Polyhedral Compilation Foundations

Louis-Noël Pouchet

pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Feb 1, 2010

888.11, Class #2

Overview of Today's Lecture

Outline:

- ► Follow-up on *Z*-polyhedra
- Data dependence
 - Dependence representations
 - Various analysis
 - Data dependence algorithm in Candl/PoCC/Pluto

Mathematical concepts:

- Affine mapping
- Image, preimage by an affine mapping
- Cartesian product of polyhedra

Affine Function and Lattices (Reminder)

Definition (Affine function)

A function $f : \mathbb{K}^m \to \mathbb{K}^n$ is affine if there exists a vector $\vec{b} \in \mathbb{K}^n$ and a matrix $A \in \mathbb{K}^{m \times n}$ such that:

$$\forall \vec{x} \in \mathbb{K}^m, \ f(\vec{x}) = A\vec{x} + \vec{b}$$

Definition (Lattice)

A subset *L* in \mathbb{Q}^n is a lattice if is generated by integral combination of finitely many vectors: a_1, a_2, \ldots, a_n ($a_i \in \mathbb{Q}^n$).

$$L = L(a_1, \ldots, a_n) = \{\lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}\}$$

If the a_i vectors have integral coordinates, L is an integer lattice.

Example: $L_1 = \{2i + 1, 3j + 5 \mid i, j \in \mathbb{Z}\}$ is a lattice.

Image and Preimage

Definition (Image)

The image of a polyhedron $\mathcal{P} \in \mathbb{Z}^n$ by an affine function $f : \mathbb{Z}^n \to \mathbb{Z}^m$ is a Z-polyhedron \mathcal{P}' :

 $\mathcal{P}' = \{ f(\vec{x}) \in \mathbb{Z}^m \mid \vec{x} \in \mathcal{P} \}$

Definition (Preimage)

The preimage of a polyhedron $\mathcal{P} \in \mathbb{Z}^n$ by an affine function $f : \mathbb{Z}^n \to \mathbb{Z}^m$ is a \mathcal{Z} -polyhedron \mathcal{P}' :

$$\mathcal{P}' = \{ \vec{x} \in \mathbb{Z}^n \mid f(\vec{x}) \in \mathcal{P} \}$$

We have $Image(f^{-1}, \mathcal{P}) = Preimage(f, \mathcal{P})$ if f is invertible.

Relation Between Image, Preimage and \mathcal{Z} -polyhedra

- \blacktriangleright The image of a $\mathbb{Z}\text{-polyhedron}$ by an unimodular function is a $\mathbb{Z}\text{-polyhedron}$
- \blacktriangleright The preimage of a $\mathbb Z$ -polyhedron by an affine function is a $\mathbb Z$ -polyhedron
- ► The image of a polyhedron by an affine invertible function is a *Z*-polyhedron
- ► The preimage of a *Z*-polyhedron by an affine function is a *Z*-polyhedron
- ► The image by a non-invertible function is **not** a *Z*-polyhedron

Returning to the Example

Exercise: Compute the set of cells of A accessed

xample	
or (i = 0; i < N; ++i)	1
for (j = i; j < N; ++j)	1
A[2i + 3][4j] = i * j;	J

- $\mathcal{D}_{S}: \{i, j \mid 0 \le i < N, i \le j < N\}$
- Function: $f_A : \{2i + 3, 4j \mid i, j \in \mathbb{Z}\}$
- $Image(f_A, \mathcal{D}_S)$ is the set of cells of A accessed (a Z-polyhedron):
 - Polyhedron: $Q: \{i, j \mid 3 \le i < 2N+2, 0 \le j < 4N\}$
 - Lattice: $L: \{2i+3, 4j \mid i, j \in \mathbb{Z}\}$

Data Dependence

Definition (Bernstein conditions)

Given two references, there exists a dependence between them if the three following conditions hold:

- they reference the same array (cell)
- one of this access is a write
- the two associated statements are executed

Three categories of dependences:

- RAW (Read-After-Write, aka flow): first reference writes, second reads
- ▶ WAR (Write-After-Read, aka anti): first reference reads, second writes
- ► WAW (Write-After-Write, aka output): both references writes

Another kind: RAR (Read-After-Read dependences), used for locality/reuse computations

Purpose of Dependence Analysis

- Not all program transformations preserve the semantics
- Semantics is preserved if the dependence are preserved
- In standard frameworks, it means reordering statements
 - Statements containing dependent references should not be executed in a different order
 - Granularity: usually a reference to an array
- In the polyhedral framework, it means reordering statement instances
 - Statement instances containing dependent references should not be executed in a different order
 - Granularity: a reference to an array cell

Illustrations

Example

```
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = A[i + N][j];</pre>
```

```
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = i * j;
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
B[i][j] = A[i][j];</pre>
```

