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Restricted algorithm: Solving the Live-out Iterator Problem, Part II

Algorithm for the restricted case

Algorithm

Algorithm produceLiveOutIteratorValues
Input:
AST: A
Output:
AST: containing A and the live-out iterator values

Poly← extractPolyhedralRepresentation(A)
Poly← orderInExecutionOrder(Poly)
outAst← duplicateAST(A)
for i← 1 to Poly.size do

S← extendSystemForLexmax(Poly[i].domain, Poly[i].nbIter)
Q← computeLexicographicMinimum(S)
outAST.append(convertQuastToAST(Q))

end for
return outAST
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Generalization: Solving the Live-out Iterator Problem, Part II

Generalization

Two problems to solve:

I Remove the restriction on lower/upper bound
I Now, the loop may not execute at all
I Its last iteration may not be Ub

I Remove the restriction on conditionals
I Now, the loop may not execute at all
I Its last iteration depends on the conditional
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Generalization: Solving the Live-out Iterator Problem, Part II

Remove the restriction on lower/upper bound

Example (Input program)
for (i = 1; i < N; ++i)

S(i,j);

Example (PIP output)
if (N >= 1)

i = N - 1;

Example (Desired output)
if (1 >= N)

i = 1;
else

i = N;
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Generalization: Solving the Live-out Iterator Problem, Part II

Modification of PIP output

Example (Input program)
for (i = 1; i < N; ++i)

S(i);

Example (PIP output)
if (N >= 1)

i = N - 1;

Example (Edited PIP output)
if (N >= 1)

i = N - 1;
i = max(1, N);
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Generalization: Solving the Live-out Iterator Problem, Part II

Rule of thumb for the modification

I First part of the solution: given by PIP
I Provides the conditions on parameters for the loop to iterate
I Actually, provides the conditions for the statement to execute
I In practice, this value is useful only if there is a loop enclosed

I Second part of the solution: syntactic editing
I the exit value of a loop is simply max(lb,ub+1)
I However, lb and Ub can use values of iterations of surrounding loops
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Generalization: Solving the Live-out Iterator Problem, Part II

Generic approach?

Example (Input program)
for (i = 1; i < N; ++i)

for (j = i; j < N - 1; ++j)
S(i,j);

Example (PIP output)
if (N - 1 > 1) {

i = N - 2;
j = N - 2;

}

Example (Edited PIP output)
if (N - 1 > 1)

i = N - 2;
j = N - 2;
// j executes only when i executes
j = max(i, N - 1);

}
i = max(1, N);

What about the value of j when
N = 2?
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Generalization: Solving the Live-out Iterator Problem, Part II

Maybe close...

Example (Input program)
for (i = 1; i < N; ++i) {

S1(i);
for (j = i; j < N - 1; ++j)

S2(i,j);
}

Example (PIP output)
if (N > 1)

i = N - 1;
if (N - 1 > 1) {

i = N - 2;
j = N - 2;

}

Example (Edited PIP output)
if (N > 1){

i = N - 1;
j = max(i, N - 1);

}
i = max(1, N);
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Generalization: Solving the Live-out Iterator Problem, Part II

Scheme for the previous example

1 The exit value of the i loop is the maximum of its lower and upper bound
2 Compute the lexmax for the first statement (ie, the first loop)
3 This lexmax is the last executed instance of the second loop, that is, the

value i takes when the j loop is executed for the last time
4 The exit value of the j loop is the maximum of its lower and upper

bound, when i reaches its lexmax
5 We don’t need the lexmax of S2: the "iteration domain" of the j loop is

the same as S1
6 The lexmax of S2 is needed only if some loop is enclosed by the j loop
7 But for the input to be a syntactically correct program, we need S2...
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Generalization: Solving the Live-out Iterator Problem, Part II

A more complex example

Example (Input program)
for (i = 1; i < N; ++i) {

S1(i);
for (j = i; j < M; ++j)

S2(i,j);
for (k = j; k < M; ++k)

S3(i,j);
}

Example (PIP output)
if (N > 1)

i = N - 1;
if (N > 1)

if (M > 1) {
if (M >= N) {

i = N - 1;
j = M - 1;
k = M - 1;

}
if (M < N) {

i = M - 1;
j = M - 1;
k = M - 1;

}
}
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Generalization: Solving the Live-out Iterator Problem, Part II

A more complex example

Example (Input program)
for (i = 1; i < N; ++i) {

S1(i);
for (j = i; j < M; ++j)

S2(i,j);
for (k = j; k < M; ++k)

S3(i,j);
}

Example (Edited PIP output)
if (N > 1){

i = N - 1;
if (N > 1) {

if (M > 1) {
if (M >= N) {

j = M - 1;
k = max(j, M);

}
if (M < N) {

j = M - 1;
k = max(j, M);

}
}

j = max(i, M);
}
i = max(1, N);
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Generalization: Solving the Live-out Iterator Problem, Part II

Proposed approach
1 Create a synthetic program with one statement per loop

I Remove all existing statements
I Insert a fake statement at the beginning of each loop body

2 Template structure for a loop l with iterator i:
{

... code for inner loops of l, if any ...
}
i = max(lowerbound(l), upperbound(l) + 1);

3 Compute the lexmax problem for each statement
I Each leaf gives a case where an inner loop would be executed for the last

time
I If there are inner loops, recursively insert the template:

{
... values for lexmax of l ...
{

... values for lexmax of l + 1 ...
k = max(lowerbound(l + 2), upperbound(l + 2) + 1);

}
j = max(lowerbound(l + 1), upperbound(l + 1) + 1);

}
i = max(lowerbound(l), upperbound(l) + 1);
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Exercise: Solving the Live-out Iterator Problem, Part II

Exercise 1

Input:
I an AST A of a program such that:

I A represents a Static Control Part
I Conditionals are always true
I There is no loop iterator symbol assigned outside its defining loop

Output:
I an AST B containing A which is appended another AST that assigns to

each loop iterator in A the value it takes when A is executed

Exercise: write an algorithm which implements the above description
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Exercise 2

Input:
I an AST A of a program such that:

I A represents a Static Control Part
I There is no loop iterator symbol assigned outside its defining loop

Output:
I an AST B containing A which is appended another AST that assigns to

each loop iterator in A the value it takes when A is executed

Exercise: write an algorithm which implements the above description
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