Vectorization in the Polyhedral Model

Louis-Noél Pouchet

pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

October 2010

888.11

OHIO
SIATE

UNIVERSITY

Introduction:

Polyhedral Compilation Classes

Overview

Vectorization:
» Detection of parallel loops

» Vectorization in Pluto

» Vectorization in PoCC
> Alignment issues

osu

Vectorization:

Polyhedral Compilation Classes

Vectorization

Pre-transformation
» Exhibit inner-most parallel loops
» Ensure (if needed) stride-1 access
> Peel/shift for better alignment

Code generation
» Generate vector instruction for vectorizable loops

» Hardware considerations:

» Speed of different instructions
> Alignment constraints

osu

Vectorization: Polyhedral Compilation Classes

Vectorization in the Polyhedral Model

Main consideration: pre-transformation
» Find a transformation (scheduling) for inner parallelism
» Complete the transformation for alignment

» Detection vs. transformations

> Detect a loop is parallel, permutable, aligned, etc.
» Transform: move parallel loops inwards, create parallel dimensions

osu 4

Affine Scheduling: Polyhedral Compilation Classes

Affine Scheduling

Definition (Affine schedule)

Given a statement S, a p-dimensional affine schedule ®% is an affine form on
the outer loop iterators X5 and the global parameters 7. It is written:
X
@S(}S) =Ts| 7|, Tse prdim(?v's)+dim(7l)+l
1

o5}

» A schedule assigns a timestamp to each executed instance of a
statement

» If T is a vector, then ® is a one-dimensional schedule
» If T is a matrix, then ® is a multidimensional schedule

osu

Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Original Schedule

i
for (i = 0; i < n; ++i) 5! }“:(l 00 O) j for (i = 0; i < n; ++i)
for (j = 0; j < n; ++3){ o 100/ |n for (j =0; j < n; ++j){
S1: Cc[i1[3]1 = O; 1 C[il[3]1 = 0;
for (k = 0; k < n; ++k) for (k = 0; k < n; ++k)
S2: CLil[3] += A[i] [k]* i Clil[3]1 += A[i][k]l*
B[k][31; 10000 j B[k][3j1;
} ®52xsz:<0 100 0>4 k)
00100 n
1

» Represent Static Control Parts (control flow and dependences must be
statically computable)

» Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

osu 6

Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Original Schedule

i
for (i = 0; i < n; ++i) o' }“:(l 00 O) j for (i = 0; i < n; ++i)
for (j = 0; j < n; ++3){ o 100/ |n for (j =0; j < n; ++j){
S1: Cc[i1[3]1 = O; 1 C[il[3]1 = 0;
for (k = 0; k < n; ++k) for (k = 0; k < n; ++k)
S2: CLil[3] += A[i] [k]* i Clil[3]1 += A[i][k]l*
B[k][31; 10000 j B[k][3j1;
} ®52xsz:<0 100 0>4 Kk)
00100 n
1

» Represent Static Control Parts (control flow and dependences must be
statically computable)

» Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

osu 7

Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Original Schedule

i
for (i = 0; i < n; ++i) o' }“:(l 00 O) j for (i = 0; i < n; ++i)
for (j = 0; j < n; ++3){ o 100/ |n for (j =0; j < n; ++j){
S1: Cc[i1[3]1 = O; 1 C[il[3]1 = 0;
for (k = 0; k < n; ++k) for (k = 0; k < n; ++k)
S2: CLil[3] += A[i] [k]* i Clil[3]1 += A[i][k]l*
B[k][31; 10000 j B[k][3j1;
} ®52xsz:<0 100 0>4 k)
00100 n
1

» Represent Static Control Parts (control flow and dependences must be
statically computable)

» Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

osu 8

Affine Scheduling:

Polyhedral Compilation Classes

Program Transformations

S2: C[i][3] +=

; k < n;

i ++i)
++3) {
++k)

A[i] [k]*
B[k][31;

Distribute loops

— P e e

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++3j)
Clil[3]1 = 0;

for (i = n; i < 2'n; ++i)
for (j = 0; j < n; ++j)

for (k = 0; k < n; ++k)
C[i-n][j] += A[i-n] [k]=
B[k][31;

» All instances of S1 are executed before the first S2 instance

osu

Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Distribute loops + Interchange loops for S2

i
for (i = 0; i < n; ++i) o5 3 7(1 00 o> i for (L = 0; i <nj ++i)
for (j = 0; 3 < n; ++3){ 1= 0100/ |n fOr-(j-=0;j<n; ++3)

s1: c[i]l[j]1 = O; 1 C[i][3j]1 = O;

for (k = 0; k < n; ++k) f<f>r (lz = ni) k_<<2*n;+:fl)<)
or J= ;] n; J

S2: C[il[3] += A[i][k]* i)))
Blk][3]; 00110 j for (i = 0; i < n; ++i)
3=(01000). |k C[i][3] += A[i][k-n]«
} 10000 n B[k-n] [j];