An Intuitive Dependence Test Algorithm

Idea: compute the sets associated to the Bernstein conditions

Given two references *a* and *b* to the same array:

- ▶ Compute \mathcal{W}_a : $Image(f_a, \mathcal{D}_a)$ if *a* is a write, Ø otherwise
- Compute \mathcal{R}_a : $Image(f_a, \mathcal{D}_a)$ if a is a read, 0 otherwise
- Compute \mathcal{W}_b : $Image(f_b, \mathcal{D}_b)$ if b is a write, \emptyset otherwise
- Compute \mathcal{R}_b : $Image(f_b, \mathcal{D}_b)$ if b is a read, \emptyset otherwise

• If
$$\mathcal{W}_a \cap \mathcal{R}_b \neq \emptyset \lor \mathcal{W}_a \cap \mathcal{W}_b \neq \emptyset \lor \mathcal{R}_a \cap \mathcal{W}_b \neq \emptyset$$
 then $a\delta b$

A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program

A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program

- Create the Data Dependence Graph, with one node per statement
- ▶ For all pairs *a*,*b* of distinct references, do

If a and b reference the same array, do

(i) Compute \mathcal{W}_a , \mathcal{R}_a , \mathcal{W}_b , \mathcal{R}_v

(ii) If $\mathcal{W}_a \cap \mathcal{R}_b \neq \emptyset \lor \mathcal{W}_a \cap \mathcal{W}_b \neq \emptyset \lor \mathcal{R}_a \cap \mathcal{W}_b \neq \emptyset$ then

Add an edge between the statement with the reference a and the statement with the reference b in the DDG

Connection with Statement Instances

Objective: get the set of **instances** which are in dependence, not only statements

Exercise: Compute this set, from \mathcal{W}_a and \mathcal{R}_b (RAW dependence)

Connection with Statement Instances

Objective: get the set of **instances** which are in dependence, not only statements

Exercise: Compute this set, from \mathcal{W}_a and \mathcal{R}_b (RAW dependence)

- ▶ Idea: $Preimage(f_a, W_a \cap \mathcal{R}_b)$ gives the set of instances
- Must generalize to multiple references, we lose convexity (unions)

Some Terminology on Dependence Relations

We categorize the dependence relation in three kinds:

- Uniform dependences: the distance between two dependent iterations is a constant
 - ex: $i \rightarrow i+1$
 - ex: $i, j \rightarrow i+1, j+1$
- Non-uniform dependences: the distance between two dependent iterations varies along the execution
 - ex: $i \rightarrow i + j$
 - ex: $i \rightarrow 2i$
- Parametric dependences: at least a parameter is involved in the dependence relation
 - ex: $i \rightarrow i + N$
 - ex: $i + N \rightarrow j + M$

Data Dependence Analysis

Objective: compute the set of statement instances which are in dependence

Some of the several possible approaches:

- Compute the transitive closure of the access function
 - Problems: transitive closure is not convex in general, and not even computable in many situations
- Compute an indicator of the distance between two dependent iterations
 - Problems: approximative for non-uniform dependences
- dependence cone: do the union of dependence relations
 - Problems: over-approximative as it requires union and transitive closure to model all dependences in a single cone
- Retained solution: dependence polyhedron, list of sets of dependent instances

Dependence Polyhedron [1/3]

Principle: model all pairs of instances in dependence

Definition (Dependence of statement instances)

A statement *S* depends on a statement *R* (written $R \rightarrow S$) if there exists an operation $S(\vec{x}_S)$ and $R(\vec{x}_R)$ and a memory location *m* such that:

- S(x
 _S) and R(x
 _R) refer to the same memory location *m*, and at least one of them writes to that location,
- 2 x_S and x_R belongs to the iteration domain of R and S,
- **③** in the original sequential order, $S(\vec{x}_S)$ is executed before $R(\vec{x}_R)$.

Dependence Polyhedron [2/3]

- Same memory location: equality of the subscript functions of a pair of references to the same array: $F_S \vec{x}_S + a_S = F_R \vec{x}_R + a_R$.
- 2 *Iteration domains*: both *S* and *R* iteration domains can be described using affine inequalities, respectively $A_S \vec{x}_S + c_S \ge 0$ and $A_R \vec{x}_R + c_R \ge 0$.

Precedence order: each case corresponds to a common loop depth, and is called a *dependence level*.

For each dependence level *l*, the precedence constraints are the equality of the loop index variables at depth lesser to *l*: $x_{R,i} = x_{S,i}$ for i < l and $x_{R,l} > x_{S,l}$ if *l* is less than the common nesting loop level. Otherwise, there is no additional constraint and the dependence only exists if *S* is textually before *R*.

