Vectorization in the Polyhedral Model

Louis-Noël Pouchet

pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

October 2010

888.11

Overview

Vectorization:

- Detection of parallel loops
- Vectorization in Pluto
- Vectorization in PoCC
- Alignment issues

Vectorization

Pre-transformation

- Exhibit inner-most parallel loops
- Ensure (if needed) stride-1 access
- Peel/shift for better alignment

Code generation

- Generate vector instruction for vectorizable loops
- Hardware considerations:
 - Speed of different instructions
 - Alignment constraints

Vectorization in the Polyhedral Model

Main consideration: pre-transformation

- Find a transformation (scheduling) for inner parallelism
- Complete the transformation for alignment
- Detection vs. transformations
 - Detect a loop is parallel, permutable, aligned, etc.
 - Transform: move parallel loops inwards, create parallel dimensions

Affine Scheduling

Definition (Affine schedule)

Given a statement *S*, a *p*-dimensional affine schedule Θ^R is an affine form on the outer loop iterators \vec{x}_S and the global parameters \vec{n} . It is written:

$$\Theta^{S}(\vec{x}_{S}) = \mathbf{T}_{S}\begin{pmatrix} \vec{x}_{S} \\ \vec{n} \\ 1 \end{pmatrix}, \quad \mathbf{T}_{S} \in \mathbb{K}^{p \times dim(\vec{x}_{S}) + dim(\vec{n}) + 1}$$

A schedule assigns a timestamp to each executed instance of a statement

- If T is a vector, then Θ is a one-dimensional schedule
- If T is a matrix, then Θ is a multidimensional schedule

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Original Schedule

$$\begin{array}{c} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ \text{S2: } C[i][j] \ += A[i][k] \\ \mathbb{B}[k][j]; \\ \end{array} \\ \left\{ \begin{array}{c} \Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} i \\ n \\ 1 \end{pmatrix} \\ \end{array} \right\} \\ \end{array} \\ \left\{ \begin{array}{c} \Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \left\{ \begin{array}{c} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++k) \\ C[i][j] \ = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ C[i][j] \ += A[i][k] \\ \mathbb{B}[k][j]; \\ \mathbb{B}[k][j]; \\ \end{array} \right\} \\ \end{array} \right\}$$

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Distribute loops

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += \mathbf{A}[i][k] * \\ B[k][j]; \\ \end{cases} \\ \Theta^{S2}.\vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} . \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{c[i][j] = 0; } \\ \text{for } (i = n; i < 2^{n}; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (i = n; i < 2^{n}; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (k = 0; k < n; ++k) \\ \text{c[i-n][j] += A[in][k] * \\ B[k][j]; \end{cases}$$

ī.

All instances of S1 are executed before the first S2 instance

Distribute loops + Interchange loops for S2

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += A[i][k] * \\ B[k][j]; \\ \end{cases} \\ \Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \text{for } (i = 0; i < n; ++i) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (i = 0; i < n; ++j) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (i = 0; i < n; ++j) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (i = 0; i < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ C[i][j] = 0; \\ \text{for } (i = 0; i < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ C[i][j] = 0; \\ \text{for } (i = 0; i < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++$$

ī.

▶ The outer-most loop for S2 becomes k

i.

Illegal schedule

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += A[i][k] * \\ B[k][j]; \\ \end{cases} \\ \Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (k = 0; k < n; ++k) \\ \text{for } (i = 0; j < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ C[i][j] += A[i][k] * \\ B[k][j]; \\ \text{for } (i = n; i < 2*n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \end{cases}$$

L

All instances of S1 are executed <u>after</u> the last S2 instance

A legal schedule

Delay the S2 instances

Constraints must be expressed between Θ^{S1} and Θ^{S2}

I.

Implicit fine-grain parallelism

L

• Number of rows of $\Theta \leftrightarrow$ number of outer-most <u>sequential</u> loops

Representing a schedule

i.

$$\Theta \vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} . (\mathbf{i} \ \mathbf{j} \ \mathbf{i} \ \mathbf{j} \ \mathbf{k} \ \mathbf{n} \ \mathbf{n} \ \mathbf{1} \ \mathbf{1})^{T}$$

Representing a schedule

i.

$$\Theta.\vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} . (\mathbf{i} \ \mathbf{j} \ \mathbf{i} \ \mathbf{j} \ \mathbf{k} \ \mathbf{n} \ \mathbf{n} \ \mathbf{1} \ \mathbf{1} \ \mathbf{1})^T$$

i.

