Polyhedral Compilation Foundations

Louis-Noël Pouchet

pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Feb 8, 2010

888.11, Class #3

Overview of Today's Lecture

Outline:

- Transformation in the polyhedral representation
 - Affine scheduling
 - Scanning hyperplane
 - Legal transformation
- One-dimensional affine schedules
 - Convex set of legal schedules
 - Objective functions

Mathematical concepts:

- Affine functions
- Affine form of Farkas Lemma

Affine Scheduling

Definition (Affine schedule)

Given a statement *S*, a *p*-dimensional affine schedule Θ^R is an affine form on the outer loop iterators \vec{x}_S and the global parameters \vec{n} . It is written:

$$\Theta^{S}(\vec{x}_{S}) = \mathbf{T}_{S}\begin{pmatrix} \vec{x}_{S} \\ \vec{n} \\ 1 \end{pmatrix}, \quad \mathbf{T}_{S} \in \mathbb{K}^{p \times dim(\vec{x}_{S}) + dim(\vec{n}) + 1}$$

A schedule assigns a timestamp to each executed instance of a statement

- If T is a vector, then Θ is a one-dimensional schedule
- If T is a matrix, then Θ is a multidimensional schedule

Original Schedule

Т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Original Schedule

$$\begin{array}{c} \text{for } (\mathbf{i} = 0; \ \mathbf{i} < \mathbf{n}; \ ++\mathbf{i}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{S1: } C[\mathbf{i}][\mathbf{j}] = 0; \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \text{S2: } C[\mathbf{i}][\mathbf{j}] \ += \mathbf{A}[\mathbf{i}][\mathbf{k}] \\ \mathbf{B}[\mathbf{k}][\mathbf{j}]; \\ \end{array} \\ \end{array} \\ \left\{ \begin{array}{c} \Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} \mathbf{i} \\ \mathbf{n} \\ \mathbf{n} \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} \mathbf{i} \\ \mathbf{n} \\ \mathbf{n$$

Т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Original Schedule

$$\begin{array}{c} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ \text{S2: } C[i][j] \ += A[i][k] \\ \mathbb{B}[k][j]; \\ \end{array} \\ \left\{ \begin{array}{c} \Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} i \\ n \\ 1 \end{pmatrix} \\ \end{array} \right\} \\ \end{array} \\ \left\{ \begin{array}{c} \Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \left\{ \begin{array}{c} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++k) \\ C[i][j] \ = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ C[i][j] \ += A[i][k] \\ \mathbb{B}[k][j]; \\ \mathbb{B}[k][j]; \\ \end{array} \right\} \\ \end{array} \right\}$$

Т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Distribute loops

$$\begin{array}{l} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ \text{S2: } C[i][j] \ += A[i][k] \ast \\ B[k][j]; \\ \end{array} \\ \begin{array}{l} \Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \end{array} \\ \begin{array}{l} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{c[i][j] = 0; } \\ \text{for } (i = n; \ i < 2^{n}; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (i = n; \ i < 2^{n}; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (i = n; \ i < 2^{n}; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++j) \\ \text{for } (k$$

ī.

All instances of S1 are executed before the first S2 instance

Distribute loops + Interchange loops for S2

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += A[i][k] * \\ B[k][j]; \\ \end{cases} \\ \Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \text{for } (i = 0; i < n; ++i) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (i = 0; i < n; ++j) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (i = 0; i < n; ++j) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (i = 0; i < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ C[i][j] = 0; \\ \text{for } (i = 0; i < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ C[i][j] = 0; \\ \text{for } (i = 0; i < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++$$

i.

▶ The outer-most loop for S2 becomes k

Illegal schedule

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += A[i][k] * \\ B[k][j]; \\ \end{cases} \\ \Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (k = 0; k < n; ++k) \\ \text{for } (i = 0; j < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ C[i][j] += A[i][k] * \\ B[k][j]; \\ \text{for } (i = n; i < 2*n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \end{cases}$$

L

All instances of S1 are executed <u>after</u> the last S2 instance

A legal schedule

Delay the S2 instances

Constraints must be expressed between Θ^{S1} and Θ^{S2}

I.