1

» The outer-most loop for S2 becomes &

osu 10

Affine Scheduling:

Polyhedral Compilation Classes

Program Transformations

S2: C[i][3] +=

; ++i)
i 3L
k < n; ++k)

A[i] [k]~
B[k1[31;

lllegal schedule

=D e e

- R e e

for (k = 0; k < n; ++k)

for (j = 0; j < n; ++3j)
for (i = 0; i < n; ++i)
Clil[3]1 += A[i][k]~*
B[k]I[31;
for (i = n; i < 2%n; ++i)
for (j = 0; j < n; ++3j)

Cli-n][3j] = O;

» All instances of S1 are executed after the last S2 instance

osu

Affine Scheduling:

Polyhedral Compilation Classes

Program Transformations

for (i = 0; i < n;
for (j = 0;
S1: C[i][3] =

0;
for (k = 0; k < n;

C[i]1[3]1 += A[i][k]*
B[k]1[31;

S2:

» Delay the S2 instances

A legal schedule

+4+i)
j < n; ++3){

++k)

- R e e

for (i = n; i < 2%n; ++i)
for (j = 0; J < n; ++j)
C[i][3]1 = 0O;
for (k= n+1;
for (j = 0;
for (i =

k<= 2xn; ++k)
j < n; ++3)
0; i < n; ++i)
C[i][3j] += A[i] [k-n-1]%*
B[k-n-1][3]1;

» Constraints must be expressed between ®%! and @52

Affine Scheduling: Polyhedral Compilation Classes

Program Transformations

Implicit fine-grain parallelism

1
for (i = 0; i < n; ++i) sl j for (i = 0; i <n; ++i)
for (3=0; 3 <n; ++3y(| © F=(1000)7 p?;iij[j? 0 3 < mi 443
S1: C[i][3] = 0; 1 -
for (k = 0; k < n; +tk) for (k = n; k < 2#n; ++k)

pfor (j = 0; j < n; ++J)
pfor (i = 0; i < n; ++i)
C[il[3]1 += A[i] [k-n]~*
B[k-n] [3];

S2: C[il[3j] += A[i][k]*
B[k][]jl;
023 =(00110).

- R e .

» Number of rows of ® <~ number of outer-most sequential loops

osu 13

Affine Scheduling: Polyhedral Compilation Classes

Program Transformations
Representing a schedule

for (i = 0; i < n; ++i)

; 651}1:(1 01 0) for (i = n; i < 2%n; ++i)
for (j = 0; j < n; ++3j){ =0 100/

1
. for (3 = 0; 3 < n; ++3)
) CLilT31 = 0;

for (k = 0; k < n; ++k) for (k= n+l; k<= 2xn; ++k)
S2: C[il[3j] += A[i][k]* i for (j = 0; 3 < n; ++3j)
B[k1[3]; 00111 j for (i = 0; i < n; ++i)
) ®525csz:<0 1000).|k CIil3]1 += A[i] [k-n-11+
10000 n B[k-n-1]1[3]1;
1

osu

Affine Scheduling: Polyhedral Compilation Classes

Program Transformations
Representing a schedule

for (i = 0; i < n; ++i)

; 651}1:(1 01 0) for (i = n; i < 2%n; ++i)
for (j = 0; j < n; ++3j){ =0 100/

1
. for (3 = 0; 3 < n; ++3)
) CLilT31 = 0;

for (k = 0; k < n; ++k) for (k= n+l; k<= 2xn; ++k)
S2: C[il[3j] += A[i][k]* i for (j = 0; 3 < n; ++3j)
B[k1[3]; 00111 j for (i = 0; i < n; ++i)
) ®525csz:<0 1000).|k CIil3]1 += A[i] [k-n-11+
10000 n B[k-n-1]1[3]1;
1

1
0>.(ijijknnll)T
0 7 ¢

osu

Affine Scheduling:

