
Polyhedral Compilation Foundations

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Feb 15, 2010

888.11, Class #4

Introduction: Polyhedral Compilation Foundations - #4

Overview of Today’s Lecture

Outline:
I Solution of the exercise
I Linear Programming (LP)
I Feautrier’s scheduling algorithm

I one-dimensional schedules
I multidimensional schedules

Mathematical concepts:
I Linear Progamming
I (Parametric) Integer Programming

OSU 2

Exercise: Polyhedral Compilation Foundations - #4

Checking the Legality of a Schedule
Exercise: given the dependence polyhedra, check if a schedule is legal

D1 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1

 D2 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1


1 Θ = i
2 Θ =−i

Solution: check for the emptiness of the polyhedron

P :
[

D
iS � i′S

]
.


iS
i′S
n
1


where:

I iS � i′S gets the consumer instances scheduled after the producer ones
I For Θ =−i, it is −iS �−i′S, which is non-empty

OSU 3

Exercise: Polyhedral Compilation Foundations - #4

Checking the Legality of a Schedule
Exercise: given the dependence polyhedra, check if a schedule is legal

D1 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1

 D2 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1


1 Θ = i
2 Θ =−i

Solution: check for the emptiness of the polyhedron

P :
[

D
iS � i′S

]
.


iS
i′S
n
1


where:

I iS � i′S gets the consumer instances scheduled after the producer ones
I For Θ =−i, it is −iS �−i′S, which is non-empty

OSU 4

One-dimensional Scheduling: Polyhedral Compilation Foundations - #4

Reminder from Last Week

Focused on one-dimensional schedules:
I A schedule is legal if the precedence condition is respected
I It is possible to build the set of legal 1-d schedules

I Translate the problem as finding all non-negative functions over the
dependence polyhedron

I Model them thanks to the affine form of the Farkas Lemma
I Proceed to identification + projection to get affine constraints on the

schedule coefficients

Objective for a (good) scheduling strategy
I Output a legal schedule only
I Find one which maximizes/minimizes some criterion: objective function

OSU 5

Linear Programming: Polyhedral Compilation Foundations - #4

Linear Programming (LP)

Definition (Linear Programming)

Linear Programming (LP) concerns the problem of maximizing or minimizing
a real-valued function over a polyhedron.

max{cx | Ax ≤ b}

Theorem (Duality of Linear Programs)

Let A be a matrix, and let b and c be vectors. Then

max{cx | Ax ≤ b}= min{yb | y ≥ 0, yA = c}

OSU 6

Linear Programming: Polyhedral Compilation Foundations - #4

Equivalent Formulations

The following problems are equivalent:
1 max{cx | Ax ≤ b}
2 max{cx | x ≥ 0, Ax ≤ b}
3 max{cx | x ≥ 0, Ax = b}
4 min{cx | Ax ≥ b}
5 min{cx | x ≥ 0, Ax ≥ b}
6 min{cx | x ≥ 0, Ax = b}
7 min{yb | yA ≥ c}
8 ...

OSU 7

Linear Programming: Polyhedral Compilation Foundations - #4

Solving a Linear Program: Simplex Algorithm

The most standard technique: Simplex [Dantzig]
I The hyperplane cx = v contains the point where the objective function

has value v
I Optimum v∗ is the largest v such that cx = v still intersects the polytope

of feasible points
I The optimum is a face of the polytope
I Simplex: starts from a vertex, and build a "path" to reach the optimal

vertex

OSU 8

Linear Programming: Polyhedral Compilation Foundations - #4

Other techniques and Complexity results

I Worst-case complexity of Simplex: exponential time O(2n)
I In practice, usually around O(n3)

I Ellipsoid method [Khachiyan]: worst case O(n4)
I Interior points methods [Karmarkar]: worst case O(n3.5)

I LP admits a weakly polynomial-time algorithm, so LP is in P

OSU 9

Linear Programming: Polyhedral Compilation Foundations - #4

Applications to Polyhedral Optimization

I LP is for real-valued objective functions
I But we mostly use integer coefficients

I Refinement needed: Integer Linear Programming

I Even worse: we use parametric solution sets
I We often require Parametric Integer Programming

OSU 10

Linear Programming: Polyhedral Compilation Foundations - #4

Integer Linear Programming (ILP)

I ILP requires the unkown variables to be integers
I Fundamental complexity change: ILP is NP-hard

I Several techniques to solve an ILP: branch-and-cut, branch-and-bound,
cutting planes, ...

