
Writing Algorithms

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

September 2010

888.11



Generalities on Algorithms: Writing Algorithms

Algorithms

Definition (Says wikipedia:)

An algorithm is an effective method for solving a problem expressed as a
finite sequence of instructions.

It is usually a high-level description of a procedure which manipulates
well-defined input data to produce other data

OSU 2



Generalities on Algorithms: Writing Algorithms

Algorithms are...

1 A way to communicate about your problem/solution with other people

2 A possible way to solve a given problem

3 A "formalization" of a method, that will be proved

4 A mandatory first step before implementing a solution

5 ...

OSU 3



Generalities on Algorithms: Writing Algorithms

A Few Rules

1 There are many ways to write algorithms (charts, imperative program,
equations, ...)

I Find yours! But...
I ... Always be consistent!

2 An algorithm takes an input and produces an output
I Those must be well-defined

3 An algorithm can call other algorithms
I Very useful for a "top-down" description
I But called algorithms must be presented too

OSU 4



Generalities on Algorithms: Writing Algorithms

A Syntax Proposal

I Generic imperative language that accepts recursive call
I Control structures: indentation delimits the scope

I for all element ∈ Set do
I for iterator = lowerbound to upperbound step increment do
I while conditional do
I do ... while conditional
I if conditional then ... else
I case element in value :
I return value
I break
I continue

I intructions: standard C++ syntax without pointers/reference
I function call: standard C++ syntax without pointers/reference
I exception: when your algorithm cannot safely terminate and/or respect

the output specification

OSU 5



Generalities on Algorithms: Writing Algorithms

An example

Algorithm

algorithm gcd
input: integer a, b
output: greatest common divisor of a and b

if a = 0 then
return b

while b 6= 0 do
if a > b then

a = a−b
else

b = b−a
return a

OSU 6



Generalities on Algorithms: Writing Algorithms

Another example

Algorithm
BuildSearchSpace: Compute T
Input:

pdg: polyhedral dependence graph
Output:

T : the bounded space of candidate multidimensional schedules

d←1
while pdg 6= /0 do

Td ←createPolytope([−1,1],[−1,1])
for each dependence DR,S ∈ pdg do

WDR,S ←buildWeakLegalSchedules(DR,S)

Td ←Td ∩WDR,S
end for
for each dependence DR,S ∈ pdg do

SDR,S ←buildStrongLegalSchedules(DR,S)

if Td ∩SDR,S 6= /0 then

Td ←Td ∩SDR,S
pdg←pdg - DR,S

end if
end for

end do

OSU 7



Generalities on Algorithms: Writing Algorithms

Recursive Algorithms

I Can be very useful / simpler to write
I Do not worry about the efficiency of the implementation at this stage!

I Reflects well equational forms

I Possible design: assume a property at level n, how to ensure the
property at level n+1

I Think about some specific data structures (eg, trees)

OSU 8



Data Structures: Writing Algorithms

Vectors

I Generic container with random access capability via the index of the
element

I Example: A[i], A[i][j][function(i,j)]

I Arbitrary size, automatically handled

I Accessor for its size (eg, length(vector))

OSU 9



Data Structures: Writing Algorithms

Stack and Queue

I Stack: LIFO
I stack = push(stack, elt)
I elt = pop(stack)
I integer = size(stack)

I Queue: FIFO
I queue = push(queue, elt)
I elt = pop(queue)
I integer = size(queue)

OSU 10



Data Structures: Writing Algorithms

Graphs

I Set of nodes and edges, both can carry arbitrary information
I edge = getEdge(graph, node1, node2)
I list of nodes = getConnectedNodes(graph, node)
I element = getNodeValue(graph, node)
I element = getEdgeValue(graph, edge)
I etc., and the associated functions to modify the graph structure

I Many, many problems in CS are amenable to graph representation...

OSU 11



Data Structures: Writing Algorithms

Trees

I Trees are directed acyclic graphs
I The functions to manipulate them are similar to graph ones

I Numerous refinement/specialization of trees
I binary tree
I search tree
I ...

OSU 12



Data Structures: Writing Algorithms

Algorithm writing 101

1 Determine the input and output
2 Find a correct data structure to represent the problem

I Don’t hesitate to convert the input to a suitable form, and to preprocess it
3 Try to reduce your problem to a variation of a well-known one

I Sorting? Path discovery/reachability? etc.
I Look in the litterature if a solution to this problem exists

4 Decide wheter you look for a recursive algorithm or an imperative one,
or a mix

I Depends on how you think, how easy it is to exhibit invariants, what is the
decomposition in sub-problems, ...

5 Write the algorithm :-)
6 Run all your examples on it, manually, before trying to prove it

OSU 13



Data Structures: Writing Algorithms

Reference

About manipulating data structures (arrays, trees, graphs):
Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, Clifford Stein

(I will assume this book has been read in full)

OSU 14



Exercises: Writing Algorithms

Exercise 1

Input:
I a vector V of n elements, unsorted
I a comparison function boolean : f (elt : x,elt : y) which returns true if x

precedes y

Ouput:
I a vector of n elements, sorted according to f

Exercise: write an algorithm which implements the above description

OSU 15



Exercises: Writing Algorithms

Exercise 2

Input:
I The starting address of a matrix of integer A of size n×n
I The starting address of a matrix of integer B of size n×n
I A function matrix(16x16) : getBlock(address : X, int : i, int : j) which

returns a sub-matrix (a block) of the matrix starting at address X, of size
16×16 whose first element is at position i, j

Ouput:
I An integer c, the sum of the diagonal elements of the product of A and B

Exercise: write an algorithm which implements the above description

OSU 16



Exercises: Writing Algorithms

Exercise 3

Input:
I An arbitrary binary search tree A with integer nodes

I The left subtree of a node contains only nodes with keys less than the
node’s key.

I The right subtree of a node contains only nodes with keys greater than the
node’s key.

I Both the left and right subtrees must also be binary search trees.

Output:
I A balanced binary search tree B containing all elements in the nodes of

A

Exercise: write an algorithm which implements the above description

OSU 17


	Generalities on Algorithms
	Data Structures
	Exercises

