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Introduction: Polyhedral Compilation Classes

Overview

Vectorization:
I Detection of parallel loops

I Vectorization in Pluto

I Vectorization in PoCC
I Alignment issues
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Vectorization: Polyhedral Compilation Classes

Vectorization

Pre-transformation
I Exhibit inner-most parallel loops
I Ensure (if needed) stride-1 access
I Peel/shift for better alignment

Code generation
I Generate vector instruction for vectorizable loops
I Hardware considerations:

I Speed of different instructions
I Alignment constraints
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Vectorization: Polyhedral Compilation Classes

Vectorization in the Polyhedral Model

Main consideration: pre-transformation
I Find a transformation (scheduling) for inner parallelism
I Complete the transformation for alignment

I Detection vs. transformations
I Detect a loop is parallel, permutable, aligned, etc.
I Transform: move parallel loops inwards, create parallel dimensions
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Affine Scheduling: Polyhedral Compilation Classes

Affine Scheduling

Definition (Affine schedule)

Given a statement S, a p-dimensional affine schedule ΘR is an affine form on
the outer loop iterators~xS and the global parameters~n. It is written:

Θ
S(~xS) = TS

~xS
~n
1

 , TS ∈Kp×dim(~xS)+dim(~n)+1

I A schedule assigns a timestamp to each executed instance of a
statement

I If T is a vector, then Θ is a one-dimensional schedule
I If T is a matrix, then Θ is a multidimensional schedule
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Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)
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Affine Scheduling: Polyhedral Compilation Classes
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Affine Scheduling: Polyhedral Compilation Classes
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Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Distribute loops

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
for (k = 0; k < n; ++k)
C[i-n][j] += A[i-n][k]*

B[k][j];

I All instances of S1 are executed before the first S2 instance
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Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Distribute loops + Interchange loops for S2

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I The outer-most loop for S2 becomes k
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Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Illegal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (k = 0; k < n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k]*

B[k][j];
for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i-n][j] = 0;

I All instances of S1 are executed after the last S2 instance
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Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

A legal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

I Delay the S2 instances
I Constraints must be expressed between ΘS1 and ΘS2
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Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Implicit fine-grain parallelism

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 = ( 1 0 0 0 ) .

 i
j
n
1



Θ
S2.~xS2 = ( 0 0 1 1 0 ) .


i
j
k
n
1



for (i = 0; i < n; ++i)
pfor (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
pfor (j = 0; j < n; ++j)

pfor (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I Number of rows of Θ ↔ number of outer-most sequential loops

OSU 13



Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

( 1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

( 1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

( i j i j k n n 1 1 )T

~p
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Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

( 1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

( 1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

( i j i j k n n 1 1 )T

0 0

~ı

0 0 0

~p

0

c

0
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Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

( 1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Transformation Description

~ı
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

~p fusion Fuses two loops, a.k.a. jamming
distribution Splits a single loop nest into many, a.k.a. fission or splitting

c peeling Extracts one iteration of a given loop
shifting Allows to reorder loops
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Affine Scheduling: Polyhedral Compilation Classes

Pictured Example

Example of 2 extended dependence graphs
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Affine Scheduling: Polyhedral Compilation Classes

Checking the Legality of a Schedule
Exercise: given the dependence polyhedra, check if a schedule is legal

D1 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1

 D2 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1


1 Θ = i
2 Θ =−i

Solution: check for the emptiness of the polyhedron

P :
[

D
iS � i′S

]
.


iS
i′S
n
1


where:

I iS � i′S gets the consumer instances scheduled after the producer ones
I For Θ =−i, it is −iS �−i′S, which is non-empty
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Affine Scheduling: Polyhedral Compilation Classes

Detecting Parallel Dimensions

Exercise:
Write an algorithm which detects if an inner-most loop is parallel
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Affine Scheduling: Polyhedral Compilation Classes

Limitation of Operating on Dimensions

I As soon as there is one non-parallel iteration, the dimension is not
parallel

I Fusion/distribution impacts parallelism
I After fusion/distribution:

I On the generated code, some inner loop may be parallel
I The schedule for the program may not show the whole dimension as

parallel

Exercise: Find a program where all schedule dimensions are
sequential, but there are inner-most parallel loops
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Pre-Vectorization in the Polyhedral Model: Polyhedral Compilation Classes

Pluto’s Approach for Pre-Vectorization

1 Maximize the number of outer-most parallel/permutable dimension
2 An outer parallel dimension can be moved inwards
3 Proceed from the inner-most dimension, push inwards the "closest"

parallel dimension

4 Missing considerations:
I Alignment / stride-1 is not considered
I Unable to model partially parallel dimensions (eg, those parallel only for

some loop nests and not all)
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Pre-Vectorization in the Polyhedral Model: Polyhedral Compilation Classes

PoCC’s Approach for Pre-Vectorization

Very simple: decouple the problem
I Let Pluto transform the code for tiling, parallelism, etc.
I Generate the transformed code
I Re-analyze the transformed code, to extract its polyhedral

representation
I Operate on each loop nest individually

I Not limited to have a full dimension as parallel (local to a loop nest now)
I Simple model to detect parallel loops with good alignment
I Different cost models can be used
I Possible pre-transformations for vectorization:

I All of them!
I However, limit to shift+peel+permute
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Pre-Vectorization in the Polyhedral Model: Polyhedral Compilation Classes

Stride-1 Access

Definition (Data Distance Vector between two references)

Consider two access functions f 1
A and f 2

A to the same array A of dimension n.
Let ı and ı′ be two iterations of the innermost loop. The data distance vector
is defined as an n-dimensional vector δ(ı, ı′)f 1

A ,f 2
A

= f 1
A(ı)− f 2

A(ı′).

Definition (Stride-one memory access for an access function)

Consider an access function fA surrounded by an innermost loop. It has
stride-one access if ∀ı, δ(ı, ı+1)fA,fA = (0, . . . ,0,1).
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Pre-Vectorization in the Polyhedral Model: Polyhedral Compilation Classes

Detecting Stride-1 Access

Exercise:
Write an algorithm which detects if an inner-most loop has stride-1

access for all memory references
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