Polyhedral Compilation Foundations

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Feb 15, 2010
888.11, Class \#4

Overview of Today's Lecture

Outline:

- Solution of the exercise
- Linear Programming (LP)
- Feautrier's scheduling algorithm
- one-dimensional schedules
- multidimensional schedules

Mathematical concepts:

- Linear Progamming
- (Parametric) Integer Programming

Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal
$\mathcal{D}_{1}:\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & -1\end{array}\right] \cdot\left(\begin{array}{c}e q \\ i_{S} \\ i_{S}^{\prime} \\ n \\ 1\end{array}\right) \quad \mathcal{D}_{2}:\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & -1\end{array}\right] \cdot\left(\begin{array}{l}e q \\ i_{S} \\ i_{S}^{\prime} \\ n \\ 1\end{array}\right)$
(1) $\Theta=i$
(2) $\Theta=-i$

Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal
$\mathcal{D}_{1}:\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & -1\end{array}\right] \cdot\left(\begin{array}{c}e q \\ i_{S} \\ i_{S}^{\prime} \\ n \\ 1\end{array}\right) \quad \mathcal{D}_{2}:\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & -1\end{array}\right] \cdot\left(\begin{array}{l}e q \\ i_{s} \\ i_{S}^{\prime} \\ n \\ 1\end{array}\right)$
(1) $\Theta=i$
(2) $\Theta=-i$

Solution: check for the emptiness of the polyhedron

$$
\mathcal{P}:\left[\begin{array}{c}
\mathcal{D} \\
i_{S} \succ i_{S}^{\prime}
\end{array}\right] \cdot\left(\begin{array}{c}
i_{S} \\
i_{S}^{\prime} \\
n \\
1
\end{array}\right)
$$

where:

- $i_{S} \succ i_{S}^{\prime}$ gets the consumer instances scheduled after the producer ones
- For $\Theta=-i$, it is $-i_{S} \succ-i_{S}^{\prime}$, which is non-empty

Reminder from Last Week

Focused on one-dimensional schedules:

- A schedule is legal if the precedence condition is respected
- It is possible to build the set of legal 1-d schedules
- Translate the problem as finding all non-negative functions over the dependence polyhedron
- Model them thanks to the affine form of the Farkas Lemma
- Proceed to identification + projection to get affine constraints on the schedule coefficients

Objective for a (good) scheduling strategy

- Output a legal schedule only
- Find one which maximizes/minimizes some criterion: objective function

Linear Programming (LP)

Definition (Linear Programming)

Linear Programming (LP) concerns the problem of maximizing or minimizing a real-valued function over a polyhedron.

$$
\max \{c x \mid A x \leq b\}
$$

Theorem (Duality of Linear Programs)

Let A be a matrix, and let b and c be vectors. Then

$$
\max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0, y A=c\}
$$

Equivalent Formulations

The following problems are equivalent:
(1) $\max \{c x \mid A x \leq b\}$
(2) $\max \{c x \mid x \geq 0, A x \leq b\}$
(3) $\max \{c x \mid x \geq 0, A x=b\}$
(9) $\min \{c x \mid A x \geq b\}$
(-) $\min \{c x \mid x \geq 0, A x \geq b\}$
(-) $\min \{c x \mid x \geq 0, A x=b\}$
(3) $\min \{y b \mid y A \geq c\}$
© ...

Solving a Linear Program: Simplex Algorithm

The most standard technique: Simplex [Dantzig]

- The hyperplane $c x=v$ contains the point where the objective function has value v
- Optimum v^{*} is the largest v such that $c x=v$ still intersects the polytope of feasible points
- The optimum is a face of the polytope
- Simplex: starts from a vertex, and build a "path" to reach the optimal vertex

Other techniques and Complexity results

- Worst-case complexity of Simplex: exponential time $O\left(2^{n}\right)$
- In practice, usually around $O\left(n^{3}\right)$
- Ellipsoid method [Khachiyan]: worst case $O\left(n^{4}\right)$
- Interior points methods [Karmarkar]: worst case $O\left(n^{3.5}\right)$
- LP admits a weakly polynomial-time algorithm, so LP is in \mathbf{P}