I Most optimization problems in the polyhedral model are modeled
as ILP

Examples: parallelization, locality, etc.

OSU 11

Linear Programming: Polyhedral Compilation Foundations - #4

Parametric Integer Programming (PIP)

Parametric Integer Programming [Feautrier]:
I The feasible set is parametric
I The optimal solution may not be the same for different parameter values
I PIP: "parameterized" Simplex + Gomory cuts, finds the lexicographically

smallest point of a parametric polyhedron
I Output is a Quasi-Affine Solution Tree (QUAST)

QUAST Example: if M = 0 then {x = 0} else if M ≥ 1 then {x = 42}

OSU 12

Linear Programming: Polyhedral Compilation Foundations - #4

Using PIPLib

I Our standard tool to solve a PIP
I Uses the same convention as PolyLib: eq/ineq on first column
I PIPLib finds the lexicosmallest point in a parametric polyhedron

I To encode a program, add extra variables at the beginning of the system
I These will be minimized

A few facts to keep in mind:
I The order of variables in the PIP matters (lexico-smallest is found)
I The order of parameters matters (a different solution can be found)

OSU 13

One-Dimensional Scheduling: Polyhedral Compilation Foundations - #4

Back to Scheduling: Feautrier’s

Feautrier’s 1-d scheduling algorithm:
I Objective: find maximal fine-grain parallelism
I In other words: express the program loop nest as (at most) one outer

sequential loop enclosing parallel loops
I This problem is equivalent to minimizing the schedule latency

Exercise: Why are the two problems equivalent?

OSU 14

One-Dimensional Scheduling: Polyhedral Compilation Foundations - #4

Objective Function

Idea: bound the latency of the schedule and minimize this bound

Theorem (Schedule latency bound)

If all domains are bounded, and if there exists at least one 1-d schedule Θ,
then there exists at least one affine form in the structure parameters:

L =~u.~n+w

such that:
∀~xR, L−ΘR(~xR)≥ 0

I Objective function: min{~u,w |~u.~n+w−Θ ≥ 0}
I Subject to Θ is a legal schedule, and θi ≥ 0
I In many cases, it is equivalent to take the lexicosmallest point in the

polytope of non-negative legal schedules

OSU 15

One-Dimensional Scheduling: Polyhedral Compilation Foundations - #4

Example

min{~u,w |~u.~n+w−Θ ≥ 0} : ΘR = 0, ΘS = k +1

Example

parfor (i = 0; i < N; ++i)
parfor (j = 0; j < N; ++j)
C[i][j] = 0;

for (k = 1; k < N + 1; ++k)
parfor (i = 0; i < N; ++i)
parfor (j = 0; j < N; ++j)
C[i][j] += A[i][k-1] + B[k-1][j];

OSU 16

Multiimensional Scheduling: Polyhedral Compilation Foundations - #4

Multidimensional Scheduling

I Some program does not have a legal 1-d schedule
I It means, it’s not possible to enforce the precedence condition for all

dependences

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
s += s;

I Intuition: multidimensional time means nested time loops
I The precedence constraint needs to be adapted to multidimensional

time

OSU 17

Multiimensional Scheduling: Polyhedral Compilation Foundations - #4

Dependence Satisfaction

Definition (Strong dependence satisfaction)

Given DR,S, the dependence is strongly satisfied at schedule level k if

∀〈~xR,~xS〉 ∈ DR,S, ΘS
k(~xS)−ΘR

k (~xR)≥ 1

Definition (Weak dependence satisfaction)

