
Polyhedral Compilation Foundations

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Feb 1, 2010

888.11, Class #2



Introduction: Polyhedral Compilation Foundations - #2

Overview of Today’s Lecture

Outline:
I Follow-up on Z-polyhedra
I Data dependence

I Dependence representations
I Various analysis
I Data dependence algorithm in Candl/PoCC/Pluto

Mathematical concepts:
I Affine mapping
I Image, preimage by an affine mapping
I Cartesian product of polyhedra

OSU 2



Mathematical Concepts: Polyhedral Compilation Foundations - #2

Affine Function and Lattices (Reminder)

Definition (Affine function)

A function f : Km →Kn is affine if there exists a vector~b ∈Kn and a matrix
A ∈Km×n such that:

∀~x ∈Km, f (~x) = A~x+~b

Definition (Lattice)

A subset L in Qn is a lattice if is generated by integral combination of finitely
many vectors: a1,a2, . . . ,an (ai ∈Qn).

L = L(a1, . . . ,an) = {λ1a1 + . . .+λnan | λi ∈ Z}

If the ai vectors have integral coordinates, L is an integer lattice.

Example: L1 = {2i+1,3j+5 | i, j ∈ Z} is a lattice.

OSU 3



Mathematical Concepts: Polyhedral Compilation Foundations - #2

Image and Preimage

Definition (Image)

The image of a polyhedron P ∈ Zn by an affine function f : Zn → Zm is a
Z-polyhedron P ′:

P ′ = {f (~x) ∈ Zm |~x ∈ P}

Definition (Preimage)

The preimage of a polyhedron P ∈ Zn by an affine function f : Zn → Zm is a
Z-polyhedron P ′:

P ′ = {~x ∈ Zn | f (~x) ∈ P}

We have Image(f−1,P ) = Preimage(f ,P ) if f is invertible.

OSU 4



Mathematical Concepts: Polyhedral Compilation Foundations - #2

Relation Between Image, Preimage and
Z-polyhedra

I The image of a Z-polyhedron by an unimodular function is a
Z-polyhedron

I The preimage of a Z-polyhedron by an affine function is a Z-polyhedron

I The image of a polyhedron by an affine invertible function is a
Z-polyhedron

I The preimage of a Z-polyhedron by an affine function is a Z-polyhedron

I The image by a non-invertible function is not a Z-polyhedron

OSU 5



Example: Polyhedral Compilation Foundations - #2

Returning to the Example

Exercise: Compute the set of cells of A accessed

Example

for (i = 0; i < N; ++i)
for (j = i; j < N; ++j)
A[2i + 3][4j] = i * j;

I DS: {i, j | 0 ≤ i < N, i ≤ j < N}
I Function: fA : {2i+3,4j | i, j ∈ Z}
I Image(fA,DS) is the set of cells of A accessed (a Z-polyhedron):

I Polyhedron: Q : {i, j | 3 ≤ i < 2N +2, 0 ≤ j < 4N}
I Lattice: L : {2i+3,4j | i, j ∈ Z}

OSU 6



Data Dependence: Polyhedral Compilation Foundations - #2

Data Dependence

Definition (Bernstein conditions)

Given two references, there exists a dependence between them if the three
following conditions hold:

I they reference the same array (cell)
I one of this access is a write
I the two associated statements are executed

Three categories of dependences:
I RAW (Read-After-Write, aka flow): first reference writes, second reads
I WAR (Write-After-Read, aka anti): first reference reads, second writes
I WAW (Write-After-Write, aka output): both references writes

Another kind: RAR (Read-After-Read dependences), used for locality/reuse
computations

OSU 7



Data Dependence: Polyhedral Compilation Foundations - #2

Purpose of Dependence Analysis

I Not all program transformations preserve the semantics
I Semantics is preserved if the dependence are preserved

I In standard frameworks, it means reordering statements
I Statements containing dependent references should not be executed in a

different order
I Granularity: usually a reference to an array

I In the polyhedral framework, it means reordering statement instances
I Statement instances containing dependent references should not be

executed in a different order
I Granularity: a reference to an array cell

OSU 8



Data Dependence: Polyhedral Compilation Foundations - #2

Illustrations

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = A[i + N][j];

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = i * j;

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
B[i][j] = A[i][j];

OSU 9



Data Dependence: Polyhedral Compilation Foundations - #2

An Intuitive Dependence Test Algorithm

Idea: compute the sets associated to the Bernstein conditions

Given two references a and b to the same array:
I Compute Wa: Image(fa,Da) if a is a write, /0 otherwise
I Compute Ra: Image(fa,Da) if a is a read, /0 otherwise
I Compute Wb: Image(fb,Db) if b is a write, /0 otherwise
I Compute Rb: Image(fb,Db) if b is a read, /0 otherwise

I If Wa∩Rb 6= /0∨Wa∩Wb 6= /0∨Ra∩Wb 6= /0 then aδb

OSU 10



Data Dependence: Polyhedral Compilation Foundations - #2

A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program

I Create the Data Dependence Graph, with one node per statement
I For all pairs a,b of distinct references, do

