Vectorization in the Polyhedral Model

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University
October 2010
888.11

Overview

Vectorization:

- Detection of parallel loops
- Vectorization in Pluto
- Vectorization in PoCC
- Alignment issues

Vectorization

Pre-transformation

- Exhibit inner-most parallel loops
- Ensure (if needed) stride-1 access
- Peel/shift for better alignment

Code generation

- Generate vector instruction for vectorizable loops
- Hardware considerations:
- Speed of different instructions
- Alignment constraints

Vectorization in the Polyhedral Model

Main consideration: pre-transformation

- Find a transformation (scheduling) for inner parallelism
- Complete the transformation for alignment
- Detection vs. transformations
- Detect a loop is parallel, permutable, aligned, etc.
- Transform: move parallel loops inwards, create parallel dimensions

Affine Scheduling

Definition (Affine schedule)

Given a statement S, a p-dimensional affine schedule Θ^{R} is an affine form on the outer loop iterators \vec{x}_{S} and the global parameters \vec{n}. It is written:

$$
\Theta^{S}\left(\vec{x}_{S}\right)=\mathbf{T}_{S}\left(\begin{array}{c}
\vec{x}_{S} \\
\vec{n} \\
1
\end{array}\right), \quad \mathbf{T}_{S} \in \mathbb{K}^{p \times \operatorname{dim}\left(\vec{x}_{S}\right)+\operatorname{dim}(\vec{n})+1}
$$

- A schedule assigns a timestamp to each executed instance of a statement
- If T is a vector, then Θ is a one-dimensional schedule
- If T is a matrix, then Θ is a multidimensional schedule

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Distribute loops

- All instances of S1 are executed before the first S2 instance

Program Transformations

Distribute loops + Interchange loops for S2

- The outer-most loop for $\mathbf{S} \mathbf{2}$ becomes k

Program Transformations

Illegal schedule

- All instances of S1 are executed after the last S2 instance

Program Transformations

A legal schedule

- Delay the $\mathbf{S} 2$ instances
- Constraints must be expressed between $\Theta^{S 1}$ and $\Theta^{S 2}$

Program Transformations

Implicit fine-grain parallelism

```for (i = 0; i < n; ++i) for (j = 0; j < n; ++j) { S1:C[i][j] = 0; for (k = 0; k < n; ++k)```	$\Theta^{S 1} \cdot \vec{x}_{S 1}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right) \cdot\left(\begin{array}{l}\mathbf{i} \\ \mathbf{j} \\ \mathbf{n} \\ \mathbf{1}\end{array}\right)$	for ( $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n} ; \quad+\mathrm{i}$ ) pfor ( $\mathrm{j}=0$; $\mathrm{j}<\mathrm{n}$; ++j) C[i][j] = 0;   for ( $k=n$; $k<2 * n ;++k)$
$\text { S2: } \begin{aligned} C[i][j] & +=A[i][k] * \\ & B[k][j] ; \end{aligned}$	$\Theta^{s 2} \cdot \vec{x}_{S 2}=\left(\begin{array}{lllll} 0 & 0 & 1 & 1 & 0 \end{array}\right) \cdot\left(\begin{array}{l} \mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{n} \\ \mathbf{1} \end{array}\right)$	$\begin{aligned} & \text { pfor }(j=0 ; j<n ;++j) \\ &\text { pfor (i }=0 ; i<n ;++i) \\ & C[i][j]+=A[i][k-n] * \\ & B[k-n][j] ; \end{aligned}$

- Number of rows of $\Theta \leftrightarrow$ number of outer-most sequential loops


## Program Transformations

Representing a schedule

$$
\begin{aligned}
& \Theta \cdot \vec{x}=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{llllllll}
i & j & i & j & k & n & n & 1
\end{array} 1\right)^{T}
\end{aligned}
$$

## Program Transformations

Representing a schedule

$$
\begin{aligned}
& \Theta \cdot \vec{x}=\left(\begin{array}{lllllllll}
\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} & 0 & \mathbf{0} & 0 & \mathbf{0}
\end{array}\right) \cdot\left(\begin{array}{llllllll}
\mathbf{i} & \mathbf{j} & \mathbf{i} & \mathbf{j} & \mathrm{k} & \mathrm{n} & \mathrm{n} & \mathbf{1} \\
& \mathbf{l} & \mathbf{l} \\
& \vec{l} & & \vec{p} & \mathbf{c}
\end{array}\right)^{T}
\end{aligned}
$$

## Program Transformations

Representing a schedule

```
for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j){
S1: C[i][j] = 0;
 for (k = 0; k < n; ++k)
S2: C[i][j] += A[i][k]*
 B[k][j];
 }
```

$\Theta^{S 1} \cdot \vec{x}_{S 1}=\left(\begin{array}{llll}\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & 0 & \mathbf{0}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathrm{n} \\ \mathbf{1}\end{array}\right)$
$\Theta^{S 2} \cdot \vec{x}_{S 2}=\left(\begin{array}{ccccc}\mathbf{0} & \mathbf{0} & \mathbf{1} & 1 & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & 0 & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & 0 & \mathbf{0}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathrm{n} \\ \mathbf{1}\end{array}\right)$