Such constraints can be written using linear inequalities:

 $P_{l,S}\vec{x}_S - P_{l,R}\vec{x}_R + b \ge 0.$

Dependence Polyhedron [3/3]

The dependence polyhedron for $R \rightarrow S$ at a given level l and for a given pair of references f_R, f_S is described as [Feautrier/Bastoul]:

$$\mathcal{D}_{R,S,f_R,f_S,l}: D\begin{pmatrix}\vec{x}_S\\\vec{x}_R\end{pmatrix} + d = \begin{bmatrix}\frac{F_S - F_R}{A_S & 0}\\0 & A_R\\PS & -P_R\end{bmatrix}\begin{pmatrix}\vec{x}_S\\\vec{x}_R\end{pmatrix} + \begin{pmatrix}a_S - a_R\\c_S\\c_R\\b\end{pmatrix} \quad \frac{=0}{\geq \vec{0}}$$

A few properties:

- We can always build the dep polyhedron for a given pair of affine array accesses (it is convex)
- It is exact, if the iteration domain and the access functions are also exact
- it is over-approximated if the iteration domain or the access function is an approximation

Static Control Parts

Loops have affine control only (over-approximation otherwise)

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}

$$f_{s}(\vec{x_{52}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

for (i=0; i. s[i] = 0;
. for (j=0; j. . s[i] = s[i]+a[i][j]*x[j];
}
$$f_{s}(\vec{x_{52}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

$$f_{x}(\vec{x_{52}}) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}
- ► Data dependence between S1 and S2: a subset of the Cartesian product of D_{S1} and D_{S2} (exact analysis)

A Dependence Polyhedra Construction Algorithm

- 1 Initialize reduced dependence graph with one node per program statement
- 2 For each pairs of statements R, S do
- 3 For each pairs of distinct references f_R, f_S to the same array, do
- 4 If R, S does not share any loop, $min_depth = 0$ else $min_depth = 1$
- 5 For each level *l* from *min_depth* to *nb_common_loops*, do
- 6 Build the dependence polyhedron $\mathcal{D}_{R,S,f_R,f_S,l}$
- 7 If $\mathcal{D}_{R,S,f_R,f_S,l} \neq \emptyset$ then
- 8 If f_R is a write and f_S is a read, type = RAW
- 9 If f_R is a write and f_S is a write, type = WAW
- 10 If f_R is a read and f_S is a write, type = WAR
- 11 If f_R is a read and f_S is a read, type = RAR
- 12 $add_edge(R, S, \{l, \mathcal{D}_{R,S,f_R,f_S,l}, type\})$

The PolyLib Matrix Format

All our tools use this notation (Candl, Pluto, Cloog, PIPLib, etc.)

On the first column, 0 stands for = 0, 1 for ≥ 0

Practicing

Exercise: Give all dependence polyhedra

Example for (i = 0; i < N; ++i)

```
for (j = 0; j < N; ++j)
A[i][j] = A[i + 1][j + 1];</pre>
```

```
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = i * j;
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
B[i][j] = A[i][j];</pre>
```

Connection with Parallelism

- A dependence is loop-carried if 2 iterations of this loop access the same array cell
- If no such dependence exists, the loop is parallel
- A parallel loop can be transformed arbitrarily
- OpenMP free parallelization or vectorization is possible

```
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
C[i][j] = 0;
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
for (k = 0; k < N; ++k)
C[i][j] += A[i][k] * B[k][j];</pre>
```

Practicing Parallelism

Exercise: Give all parallel loops

Example

```
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = i * j;
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
B[i][j] = A[i][j];</pre>
```

Visual Intuition

- Synchronization-free parallelism means "slices" in the dependence polyhedron
- The shape of the independent slices gives an intuition of which loop of the program are parallel
- Transforming the code may expose (more) parallelism possibilities
- Be careful of multiple references: must do the union of the dependence relations

Other Techniques for Dependence Analysis

- Scalars are a particular case of array (c = c[0])
- Privatization: a variable is written before it is read (use-def chains)
- Renaming: two privatized variables having the same name
- Expansion: remove dependences by increasing the array dimension
- Transform program to Single-Assignment-Form (SSA)

- Scalar privatization / renaming / expansion is implemented in Candl
- Maximal static expansion is efficient but difficult!

Hands On!

Demo of Clan + Candl

A First Intuition About Scheduling

Intuition: the source iteration must be executed before the target iteration

Definition (Precedence condition)

Given Θ_R a schedule for the instances of R, Θ_S a schedule for the instances of S. Then, $\forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S}$:

 $\Theta_R(\vec{x}_R) \prec \Theta_S(\vec{x}_S)$

Next week: scheduling and semantics preservation (Farkas method, convex space of legal schedules, tiling hyperplane method)