If a and b reference the same array, do

(i) Compute Wa, Ra, Wb, Rv

(ii) If Wa∩Rb 6= /0∨Wa∩Wb 6= /0∨Ra∩Wb 6= /0 then

Add an edge between the statement with the reference a

and the statement with the reference b in the DDG

OSU 11



Data Dependence: Polyhedral Compilation Foundations - #2

A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program

I Create the Data Dependence Graph, with one node per statement
I For all pairs a,b of distinct references, do

If a and b reference the same array, do

(i) Compute Wa, Ra, Wb, Rv

(ii) If Wa∩Rb 6= /0∨Wa∩Wb 6= /0∨Ra∩Wb 6= /0 then

Add an edge between the statement with the reference a

and the statement with the reference b in the DDG

OSU 12



Data Dependence: Polyhedral Compilation Foundations - #2

Connection with Statement Instances

Objective: get the set of instances which are in dependence, not only
statements

Exercise: Compute this set, from Wa and Rb (RAW dependence)

I Idea: Preimage(fa,Wa∩Rb) gives the set of instances
I Must generalize to multiple references, we lose convexity (unions)

OSU 13



Data Dependence: Polyhedral Compilation Foundations - #2

Connection with Statement Instances

Objective: get the set of instances which are in dependence, not only
statements

Exercise: Compute this set, from Wa and Rb (RAW dependence)

I Idea: Preimage(fa,Wa∩Rb) gives the set of instances
I Must generalize to multiple references, we lose convexity (unions)

OSU 14



Data Dependence: Polyhedral Compilation Foundations - #2

Some Terminology on Dependence Relations

We categorize the dependence relation in three kinds:
I Uniform dependences: the distance between two dependent iterations

is a constant
I ex: i → i+1
I ex: i, j → i+1, j+1

I Non-uniform dependences: the distance between two dependent
iterations varies along the execution

I ex: i → i+ j
I ex: i → 2i

I Parametric dependences: at least a parameter is involved in the
dependence relation

I ex: i → i+N
I ex: i+N → j+M

OSU 15



Data Dependence: Polyhedral Compilation Foundations - #2

Data Dependence Analysis

Objective: compute the set of statement instances which are in
dependence

Some of the several possible approaches:
I Compute the transitive closure of the access function

I Problems: transitive closure is not convex in general, and not even
computable in many situations

I Compute an indicator of the distance between two dependent iterations
I Problems: approximative for non-uniform dependences

I dependence cone: do the union of dependence relations
I Problems: over-approximative as it requires union and transitive closure to

model all dependences in a single cone

I Retained solution: dependence polyhedron, list of sets of dependent
instances

OSU 16



Dependence Polyhedra: Polyhedral Compilation Foundations - #2

Dependence Polyhedron [1/3]

Principle: model all pairs of instances in dependence

Definition (Dependence of statement instances)

A statement S depends on a statement R (written R → S) if there exists an
operation S(~xS) and R(~xR) and a memory location m such that:

1 S(~xS) and R(~xR) refer to the same memory location m, and at least one
of them writes to that location,

2 xS and xR belongs to the iteration domain of R and S,
3 in the original sequential order, S(~xS) is executed before R(~xR).

OSU 17



Dependence Polyhedra: Polyhedral Compilation Foundations - #2

Dependence Polyhedron [2/3]

1 Same memory location: equality of the subscript functions of a pair of
references to the same array: FS~xS +aS = FR~xR +aR.

2 Iteration domains: both S and R iteration domains can be described
using affine inequalities, respectively AS~xS + cS ≥ 0 and AR~xR + cR ≥ 0.

3 Precedence order : each case corresponds to a common loop depth,
and is called a dependence level.

For each dependence level l, the precedence constraints are the equality
of the loop index variables at depth lesser to l: xR,i = xS,i for i < l and
xR,l > xS,l if l is less than the common nesting loop level. Otherwise, there
is no additional constraint and the dependence only exists if S is textually
before R.

Such constraints can be written using linear inequalities:
Pl,S~xS−Pl,R~xR +b ≥ 0.

OSU 18



Dependence Polyhedra: Polyhedral Compilation Foundations - #2

Dependence Polyhedron [3/3]

The dependence polyhedron for R → S at a given level l and for a given pair
of references fR, fS is described as [Feautrier/Bastoul]:

DR,S,fR,fS,l : D
(
~xS

~xR

)
+d =

 FS −FR
AS 0

0 AR
PS −PR

(
~xS
~xR

)
+

aS−aR
cS
cR
b

 = 0

≥~0

A few properties:
I We can always build the dep polyhedron for a given pair of affine array

accesses (it is convex)
I It is exact, if the iteration domain and the access functions are also exact
I it is over-approximated if the iteration domain or the access function is

an approximation

OSU 19



Dependence Polyhedra: Polyhedral Compilation Foundations - #2

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)

OSU 20



Dependence Polyhedra: Polyhedral Compilation Foundations - #2

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =


1 0 0 −1

−1 0 1 0
0 1 0 −1

−1 0 1 0
−1 −1 1 2

 .


i
j
n
1

≥~0

OSU 21



Dependence Polyhedra: Polyhedral Compilation Foundations - #2

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

fs( ~xS2) =
[

1 0 0 0
]
.

