rate was reduced by 10-fold with our ap-
proach compared to TopHat2. As demonstrated in Table 7,
the fragment count reported by TopHat2 were higher than
expected for pseudogene and lower than the true count for
parent genes. It was prone to aligning reads from parents
to their homologous pseudogenes. On the contrary, our ap-
proach was able to correctly align reads among homologous
loci.
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Table 4: Model Validation for Genes with Low Dependency
Gene Name ENSG00000023287 ENSG00000034713 ENSG00000064309
Dependency2 0.0013 0.0013 0.0013

Truth3 Pred4 Err5 Truth Pred Err Truth Pred Err
Validation 1 3268.00 3268.05 1.51E-05 510.00 510.05 1.04E-04 4978.00 4978.04 8.11E-06
Validation 2 4872 .00 4872.07 1.51E-05 766.00 766.08 1.04E-04 7495 .00 7495.06 8.11E-06
Validation 3 6120.00 6120.09 1.51E-05 977.00 977.10 1.04E-04 9935.00 9935.08 8.11E-06
Validation 4 12536.00 12536.19 1.51E-05 2097.00 2097.22 1.04E-04 13088.00 13088.11 8.11E-06
Validation 5 11699.00 11699.17 1.51E-05 368.00 368.04 1.04E-04 16817.00 16817.14 8.11E-06
Validation 6 14960.00 14960.23 1.51E-05 617.00 617.06 1.34E-03 14801.00 14801.12 8.11E-06

Table 5: Model Validation for Genes with High Dependency
Gene Name ENSG00000176269 PGOHUM00000241986 PGOHUM00000241985 PGOHUM00000263400
Dependency 0.9884 0.9998 0.9998 0.9819

Truth Pred Err Truth Pred Err Truth Pred Err Truth Pred Err
Validation 1 459 400.60 0.13 123.00 0 1.00 122.00 245.17 1.01 159.00 325.32 1.05
Validation 2 705 817.00 0.16 172.00 0 1.00 182.00 351.11 0.93 241.00 461.56 0.92
Validation 3 856 1009.31 0.18 199.00 405.61 1.04 205.00 0 1.00 319.00 619.80 0.94
Validation 4 1823 1844.00 0.01 276.00 0 1.00 388.00 665.90 0.72 382.00 932.18 1.44
Validation 5 2211 2429.68 0.10 575.00 619.72 0.08 92.00 48.46 0.47 503.00 945.47 0.88
Validation 6 1211 1298.88 0.07 567.00 0 1.00 169.00 739.55 3.38 482.00 593.30 0.23

5. DISCUSSION AND CONCLUSION
Pseudogenes quantification remains challenging due to the

high sequence similarity with their parent genes. Coupling
with RNASeq technology for expression profiling, a short
read sequence with low complexity may align to multiple
places. Current approaches only focus on resolving the mul-
tiple mapping problem, either neglecting the multireads or
assigning them to the best place based on the local cover-
age. Nevertheless, none of them considered the alignment
relationship between homologous loci nor attempted to cor-
rect the falsely aligned reads.

In this article, we present PseudoLasso, a genome-wide
approach to correct read alignment among homologous loci,
specifically for pseudogenes and their parents. Given a list
of gene of interests, PseudoLasso simulates reads for these
genes, and constructs a model that describes the mapping
behavior (pseudo matrix) of an aligner, e.g.TopHat2, and a
vector of weight for each loci contributing to the abundance
estimation (� coe�cients). Applying the trained model to
real data, PseudoLasso reconstructs the read distribution
matrix and estimates the gene expression abundance, which
further serves as a guideline to select multireads and realign
excess reads from homologous loci.

In the e↵ort to correctly assign reads for pseudogenes and
their homologous parents, we trained a model on a subset
of pseudogenes and their parents. We used 100bp paired-
end reads to learn the alignment behavior of TopHat2. The
results showed that this approach was able to estimate the
abundance with high accuracy, and assign reads to the best
locus to meet the estimated abundance.

The alignment behavior is sensitive to read length, and
thus a new training is required for a di↵erent read length.
Currently, many well-studied publicly available RNASeq data
are generated with read length of 50bp and 75bp. Therefore,

2Likelihood of dependency
3The expected number of fragment count
4Estimated fragment count
5Relative error

we plan on training a new model using 75bp short reads, and
evaluate the pseudogene expression on the Human Body
Map 2.0 Project (NCBI GEO accession GSE30611). Our
approach can be extended to model all homologous regions
across the entire genome, not just limited to the pseudo-
genes and their parents. In the future, to accommodate for
the large amounts of data, we plan on storing the sparse
matrices in a compressed format to facilitate computation.
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