Implicit fine-grain parallelism

L

• Number of rows of $\Theta \leftrightarrow$ number of outer-most <u>sequential</u> loops

Representing a schedule

$$\Theta \vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} . (\mathbf{i} \ \mathbf{j} \ \mathbf{i} \ \mathbf{j} \ \mathbf{k} \ \mathbf{n} \ \mathbf{n} \ \mathbf{1} \ \mathbf{1})^{T}$$

Representing a schedule

$$\Theta.\vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} . (\mathbf{i} \ \mathbf{j} \ \mathbf{i} \ \mathbf{j} \ \mathbf{k} \ \mathbf{n} \ \mathbf{n} \ \mathbf{1} \ \mathbf{1} \ \mathbf{1})^T$$

Representing a schedule

	Transformation	Description
ī	reversal	Changes the direction in which a loop traverses its iteration range
	skewing	Makes the bounds of a given loop depend on an outer loop counter
	interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation
\vec{p}	fusion	Fuses two loops, a.k.a. jamming
	distribution	Splits a single loop nest into many, a.k.a. fission or splitting
С	peeling	Extracts one iteration of a given loop
	shifting	Allows to reorder loops

Pictured Example

Example of 2 extended dependence graphs

Legal Program Transformation

A few properties:

- A transformation is illegal if a dependence crosses the hyperplane backwards
- A dependence going forward between 2 hyperplanes indicates sequentiality
- No dependence between any point of the hyperplane indicates parallelism

Definition (Precedence condition)

Given Θ^R a schedule for the instances of R, Θ^S a schedule for the instances of S. Θ^R and Θ^S are legal schedules if $\forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S}$:

 $\Theta_R(\vec{x}_R) \prec \Theta_S(\vec{x}_S)$

Scheduling in the Polyhedral Model

Constraints:

- > The schedule must be legal, for all dependences
- Dependence constraints have to be turned into constraints on the solution set

Scheduling:

- Among all possibilities, one has to be picked
- Optimal solution requires to consider all legal possible schedules

One-Dimensional Affine Schedules

For the rest of the lecture, we focus on 1-d schedules

- Simple program: 1 loop, 1 polyhedral statement
- 2 dependences:
 - ▶ RAW: $A[i] \rightarrow A[i 1]$
 - ▶ WAR: $A[i + 1] \rightarrow A[i]$

Checking the Legality of a Schedule

Checking the Legality of a Schedule

Solution: Check for the existence of pairs of instances in dependence in the dependence polyhedron when the timestamp are equals

A (Naive) Scheduling Approach

- Pick a schedule for the program statements
- Check if it respects all dependences

This is called filtering

Limitations:

- How to use this in combination of an objective function?
- The density of legal 1-d affine schedules is low:

	matmult	locality	fir	h264	crout
i-Bounds	-1,1	-1,1	0,1	-1,1	-3,3
c-Bounds	-1,1	-1,1	0,3	0,4	-3,3
#Sched.	1.9×10^{4}	5.9×10^{4}	1.2×10^{7}	1.8×10^{8}	2.6×10^{15}

11

#Legal	6561	912	792	360	798

Objectives for a Good Scheduling Algorithm

- Build a legal schedule!
- Embed some properties in this legal schedule
 - latency: minimize the time between the first and last iteration
 - parallelism (for placement)
 - permutability (for tiling)
 - ► ...

A 2-step approach:

- Find the solution set of all legal affine schedules
- Find an ILP formulation for the objective function

The Precedence Constraint (Again!)

Precedence constraint adapted to 1-d schedules:

Definition (Causality condition for schedules)

Given $\mathcal{D}_{R,S}$, Θ^R and Θ^S are legal iff for each pair of instances in dependence:

 $\Theta^R(\vec{x_R}) < \Theta^S(\vec{x_S})$

Equivalently:
$$\Delta_{R,S} = \Theta^S(\vec{x_S}) - \Theta^R(\vec{x_R}) - 1 \ge 0$$

- All functions $\Delta_{R,S}$ which are non-negative over the dependence polyhedron represent legal schedules
- For the instances which are not in dependence, we don't care
- First step: how to get all non-negative functions over a polyhedron?

Affine Form of the Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by $A\vec{x} + \vec{b} \ge \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}$$

 λ_0 and $\vec{\lambda^T}$ are called the Farkas multipliers.