 ~xS2
n
1



fa( ~xS2) =
[

1 0 0 0
0 1 0 0

]
.

 ~xS2
n
1



fx( ~xS2) =
[

0 1 0 0
]
.

 ~xS2
n
1


OSU 22



Dependence Polyhedra: Polyhedral Compilation Foundations - #2

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :



1 −1 0 0
1 0 0 −1

−1 0 0 3
0 1 0 −1
0 −1 0 3
0 0 1 −1
0 0 −1 3


.


iS1
iS2
jS2
1

 = 0

≥~0

i

S1 iterations

S2 iterations

OSU 23



Dependence Polyhedra: Polyhedral Compilation Foundations - #2

A Dependence Polyhedra Construction Algorithm

1 Initialize reduced dependence graph with one node per program
statement

2 For each pairs of statements R,S do

3 For each pairs of distinct references fR, fS to the same array, do

4 If R,S does not share any loop, min_depth = 0 else min_depth = 1
5 For each level l from min_depth to nb_common_loops, do

6 Build the dependence polyhedron DR,S,fR,fS,l

7 If DR,S,fR,fS,l 6= /0 then

8 If fR is a write and fS is a read, type = RAW

9 If fR is a write and fS is a write, type = WAW

10 If fR is a read and fS is a write, type = WAR

11 If fR is a read and fS is a read, type = RAR

12 add_edge(R,S,{l,DR,S,fR,fS,l, type})

OSU 24



Dependence Polyhedra: Polyhedral Compilation Foundations - #2

The PolyLib Matrix Format

All our tools use this notation (Candl, Pluto, Cloog, PIPLib, etc.)

Given DR,S :


1 −1 0 0 0
1 0 0 0 0

−1 0 0 1 0
0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0

 .

iR
iS
jS
n
1

 =0
≥~0

It is written:


0 1 −1 0 0 0
1 1 0 0 0 0
1 −1 0 0 1 0
1 0 1 0 0 0
1 0 −1 0 1 0
1 0 0 1 0 0
1 0 0 −1 1 0

 .

iR
iS
jS
n
1


On the first column, 0 stands for = 0, 1 for ≥ 0

OSU 25



Exercise: Polyhedral Compilation Foundations - #2

Practicing

Exercise: Give all dependence polyhedra

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = A[i + 1][j + 1];

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = i * j;

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
B[i][j] = A[i][j];

OSU 26



Parallelism: Polyhedral Compilation Foundations - #2

Connection with Parallelism

I A dependence is loop-carried if 2 iterations of this loop access the same
array cell

I If no such dependence exists, the loop is parallel
I A parallel loop can be transformed arbitrarily
I OpenMP free parallelization or vectorization is possible

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
C[i][j] = 0;

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
for (k = 0; k < N; ++k)
C[i][j] += A[i][k] * B[k][j];

OSU 27



Parallelism: Polyhedral Compilation Foundations - #2

Practicing Parallelism

Exercise: Give all parallel loops

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = i * j;

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
B[i][j] = A[i][j];

Example

for (t = 0; t < L; ++t)
for (j = 1; j < N - 1; ++j)
A[j] = A[j - 1] + A[j] + A[j + 1];

OSU 28



Parallelism: Polyhedral Compilation Foundations - #2

Visual Intuition

I Synchronization-free parallelism means "slices" in the dependence
polyhedron

I The shape of the independent slices gives an intuition of which loop of
the program are parallel

I Transforming the code may expose (more) parallelism possibilities

I Be careful of multiple references: must do the union of the dependence
relations

OSU 29



Dependence Analysis: Polyhedral Compilation Foundations - #2

Other Techniques for Dependence Analysis

I Scalars are a particular case of array (c = c[0])
I Privatization: a variable is written before it is read (use-def chains)
I Renaming: two privatized variables having the same name
I Expansion: remove dependences by increasing the array dimension
I Transform program to Single-Assignment-Form (SSA)

I Scalar privatization / renaming / expansion is implemented in Candl
I Maximal static expansion is efficient but difficult!

OSU 30



Dependence Analysis: Polyhedral Compilation Foundations - #2

Hands On!

Demo of Clan + Candl

OSU 31



Scheduling: Polyhedral Compilation Foundations - #2

A First Intuition About Scheduling

Intuition: the source iteration must be executed before the target
iteration

Definition (Precedence condition)

Given ΘR a schedule for the instances of R, ΘS a schedule for the instances
of S. Then, ∀〈~xR,~xS〉 ∈ DR,S:

ΘR(~xR)≺ ΘS(~xS)

Next week: scheduling and semantics preservation (Farkas method, convex
space of legal schedules, tiling hyperplane method)

OSU 32


	Introduction
	Mathematical Concepts
	Example
	Data Dependence
	Dependence Polyhedra
	Exercise
	Parallelism
	Dependence Analysis
	Scheduling