Applications to Polyhedral Optimization

- LP is for real-valued objective functions
- But we mostly use integer coefficients
- Refinement needed: Integer Linear Programming
- Even worse: we use parametric solution sets
- We often require Parametric Integer Programming

Integer Linear Programming (ILP)

- ILP requires the unkown variables to be integers
- Fundamental complexity change: ILP is NP-hard
- Several techniques to solve an ILP: branch-and-cut, branch-and-bound, cutting planes, ...
- Most optimization problems in the polyhedral model are modeled as ILP

Examples: parallelization, locality, etc.

Parametric Integer Programming (PIP)

Parametric Integer Programming [Feautrier]:

- The feasible set is parametric
- The optimal solution may not be the same for different parameter values
- PIP: "parameterized" Simplex + Gomory cuts, finds the lexicographically smallest point of a parametric polyhedron
- Output is a Quasi-Affine Solution Tree (QUAST)

QUAST Example: if $M=0$ then $\{x=0\}$ else if $M \geq 1$ then $\{x=42\}$

Using PIPLib

- Our standard tool to solve a PIP
- Uses the same convention as PolyLib: eq/ineq on first column
- PIPLib finds the lexicosmallest point in a parametric polyhedron
- To encode a program, add extra variables at the beginning of the system
- These will be minimized

A few facts to keep in mind:

- The order of variables in the PIP matters (lexico-smallest is found)
- The order of parameters matters (a different solution can be found)

Back to Scheduling: Feautrier's

Feautrier's 1-d scheduling algorithm:

- Objective: find maximal fine-grain parallelism
- In other words: express the program loop nest as (at most) one outer sequential loop enclosing parallel loops
- This problem is equivalent to minimizing the schedule latency

Exercise: Why are the two problems equivalent?

Objective Function

Idea: bound the latency of the schedule and minimize this bound

Theorem (Schedule latency bound)

If all domains are bounded, and if there exists at least one 1-d schedule Θ, then there exists at least one affine form in the structure parameters:

$$
L=\vec{u} \cdot \vec{n}+w
$$

such that:

$$
\forall \vec{x}_{R}, L-\Theta_{R}\left(\vec{x}_{R}\right) \geq 0
$$

- Objective function: $\min \{\vec{u}, w \mid \vec{u} \cdot \vec{n}+w-\Theta \geq 0\}$
- Subject to Θ is a legal schedule, and $\theta_{i} \geq 0$
- In many cases, it is equivalent to take the lexicosmallest point in the polytope of non-negative legal schedules

Example

$$
\min \{\vec{u}, w \mid \vec{u} \cdot \vec{n}+w-\Theta \geq 0\}: \Theta_{R}=0, \Theta_{S}=k+1
$$

Example

```
parfor (i = 0; i < N; ++i)
    parfor ( \(j=0 ; j<N\); \(++j\) )
        C[i][j] = 0;
for (k = 1; \(k<N+1 ;++k)\)
    parfor (i \(=0\); \(i<N\); ++i)
        parfor ( \(j=0 ; j<N\); \(++j\) )
            C[i][j] += A[i][k-1] + B[k-1][j];
```


Multidimensional Scheduling

- Some program does not have a legal 1-d schedule
- It means, it's not possible to enforce the precedence condition for all dependences

```
Example
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        s += s;
```

- Intuition: multidimensional time means nested time loops
- The precedence constraint needs to be adapted to multidimensional time

Dependence Satisfaction

Definition (Strong dependence satisfaction)

Given $\mathcal{D}_{R, S}$, the dependence is strongly satisfied at schedule level k if

$$
\forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}, \quad \Theta_{k}^{S}\left(\vec{x}_{S}\right)-\Theta_{k}^{R}\left(\vec{x}_{R}\right) \geq 1
$$

Definition (Weak dependence satisfaction)