Intuition: a positive combination of some positive points is another positive point

The Farkas Lemma: Example

Function:
$$f(x) = ax + b$$

• Domain of x:
$$\{1 \le x \le 3\} \to x - 1 \ge 0, -x + 3 \ge 0$$

► Farkas lemma: $f(x) \ge 0 \Leftrightarrow f(x) = \lambda_0 + \lambda_1(x-1) + \lambda_2(-x+3)$

The system to solve:

Pictured Example

(Courtesy of Cedric Bastoul's thesis!)

Property (Causality condition for schedules)

Given $R\delta S$, Θ^R and Θ^S are legal iff for each pair of instances in dependence:

$$\Theta^R(\vec{x_R}) < \Theta^S(\vec{x_S})$$

Equivalently:
$$\Delta_{R,S} = \Theta^{S}(\vec{x_{S}}) - \Theta^{R}(\vec{x_{R}}) - 1 \ge 0$$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by $A\vec{x} + \vec{b} \ge \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$$

 λ_0 and $\vec{\lambda^T}$ are called the Farkas multipliers.

$$\Theta^{S}(\vec{x_{S}}) - \Theta^{R}(\vec{x_{R}}) - 1 = \lambda_{0} + \vec{\lambda}^{T} \left(D_{R,S} \begin{pmatrix} \vec{x_{R}} \\ \vec{x_{S}} \end{pmatrix} + \vec{d}_{R,S} \right) \ge 0$$

$$\begin{cases} D_{R\delta S} \quad \begin{array}{c} \mathbf{i_R} \quad : \qquad & \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,3}} - \lambda_{D_{1,4}} \\ \mathbf{i_S} \quad : & -\lambda_{D_{1,1}} + \lambda_{D_{1,2}} + \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\ \mathbf{j_S} \quad : & \lambda_{D_{1,7}} - \lambda_{D_{1,8}} \\ \mathbf{n} \quad : & \lambda_{D_{1,4}} + \lambda_{D_{1,6}} + \lambda_{D_{1,8}} \\ \mathbf{1} \quad : & \lambda_{D_{1,0}} \end{cases} \end{cases}$$

$$\Theta^{S}(\vec{\mathbf{x}_{S}}) - \Theta^{R}(\vec{\mathbf{x}_{R}}) - 1 = \lambda_{0} + \vec{\lambda}^{T} \left(D_{R,S} \begin{pmatrix} \vec{\mathbf{x}_{R}} \\ \vec{\mathbf{x}_{S}} \end{pmatrix} + \vec{d}_{R,S} \right) \ge 0$$

- Solve the constraint system
- Use (purpose-optimized) Fourier-Motzkin projection algorithm
 - Reduce redundancy
 - Detect implicit equalities

- ➤ One point in the space ⇔ one set of legal schedules w.r.t. the dependences
- These conditions for semantics preservation are not new! [Feautrier,92]

Scheduling Algorithm for Multiple Dependences

Algorithm

- Compute the schedule constraints for each dependence
- Intersect all sets of constraints
- Output is a convex solution set of all legal one-dimensional schedules

- Computation is fast, but requires eliminating variables in a system of inequalities: projection
- Can be computed as soon as the dependence polyhedra are known

Selecting a Good Schedule

Build a cost function to select a (good) schedule:

Minimize latency: bound the execution time

Bound the program execution / find bounded delay [Feautrier] Given $L = w_0 + \vec{u}.\vec{w}$, compute $min(\Theta(\vec{x}) - L)$ s.t. Θ is legal

Exhibit coarse-grain parallelism

Placement constraints [Lim/Lam] $\Theta^{R}(\vec{x}_{R}) = \Theta^{S}(\vec{x}_{S})$ for all instances s.t. Θ is legal

Many more possible...

Limitations of One-dimensional Schedules

Not all programs have a legal one-dimensional schedule

```
Example
for (t = 0; t < L; ++t)
for (i = 1; i < N - 1; ++i)
for (j = 1; j < N - 1; ++j)
A[i][j] = A[i-1][j-1] + A[i+1][j] + A[i][j+1];</pre>
```

Not all compositions of transformation are possible

- Interchange in inner-loops
- Fusion / distribution of inner-loops

Next week: the general case of multidimensional schedules