
Polyhedral Compilation Foundations

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Feb 22, 2010

888.11, Class #5



Introduction: Polyhedral Compilation Foundations - #5

Overview of Today’s Lecture

Outline:
I The Space of all (bounded) multidimensional affine schedules
I Overview of the tiling hyperplane method
I Polyhedral compilation toolbox
I State-of-the-art techniques

Mathematical concepts:
I No new concept today!

OSU 2



Introduction: Polyhedral Compilation Foundations - #5

Reminder From Last Week

I How to select a good one-dimensional schedule
I Greedy algorithm to build a multidimensional schedule

I Feautrier’s: minization of latency

But different objectives are needed:
I multi-core requires coarse-grain parallelism
I Minimal latency is not always the best criterion for performance

Two possible approaches to find a good schedule:
I Proceed in one shot (all coefficients all at a time)

I Less scalable on large programs
I But optimal point is in the solution set

I Proceed level-by-level (greedy approach)
I Usually more scalable
I But easy to be sub-optimal: no global view of the schedule

OSU 3



Convex Set of Affine Schedules: Polyhedral Compilation Foundations - #5

Space of All Affine Schedules

Objective:
I Design an ILP which operates on all scheduling coefficients
I Optimality guaranteed since the space contains all schedules (hence

necesarily the optimal one)
I Examples: maximal fusion, maximal coarse-grain parallelism, best

locality, etc.

idea:
I Combine all coefficients of all rows of the scheduling function into a

single solution set
I Find a convex encoding for the lexicopositivity of dependence

satisfaction
I A dependence must be weakly satisfied until it is strongly satisfied
I Once it is strongly satisfied, it must not constrain subsequent levels

OSU 4



Convex Set of Affine Schedules: Polyhedral Compilation Foundations - #5

Reminder on Dependence Satisfaction

Definition (Strong dependence satisfaction)

Given DR,S, the dependence is strongly satisfied at schedule level k if

∀〈~xR,~xS〉 ∈ DR,S, ΘS
k(~xS)−ΘR

k (~xR)≥ 1

Definition (Weak dependence satisfaction)

Given DR,S, the dependence is weakly satisfied at dimension k if

∀〈~xR,~xS〉 ∈ DR,S, Θ
S
k(~xS)−Θ

R
k (~xR)≥ 0

∃〈~xR,~xS〉 ∈ DR,S, Θ
S
k(~xS) = Θ

R
k (~xR)

OSU 5



Convex Set of Affine Schedules: Polyhedral Compilation Foundations - #5

Reminder on Lexicopositivity of Dependence
Satisfaction

Lemma (Semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if:

∀DR,S, ∃p ∈ {1, . . . ,m}, δ
DR,S
p = 1

∧ ∀j < p, δ
DR,S
j = 0

∧ ∀j ≤ p,∀〈~xR,~xS〉 ∈ DR,S, Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
j

OSU 6



Convex Set of Affine Schedules: Polyhedral Compilation Foundations - #5

Schedule Lower Bound

Idea:
I Bound the schedule latency with a lower bound which does not prevent

to find all solutions
I Intuitively:

I ΘS(~xS)−ΘR(~xR)≥ δ if the dependence has not been strongly satisfied
I ΘS(~xS)−ΘR(~xR)≥−∞ if it has

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

min
(
Θ

S
k(~xS)−Θ

R
k (~xR)

)
>−K.~n−K

OSU 7



Convex Set of Affine Schedules: Polyhedral Compilation Foundations - #5

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈ DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥−

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)+δ

DR,S
p

→ Note: schedule coefficients must be bounded for Lemma to hold

→ Scalability challenge for large programs

OSU 8



Tiling Hyperplane Method: Polyhedral Compilation Foundations - #5

Key Ideas of the Tiling Hyperplane Algorithm

Affine transformations for communication minimal parallelization and locality
optimization of arbitrarily nested loop sequences
[Bondhugula et al, CC’08 & PLDI’08]

I Compute a set of transformations to make loops tilable
I Try to minimize synchronizations
I Try to maximize locality (maximal fusion)

I Result is a set of permutable loops, if possible
I Strip-mining / tiling can be applied
I Tiles may be sync-free parallel or pipeline parallel

I Algorithm always terminates (possibly by splitting loops/statements)

OSU 9



Tiling Hyperplane Method: Polyhedral Compilation Foundations - #5

Tiling in the Polyhedral Model

I Tiling partition the computation into blocks
I Note we consider only rectangular tiling here
I For tiling to be legal, such a partitioning must be legal

OSU 10



Tiling Hyperplane Method: Polyhedral Compilation Foundations - #5

Legality of Tiling

Theorem (Legality of Tiling)

Given φR,φS two one-dimensional schedules. They are valid tiling
hyperplanes if

∀DR,S, ∀〈~xR,~xS〉 ∈ DR,S, φ
S(~xS)−φ

R(~xR)≥ 0

I For a schedule to be a legal tiling hyperplane, all communications must
go forward: Forward Communication Only [Griebl]

I All dependences must be considered at each level, including the
previously strongly satisfied

I Equivalence between loop permutability and loop tilability

OSU 11



Tiling Hyperplane Method: Polyhedral Compilation Foundations - #5

Greedy Algorithm for Tiling Hyperplane
Computation

1 Start from the outer-most level, find the set of FCO schedules
2 Select one by minimizing its latency
3 Mark dependences strongly satisfied by this schedule, but do not

remove them
4 Formulate the problem for the next level (FCO), adding orthogonality

constraints (linear independence)
5 solve again, etc.