Given $\mathcal{D}_{R, S}$, the dependence is weakly satisfied at dimension k if

$$
\begin{array}{ll}
\forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}, & \Theta_{k}^{S}\left(\vec{x}_{S}\right)-\Theta_{k}^{R}\left(\vec{x}_{R}\right) \geq 0 \\
\exists\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}, & \Theta_{k}^{S}\left(\vec{x}_{S}\right)=\Theta_{k}^{R}\left(\vec{x}_{R}\right)
\end{array}
$$

Program Legality and Existence Results

- All dependence must be strongly satisfied for the program to be correct
- Once a dependence is strongly satisfied at level k, it does not contribute to the constraints of level $k+i$
- Unlike with 1-d schedules, it is always possible to build a legal multidimensional schedule for a SCoP [Feautrier]

Theorem (Existence of an affine schedule)

Every static control program has a multdidimensional affine schedule

Reformulation of the Precedence Condition

- We introduce variable $\delta_{1}^{\mathcal{D}_{R, S}}$ to model the dependence satisfaction
- Considering the first row of the scheduling matrices, to preserve the precedence relation we have:

$$
\begin{gathered}
\forall \mathcal{D}_{R, S}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}, \quad \Theta_{1}^{S}\left(\vec{x}_{S}\right)-\Theta_{1}^{R}\left(\vec{x}_{R}\right) \geq \delta_{1}^{\mathcal{D}_{R, S}} \\
\delta_{1}^{\mathcal{D}_{R, S}} \in\{0,1\}
\end{gathered}
$$

Lemma (Semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension m, the program semantics is preserved if:

$$
\begin{aligned}
& \forall \mathcal{D}_{R, S}, \exists p \in\{1, \ldots, m\}, \delta_{p}^{\mathcal{D}_{R, S}}=1 \\
\wedge & \forall j<p, \delta_{j}^{\mathcal{D}_{R, S}}=0 \\
\wedge & \forall j \leq p, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}, \Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{j}^{\mathcal{D}_{R, S}}
\end{aligned}
$$

A Greedy Scheduling Algorithm

- Objective: maximize fine-grain parallelism
- Equivalent to strongly satisfying the maximum number of dependences at the current level
- Find this set of schedules (objective 1)
- Find the schedule with minimal latency in this set (objective 2)
- Proceeds greedily: removes all previously strongly solved dependence, and solve the problem for the next schedule dimension

Exercise: Write the objective function which maximizes the number of dependences strongly satisfied at a given schedule level k

A Greedy Scheduling Algorithm

- Objective: maximize fine-grain parallelism
- Equivalent to strongly satisfying the maximum number of dependences at the current level
- Find this set of schedules (objective 1)
- Find the schedule with minimal latency in this set (objective 2)
- Proceeds greedily: removes all previously strongly solved dependence, and solve the problem for the next schedule dimension

Exercise: Write the objective function which maximizes the number of dependences strongly satisfied at a given schedule level k

$$
\max \left\{\sum_{i} \delta_{k}^{i} \mid \Theta_{k}^{S}\left(\vec{x}_{S}\right)-\Theta_{k}^{R}\left(\vec{x}_{R}\right) \geq \delta_{k}^{\mathcal{D}_{R, S}}\right\}
$$

Some Interesting Properties

- Feautrier's greedy heuristic extracts the maximal amount of fine-grain parallelism [Vivien]
- The maximal set of dependences which can be strongly solved at a given schedule level is unique
- This is true only if you do not bound the schedule coefficients
- The set of constraints to select a schedule at a given level are independent
- This formulation does not allow to build an ILP which considers multiple schedule levels, requires instead to build greedy algorithm (e.g., PluTo)

Next Week

- Building the set of all legal multidimensional schedules
- Permutability, tiling and memory optimizations
- Likely the last lecture...

In 2 weeks, I would like to have a student present a paper:

- Bondhugula, CC’08
- Irigoin and Triolet, POPL'88
- Bastoul, PACT'04
- Trifunovic, PACT'09