Polyhedral Compilation Classes

Program Transformations

Representing a schedule

i
for (i = i < n; ++i) P :(1 01 0) j for (i.= n; i.< 2%n; +1.-i)
for (j = 0; < n; ++j){ st 0100/ |n for (j = 0; J < nj ++J)
s1: C[i][3] = O; 1 CIil[3] = 0;
for (k 0; k < n; ++k) for (k= n+l; k<= 2xn; ++k)
S2: C[il[j] += A[i][k]* i for (j = 0; j < n; ++j)
B[k1[3]; 00111 j for (i = 0; i < n; ++i)
®52xsz:<o 100 o>4 Kk CLi1[3] += A[i][k-n-1]«
' 10000 n B[k-n-1][]j];
1
Transformation Description
reversal Changes the direction in which a loop traverses its iteration range
7 skewing Makes the bounds of a given loop depend on an outer loop counter
interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation
5 fusion Fuses two loops, a.k.a. jamming
I distribution Splits a single loop nest into many, a.k.a. fission or splitting
¢ peeling Extracts one iteration of a given loop
shifting Allows to reorder loops

osu

Affine Scheduling: Polyhedral Compilation Classes
g

Pictured Example

1 2
No - 9—=>0—>0—>0—0 N4
o e—>e—>0—>0—>e S
34 9—=>0—=>0—>0—>0 : 3
24 9—=>0—=>0—=>0—>0 . 24 -
14 9—=>0—=>0—=>0—>0 14

T T T T T T T T T T T T

0 1 2 3 ----- N J 0 1 2 3 .- N J

Example of 2 extended dependence graphs

osu 17

Affine Scheduling: Polyhedral Compilation Classes

Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal

1 1 0 0 -1 1 10 0 -1

1 -1 0 1 -1 o 1 -1 0 1 -1 o
. 1 0 1 0 1 s . 1 0 1 0 1 s

Dzl v o 21 1 o |- Dl v o 21 1 - s
0o 1 -1 o0 1 ’1’ 0o 1 -1 0 1 ’1’
1 -1 10 -1 1 -1 1 0 -1

Q 0=

Q O=—

osu 18

Affine Scheduling:

Polyhedral Compilation Classes

osu

Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal

1 0 0 -1

1

1
—1
0
0
1
-1

1
1 -1 0 1 -l t;q 1
1o 1 0 1 - !
2 T R T S B I Do |
0 1 -1 0 1 | 0
1 -1 1 0 -1 1
Q0=
Q@ 0=—i
Solution: check for the emptiness of the polyhedron
is
D i
i5>-ifg n
1

where:

0

SO~ O =

~1
~1 ¢4
is
0 i
n
O i

> is > i gets the consumer instances scheduled after the producer ones

» For® = —i, itis —ig > —ig, which is non-empty

Affine Scheduling: Polyhedral Compilation Classes

Detecting Parallel Dimensions

Exercise:
Write an algorithm which detects if an inner-most loop is parallel

osu 20

Affine Scheduling: Polyhedral Compilation Classes

Limitation of Operating on Dimensions

» As soon as there is one non-parallel iteration, the dimension is not
parallel

» Fusion/distribution impacts parallelism

> After fusion/distribution:

> On the generated code, some inner loop may be parallel

> The schedule for the program may not show the whole dimension as
parallel

Exercise: Find a program where all schedule dimensions are
sequential, but there are inner-most parallel loops

osu 21

Pre-Vectorization in the Polyhedral Model: Polyhedral Compilation Classes

Pluto’s Approach for Pre-Vectorization

@ Maximize the number of outer-most parallel/permutable dimension
@ An outer parallel dimension can be moved inwards

@ Proceed from the inner-most dimension, push inwards the "closest"
parallel dimension

© Missing considerations:
> Alignment / stride-1 is not considered
» Unable to model partially parallel dimensions (eg, those parallel only for
some loop nests and not all)

osu 22

Pre-Vectorization in the Polyhedral Model: Polyhedral Compilation Classes

PoCC’s Approach for Pre-Vectorization

Very simple: decouple the problem
» Let Pluto transform the code for tiling, parallelism, etc.
» Generate the transformed code

» Re-analyze the transformed code, to extract its polyhedral
representation

» Operate on each loop nest individually

Not limited to have a full dimension as parallel (local to a loop nest now)

Simple model to detect parallel loops with good alignment
Different cost models can be used
Possible pre-transformations for vectorization:

> All of them!

> However, limit to shift+peel+permute

vyvyVvYyYy

osu 23

Pre-Vectorization in the Polyhedral Model: Polyhedral Compilation Classes

Stride-1 Access

Definition (Data Distance Vector between two references)

Consider two access functionsff} and fj to the same array A of dimension n.
Let and « be two iterations of the innermost loop. The data distance vector
is defined as an n-dimensional vector 8(1,1/) 1 -2 =fi() —f3(v).

Definition (Stride-one memory access for an access function)

Consider an access function f4 surrounded by an innermost loop. It has
stride-one access if V1, 8(1,1 4 1)z, r, = (0,...,0,1).

osu 24

Pre-Vectorization in the Polyhedral Model: Polyhedral Compilation Classes

Detecting Stride-1 Access

Exercise:
Write an algorithm which detects if an inner-most loop has stride-1
access for all memory references

osu 25

	Introduction
	Vectorization
	Affine Scheduling
	Pre-Vectorization in the Polyhedral Model