Special treatment when no permutable band can be found: splitting

A few properties:
I Result is a set of permutable/tilable outer loops, when possible
I It exhibits coarse-grain parallelism
I Maximal fusion achieved to improve locality

OSU 12



Polyhedral Toolbox: Polyhedral Compilation Foundations - #5

Summary of the Past Lectures

Polyhedral compilation: a 3 stage process
1 Program analysis

I Extract polyhedral representation of iteration domains: lecture 1
I Extract dependence polyhedra: lecture 2

2 Optimization
I Construct a legal one-dimensional schedule: lecture 3
I Construct a legal multidimensional schedule: lecture 4-5
I Compute a set of candidate legal schedules: lecture 3-5
I Select a good one in this set: lecture 3-5

3 Code generation (not treated)
I "Apply" the transformation in the polyhedral representation
I Regenerate transformed syntactic code

OSU 13



Polyhedral Toolbox: Polyhedral Compilation Foundations - #5

Polyhedral Software Toolbox

I Analysis:
I Extracting the polyhedral representation of a program: Clan, PolyRose
I Computing the dependence polyhedra: Candl

I Mathematical operations:
I Doing polyhedral operations on Q-, Z- and Z-polyhedral: PolyLib, ISL
I Solving ILP/PIP problems: PIPLib
I Computing the number of points in a (parametric) polyhedron: Barvinok
I Projection on Q-polyhedra: FM, the Fourier-Motzkin Library

I Scheduling:
I Tiling hyperplane method: PLuTo
I Iterative selection of affine schedules: LetSee

I Code generation:
I Generating C code from a polyhedral representation: CLooG
I Parametric tiling from a polyhedral representation: PrimeTile

OSU 14



Polyhedral Toolbox: Polyhedral Compilation Foundations - #5

Polyhedral Compilers

Available polyhedral compilers:
I Non-Free:

I IBM XL/Poly
I Reservoir Labs RStream

I Free:
I GCC (see the GRAPHITE effort)

I Prototypes:
I PoCC, the POlyhedral Compiler Collection

http://pocc.sourceforge.net
Contains Clan, Candl, Pluto, LetSee, PIPLib, PolyLib, FM, ISL, Barvinok,
CLooG, ...

I PolyRose from OSU (DARPA PACE project), a polyhedral compiler using
parts of PoCC and the Rose infrastructure

OSU 15



Polyhedral Toolbox: Polyhedral Compilation Foundations - #5

Polyhedral Methodology Toolbox

I Semantics-preserving schedules:
I Dependence relation finely characterized with dependence polyhedra
I Algorithms should harness the power of this representation (ex: legality

testing, parallelism testing, etc.)

I Scheduling:
I Scheduling algorithm can be greedy (level-by-level) or global
I Beware of scalability
I Special properties can be embedded in the schedule via an ILP (ex:

fusion, tiling, parallelism)

I Mathematics:
I Beware of the distinction between Q-, Z- and Z-polyhedra: always choose

the most relaxed one that fits the problem
I Farkas Lemma is useful to characterize a solution set
I Farkas Lemma is also useful to linearize constraints

OSU 16



State-of-the-art and Ongoing Research: Polyhedral Compilation Foundations - #5

State-of-the-art in Polyhedral Compilation

I Analysis
I Array Dataflow Analysis [Feautrier,IJPP91]
I Dependence polyhedra [Feautrier,IJPP91] (Candl)
I Non-static control flow support [Benabderrahmane,CC10]

I Program transformations:
I Tiling hyperplane method [Bondhugula,CC08/PLDI08]
I Convex space of all affine schedules [Vasilache,07]
I Iterative search [Pouchet,CGO07/PLDI08]
I Vectorization [Trifunovic,PACT09]

I Code generation
I Arbitrary affine scheduling functions [Bastoul,PACT04]
I Scalable code generation [Vasilache,CC06/PhD07]
I Parametric Tiling [Hartono et al,ICS09/CGO10]

OSU 17



State-of-the-art and Ongoing Research: Polyhedral Compilation Foundations - #5

Some Ongoing Research

I Scalability: provide more scalable algorithms, operating on hundreds of
statements

I Trade-off between optimality and scalability
I Redesigning the framework: introducing approximations

I Vectorization: pre- and post- transformations for vectorization
I Select the appropriate transformations for vectorization
I Generate efficient SIMD code

I Scheduling: get (very) good performance on a wide variety of machines
I Using machine learning to characterize the machine/compiler/program
I Using more complex scheduling heuristics

OSU 18



State-of-the-art and Ongoing Research: Polyhedral Compilation Foundations - #5

Potential MS projects [1/2]

I am currently looking for students to work on the following topics:
I Cost models for vectorization

I Used to select which loop should be vectorized
I Current models must be generalized and improved
I Interaction with other optimization objectives (tiling)

I Cost models for array contraction
I Used to select which dimension of an array should be reduced to a scalar
I Huge interaction with tiling, parallelism and vectorization

OSU 19



State-of-the-art and Ongoing Research: Polyhedral Compilation Foundations - #5

Potential MS projects [2/2]

Related to Machine Learning:
I Computing the similarities between two polyhedral programs

I Used for machine learning techniques
I The goal is to have a systematic way to characterize two programs that

may need the same transformation, leveraging the polyhedral
representation

I Evaluation of machine learning for the selection of affine schedules
I Hot topic! ask me if you’re interested

We have many other projects not in this list! Ask Prof. Sadayappan

OSU 20



State-of-the-art and Ongoing Research: Polyhedral Compilation Foundations - #5

Credits

Several figures and examples in this series of lectures were borrowed from:
I Uday Bondhugula’s PhD thesis
I Cedric Bastoul’s PhD thesis
I Wikipedia

They are gratefully acknowledged for their support!

OSU 21


	Introduction
	Convex Set of Affine Schedules
	Tiling Hyperplane Method
	Polyhedral Toolbox
	State-of-the-art and Ongoing Research