Given DR,S, the dependence is weakly satisfied at dimension k if

∀〈~xR,~xS〉 ∈ DR,S, Θ
S
k(~xS)−Θ

R
k (~xR)≥ 0

∃〈~xR,~xS〉 ∈ DR,S, Θ
S
k(~xS) = Θ

R
k (~xR)

OSU 18

Multiimensional Scheduling: Polyhedral Compilation Foundations - #4

Program Legality and Existence Results

I All dependence must be strongly satisfied for the program to be correct
I Once a dependence is strongly satisfied at level k, it does not

contribute to the constraints of level k + i

I Unlike with 1-d schedules, it is always possible to build a legal
multidimensional schedule for a SCoP [Feautrier]

Theorem (Existence of an affine schedule)

Every static control program has a multdidimensional affine schedule

OSU 19

Multiimensional Scheduling: Polyhedral Compilation Foundations - #4

Reformulation of the Precedence Condition
I We introduce variable δ

DR,S
1 to model the dependence satisfaction

I Considering the first row of the scheduling matrices, to preserve the
precedence relation we have:

∀DR,S, ∀〈~xR,~xS〉 ∈ DR,S, ΘS
1(~xS)−ΘR

1 (~xR)≥ δ
DR,S
1

δ
DR,S
1 ∈ {0,1}

Lemma (Semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if:

∀DR,S, ∃p ∈ {1, . . . ,m}, δ
DR,S
p = 1

∧ ∀j < p, δ
DR,S
j = 0

∧ ∀j ≤ p,∀〈~xR,~xS〉 ∈ DR,S, Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
j

OSU 20

Multiimensional Scheduling: Polyhedral Compilation Foundations - #4

A Greedy Scheduling Algorithm

I Objective: maximize fine-grain parallelism
I Equivalent to strongly satisfying the maximum number of dependences

at the current level
I Find this set of schedules (objective 1)
I Find the schedule with minimal latency in this set (objective 2)

I Proceeds greedily: removes all previously strongly solved dependence,
and solve the problem for the next schedule dimension

Exercise: Write the objective function which maximizes the number of
dependences strongly satisfied at a given schedule level k

max{∑i δi
k | ΘS

k(~xS)−ΘR
k (~xR)≥ δ

DR,S
k }

OSU 21

Multiimensional Scheduling: Polyhedral Compilation Foundations - #4

A Greedy Scheduling Algorithm

I Objective: maximize fine-grain parallelism
I Equivalent to strongly satisfying the maximum number of dependences

at the current level
I Find this set of schedules (objective 1)
I Find the schedule with minimal latency in this set (objective 2)

I Proceeds greedily: removes all previously strongly solved dependence,
and solve the problem for the next schedule dimension

Exercise: Write the objective function which maximizes the number of
dependences strongly satisfied at a given schedule level k

max{∑i δi
k | ΘS

k(~xS)−ΘR
k (~xR)≥ δ

DR,S
k }

OSU 22

Multiimensional Scheduling: Polyhedral Compilation Foundations - #4

Some Interesting Properties

I Feautrier’s greedy heuristic extracts the maximal amount of fine-grain
parallelism [Vivien]

I The maximal set of dependences which can be strongly solved at a
given schedule level is unique

I This is true only if you do not bound the schedule coefficients

I The set of constraints to select a schedule at a given level are
independent

I This formulation does not allow to build an ILP which considers multiple
schedule levels, requires instead to build greedy algorithm (e.g., PluTo)

OSU 23

Multiimensional Scheduling: Polyhedral Compilation Foundations - #4

Next Week

I Building the set of all legal multidimensional schedules
I Permutability, tiling and memory optimizations
I Likely the last lecture...

In 2 weeks, I would like to have a student present a paper:
I Bondhugula, CC’08
I Irigoin and Triolet, POPL’88
I Bastoul, PACT’04
I Trifunovic, PACT’09

OSU 24

	Introduction
	Exercise
	One-dimensional Scheduling
	Linear Programming
	One-Dimensional Scheduling
	Multiimensional Scheduling

