# Writing Algorithms 

## Louis-Noël Pouchet

pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

September 2010
888.11

## Algorithms

## Definition (Says wikipedia:)

An algorithm is an effective method for solving a problem expressed as a finite sequence of instructions.

It is usually a high-level description of a procedure which manipulates well-defined input data to produce other data

## Algorithms are...

(1) A way to communicate about your problem/solution with other people
(2) A possible way to solve a given problem
(3) A "formalization" of a method, that will be proved
(4) A mandatory first step before implementing a solution
(5) ...

## A Few Rules

(1) There are many ways to write algorithms (charts, imperative program, equations, ...)

- Find yours! But...
- ... Always be consistent!
(2) An algorithm takes an input and produces an output
- Those must be well-defined
(3) An algorithm can call other algorithms
- Very useful for a "top-down" description
- But called algorithms must be presented too


## A Syntax Proposal

- Generic imperative language that accepts recursive call
- Control structures: indentation delimits the scope
- for all element $\in \operatorname{Set}$ do
- for iterator $=$ lowerbound to upperbound step increment do
- while conditional do
- do ... while conditional
- if conditional then ... else
- case element in value :
- return value
- break
- continue
- intructions: standard C++ syntax without pointers/reference
- function call: standard C++ syntax without pointers/reference
- exception: when your algorithm cannot safely terminate and/or respect the output specification


## An example

## Algorithm

algorithm gcd
input: integer $a, b$
output: greatest common divisor of $a$ and $b$
if $a=0$ then
return $b$
while $b \neq 0$ do
if $a>b$ then
$a=a-b$
else
$b=b-a$
return $a$

## Another example

```
Algorithm
BuildSearchSpace: Compute IT
Input:
    pdg: polyhedral dependence graph
Output:
    T}\mathrm{ : the bounded space of candidate multidimensional schedules
d\leftarrow1
while }pdg\not=0\mathrm{ do
    \mp@subsup{\mathcal{T}}{d}{}}\leftarrow\mathrm{ createPolytope([-1,1],[-1,1])
    for each dependence }\mp@subsup{\mathcal{D}}{R,S}{}\in\mathrm{ pdg do
        \mp@subsup{\mathcal{W}}{\mp@subsup{D}{R,S}{}}{}\leftarrow\mathrm{ buildWeakLegalSchedules(}\mp@subsup{\mathcal{D}}{R,S}{})
        \mp@subsup{\mathcal{T}}{d}{}\leftarrow\mp@subsup{\mathcal{T}}{d}{}\cap\mp@subsup{\mathcal{W}}{\mp@subsup{\mathscr{D}}{R,S}{}}{}
    end for
    for each dependence }\mp@subsup{\mathcal{D}}{R,S}{}\in\mathrm{ pdg do
        S}\mp@subsup{\mathcal{D}}{R,S}{}\leftarrow\mathrm{ buildStrongLegalSchedules(}\mp@subsup{\mathcal{D}}{R,S}{}
        if \mp@subsup{\mathcal{T}}{d}{}\cap\mp@subsup{\mathcal{S}}{\mp@subsup{\mathcal{D}}{R,S}{}}{}\not=\emptyset\mathrm{ then}
            \mp@subsup{\mathcal{T}}{d}{}\leftarrow\mp@subsup{\mathcal{T}}{d}{}\cap\mp@subsup{\mathcal{S}}{\mp@subsup{\mathcal{D}}{R,S}{}}{}
        pdg}\leftarrowpdg-\mp@subsup{\mathcal{D}}{R,S}{
        end if
    end for
end do
```


## Recursive Algorithms

- Can be very useful / simpler to write
- Do not worry about the efficiency of the implementation at this stage!
- Reflects well equational forms
- Possible design: assume a property at level $n$, how to ensure the property at level $n+1$
- Think about some specific data structures (eg, trees)


## Vectors

- Generic container with random access capability via the index of the element
- Example: A[i], A[i][j][function(i, j)]
- Arbitrary size, automatically handled
- Accessor for its size (eg, length(vector))


## Stack and Queue

- Stack: LIFO
- stack = push(stack, elt)
- elt = pop(stack)
- integer = size(stack)
- Queue: FIFO
- queue = push(queue, elt)
- elt = pop(queue)
- integer = size(queue)


## Graphs

- Set of nodes and edges, both can carry arbitrary information
- edge = getEdge(graph, node1, node2)
- list of nodes = getConnectedNodes(graph, node)
- element = getNodeValue(graph, node)
- element = getEdgeValue(graph, edge)
- etc., and the associated functions to modify the graph structure
- Many, many problems in CS are amenable to graph representation...


## Trees

- Trees are directed acyclic graphs
- The functions to manipulate them are similar to graph ones
- Numerous refinement/specialization of trees
- binary tree
- search tree
- ...


## Algorithm writing 101

(1) Determine the input and output
(2) Find a correct data structure to represent the problem

- Don't hesitate to convert the input to a suitable form, and to preprocess it
(3) Try to reduce your problem to a variation of a well-known one
- Sorting? Path discovery/reachability? etc.
- Look in the litterature if a solution to this problem exists
(4) Decide wheter you look for a recursive algorithm or an imperative one, or a mix
- Depends on how you think, how easy it is to exhibit invariants, what is the decomposition in sub-problems, ...
(5) Write the algorithm :-)
(6) Run all your examples on it, manually, before trying to prove it


## Reference

About manipulating data structures (arrays, trees, graphs):
Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
(I will assume this book has been read in full)

## Exercise 1

Input:

- a vector $V$ of $n$ elements, unsorted
- a comparison function boolean : f(elt $: x$, elt $: y)$ which returns true if $x$ precedes $y$
Ouput:
- a vector of $n$ elements, sorted according to $f$

Exercise: write an algorithm which implements the above description

## Exercise 2

Input:

- The starting address of a matrix of integer $A$ of size $n \times n$
- The starting address of a matrix of integer $B$ of size $n \times n$
- A function matrix(16x16) : getBlock(address : X, int : i,int : $j$ ) which returns a sub-matrix (a block) of the matrix starting at address $X$, of size $16 \times 16$ whose first element is at position $i, j$
Ouput:
- An integer $c$, the sum of the diagonal elements of the product of $A$ and $B$

Exercise: write an algorithm which implements the above description

## Exercise 3

Input:

- An arbitrary binary search tree $A$ with integer nodes
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.

Output:

- A balanced binary search tree $B$ containing all elements in the nodes of A

Exercise: write an algorithm which implements the above description