```
for (i = n; i < 2*n; ++i)
 for (j = 0; j < n; ++j)
 C[i][j] = 0;
 for (k= n+1; k<= 2*n; ++k)
 for (j = 0; j < n; ++j)
 for (i = 0; i < n; ++i)
 C[i][j] += A[i][k-n-1]*
 B[k-n-1][j];
```

	Transformation	Description
$\vec{l}$	reversal	Changes the direction in which a loop traverses its iteration range
	skewing	Makes the bounds of a given loop depend on an outer loop counter
	interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation
$\vec{p}$	fusion	Fuses two loops, a.k.a. jamming
	distribution	Splits a single loop nest into many, a.k.a. fission or splitting
$c$	peeling	Extracts one iteration of a given loop
	shifting	Allows to reorder loops

## Pictured Example



Example of 2 extended dependence graphs

## Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal
$\mathcal{D}_{1}:\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & -1\end{array}\right] \cdot\left(\begin{array}{c}e q \\ i_{S} \\ i_{S}^{\prime} \\ n \\ 1\end{array}\right) \quad \mathcal{D}_{2}:\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & -1\end{array}\right] \cdot\left(\begin{array}{l}e q \\ i_{S} \\ i_{S}^{\prime} \\ n \\ 1\end{array}\right)$
(ㄷ) $\Theta=i$
(2) $\Theta=-i$

## Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal
$\mathcal{D}_{1}:\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & -1\end{array}\right] \cdot\left(\begin{array}{c}e q \\ i_{S} \\ i_{S}^{\prime} \\ n \\ 1\end{array}\right) \quad \mathcal{D}_{2}:\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & -1\end{array}\right] \cdot\left(\begin{array}{l}e q \\ i_{s} \\ i_{S}^{\prime} \\ n \\ 1\end{array}\right)$
(1) $\Theta=i$
(2) $\Theta=-i$

Solution: check for the emptiness of the polyhedron

$$
\mathcal{P}:\left[\begin{array}{c}
\mathcal{D} \\
i_{S} \succ i_{S}^{\prime}
\end{array}\right] \cdot\left(\begin{array}{c}
i_{S} \\
i_{S}^{\prime} \\
n \\
1
\end{array}\right)
$$

where:

- $i_{S} \succ i_{S}^{\prime}$ gets the consumer instances scheduled after the producer ones
- For $\Theta=-i$, it is $-i_{S} \succ-i_{S}^{\prime}$, which is non-empty


## Detecting Parallel Dimensions

## Exercise:

Write an algorithm which detects if an inner-most loop is parallel

## Limitation of Operating on Dimensions

- As soon as there is one non-parallel iteration, the dimension is not parallel
- Fusion/distribution impacts parallelism
- After fusion/distribution:
- On the generated code, some inner loop may be parallel
- The schedule for the program may not show the whole dimension as parallel

Exercise: Find a program where all schedule dimensions are sequential, but there are inner-most parallel loops

## Pluto's Approach for Pre-Vectorization

(1) Maximize the number of outer-most parallel/permutable dimension
(2) An outer parallel dimension can be moved inwards
(0) Proceed from the inner-most dimension, push inwards the "closest" parallel dimension
(9) Missing considerations:

- Alignment / stride-1 is not considered
- Unable to model partially parallel dimensions (eg, those parallel only for some loop nests and not all)


## PoCC's Approach for Pre-Vectorization

Very simple: decouple the problem

- Let Pluto transform the code for tiling, parallelism, etc.
- Generate the transformed code
- Re-analyze the transformed code, to extract its polyhedral representation
- Operate on each loop nest individually
- Not limited to have a full dimension as parallel (local to a loop nest now)
- Simple model to detect parallel loops with good alignment
- Different cost models can be used
- Possible pre-transformations for vectorization:
- All of them!
- However, limit to shift+peel+permute


## Stride-1 Access

## Definition (Data Distance Vector between two references)

Consider two access functions $f_{A}^{1}$ and $f_{A}^{2}$ to the same array A of dimension $n$. Let $l$ and $l \prime$ be two iterations of the innermost loop. The data distance vector is defined as an n -dimensional vector $\delta(\imath, l \prime)_{f_{A}^{1}, f_{A}^{2}}=f_{A}^{1}(l)-f_{A}^{2}(\iota \prime)$.

## Definition (Stride-one memory access for an access function)

Consider an access function $f_{A}$ surrounded by an innermost loop. It has stride-one access if $\forall t, \delta(t, t+1)_{f_{A}, f_{A}}=(0, \ldots, 0,1)$.

## Detecting Stride-1 Access

## Exercise:

Write an algorithm which detects if an inner-most loop has stride-1 access for all memory references