Representing a schedule

	Transformation	Description
ī	reversal	Changes the direction in which a loop traverses its iteration range
	skewing	Makes the bounds of a given loop depend on an outer loop counter
	interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation
\vec{p}	fusion	Fuses two loops, a.k.a. jamming
	distribution	Splits a single loop nest into many, a.k.a. fission or splitting
С	peeling	Extracts one iteration of a given loop
	shifting	Allows to reorder loops

Pictured Example

Example of 2 extended dependence graphs

Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal

$$\mathcal{D}_{1}: \begin{bmatrix} 1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & -1 \end{bmatrix} \cdot \begin{pmatrix} eq \\ is \\ i's \\ n \\ 1 \end{pmatrix} \quad \mathcal{D}_{2}: \begin{bmatrix} 1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & -1 \end{bmatrix} \cdot \begin{pmatrix} eq \\ is \\ i's \\ n' \\ 1 \end{pmatrix}$$

$$\Theta = i$$

$$\Theta = -i$$

Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal $\mathcal{D}_{1}: \begin{bmatrix} 1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 & 0 & -1 \end{bmatrix} \cdot \begin{pmatrix} eq \\ is \\ is \\ n \\ 1 \end{pmatrix} \quad \mathcal{D}_{2}: \begin{bmatrix} 1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & -1 \end{bmatrix} \cdot \begin{pmatrix} eq \\ is \\ is \\ is \\ n \\ 1 \end{pmatrix}$ $\mathfrak{O}_{2}: \begin{bmatrix} 1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & -1 \end{bmatrix} \cdot \begin{pmatrix} eq \\ is \\ is \\ is \\ n \\ 1 \end{pmatrix}$

Solution: check for the emptiness of the polyhedron

$$\mathcal{P}: \left[\begin{array}{c} \mathcal{D} \\ i_S \succ i'_S \end{array} \right] \cdot \begin{pmatrix} i_S \\ i'_S \\ n \\ 1 \end{pmatrix}$$

where:

i_S ≻ *i'_S* gets the consumer instances scheduled after the producer ones
 For Θ = −*i*, it is −*i_S* ≻ −*i'_S*, which is non-empty

Detecting Parallel Dimensions

Exercise:

Write an algorithm which detects if an inner-most loop is parallel

Limitation of Operating on Dimensions

- As soon as there is one non-parallel iteration, the dimension is not parallel
- Fusion/distribution impacts parallelism
- After fusion/distribution:
 - On the generated code, some inner loop may be parallel
 - The <u>schedule</u> for the program may not show the whole dimension as parallel

Exercise: Find a program where all schedule dimensions are sequential, but there are inner-most parallel loops

Pluto's Approach for Pre-Vectorization

- Maximize the number of outer-most parallel/permutable dimension
- An outer parallel dimension can be moved inwards
- Proceed from the inner-most dimension, push inwards the "closest" parallel dimension
- Missing considerations:
 - Alignment / stride-1 is not considered
 - Unable to model partially parallel dimensions (eg, those parallel only for some loop nests and not all)

PoCC's Approach for Pre-Vectorization

Very simple: decouple the problem

- Let Pluto transform the code for tiling, parallelism, etc.
- <u>Generate</u> the transformed code
- <u>Re-analyze</u> the transformed code, to extract its polyhedral representation
- Operate on each loop nest individually
 - Not limited to have a full dimension as parallel (local to a loop nest now)
 - Simple model to detect parallel loops with good alignment
 - Different cost models can be used
 - Possible pre-transformations for vectorization:
 - All of them!
 - However, limit to shift+peel+permute

Stride-1 Access

Definition (Data Distance Vector between two references)

Consider two access functions f_A^1 and f_A^2 to the same array A of dimension *n*. Let *i* and *i'* be two iterations of the innermost loop. The data distance vector is defined as an n-dimensional vector $\delta(\iota, \iota')_{f_A^1, f_A^2} = f_A^1(\iota) - f_A^2(\iota')$.

Definition (Stride-one memory access for an access function)

Consider an access function f_A surrounded by an innermost loop. It has stride-one access if $\forall \iota, \delta(\iota, \iota+1)_{f_A, f_A} = (0, \ldots, 0, 1)$.

Detecting Stride-1 Access

Exercise:

Write an algorithm which detects if an inner-most loop has stride-1 access for all memory references