Polyhedral Compilation Foundations

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Feb 1, 2010
888.11, Class \#2

Overview of Today's Lecture

Outline:

- Follow-up on Z-polyhedra
- Data dependence
- Dependence representations
- Various analysis
- Data dependence algorithm in Candl/PoCC/Pluto

Mathematical concepts:

- Affine mapping
- Image, preimage by an affine mapping
- Cartesian product of polyhedra

Affine Function and Lattices (Reminder)

Definition (Affine function)

A function $f: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$ is affine if there exists a vector $\vec{b} \in \mathbb{K}^{n}$ and a matrix $A \in \mathbb{K}^{m \times n}$ such that:

$$
\forall \vec{x} \in \mathbb{K}^{m}, f(\vec{x})=A \vec{x}+\vec{b}
$$

Definition (Lattice)

A subset L in \mathbb{Q}^{n} is a lattice if is generated by integral combination of finitely many vectors: $a_{1}, a_{2}, \ldots, a_{n}\left(a_{i} \in \mathbb{Q}^{n}\right)$.

$$
L=L\left(a_{1}, \ldots, a_{n}\right)=\left\{\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n} \mid \lambda_{i} \in \mathbb{Z}\right\}
$$

If the a_{i} vectors have integral coordinates, L is an integer lattice.

Example: $L_{1}=\{2 i+1,3 j+5 \mid i, j \in \mathbb{Z}\}$ is a lattice.

Image and Preimage

Definition (Image)

The image of a polyhedron $\mathcal{P} \in \mathbb{Z}^{n}$ by an affine function $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ is a Z-polyhedron P^{\prime} :

$$
\mathcal{P}^{\prime}=\left\{f(\vec{x}) \in \mathbb{Z}^{m} \mid \vec{x} \in \mathcal{P}\right\}
$$

Definition (Preimage)

The preimage of a polyhedron $\mathcal{P} \in \mathbb{Z}^{n}$ by an affine function $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ is a Z-polyhedron \mathscr{P}^{\prime} :

$$
\mathcal{P}^{\prime}=\left\{\vec{x} \in \mathbb{Z}^{n} \mid f(\vec{x}) \in \mathscr{P}\right\}
$$

We have $\operatorname{Image}\left(f^{-1}, \mathcal{P}\right)=\operatorname{Preimage}(f, \mathcal{P})$ if f is invertible.

Relation Between Image, Preimage and Z-polyhedra

- The image of a \mathbb{Z}-polyhedron by an unimodular function is a Z-polyhedron
- The preimage of a \mathbb{Z}-polyhedron by an affine function is a \mathbb{Z}-polyhedron
- The image of a polyhedron by an affine invertible function is a z-polyhedron
- The preimage of a Z-polyhedron by an affine function is a Z-polyhedron
- The image by a non-invertible function is not a Z-polyhedron

Returning to the Example

Exercise: Compute the set of cells of A accessed

Example

```
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
        A[2i + 3][4j] = i * j;
```

- $\mathcal{D}_{S}:\{i, j \mid 0 \leq i<N, i \leq j<N\}$
- Function: $f_{A}:\{2 i+3,4 j \mid i, j \in \mathbb{Z}\}$
- Image $\left(f_{A}, \mathcal{D}_{S}\right)$ is the set of cells of A accessed (a Z-polyhedron):
- Polyhedron: $Q:\{i, j \mid 3 \leq i<2 N+2,0 \leq j<4 N\}$
- Lattice: $L:\{2 i+3,4 j \mid i, j \in \mathbb{Z}\}$

Data Dependence

Definition (Bernstein conditions)

Given two references, there exists a dependence between them if the three following conditions hold:

- they reference the same array (cell)
- one of this access is a write
- the two associated statements are executed

Three categories of dependences:

- RAW (Read-After-Write, aka flow): first reference writes, second reads
- WAR (Write-After-Read, aka anti): first reference reads, second writes
- WAW (Write-After-Write, aka output): both references writes

Another kind: RAR (Read-After-Read dependences), used for locality/reuse computations

Purpose of Dependence Analysis

- Not all program transformations preserve the semantics
- Semantics is preserved if the dependence are preserved
- In standard frameworks, it means reordering statements
- Statements containing dependent references should not be executed in a different order
- Granularity: usually a reference to an array
- In the polyhedral framework, it means reordering statement instances
- Statement instances containing dependent references should not be executed in a different order
- Granularity: a reference to an array cell

Illustrations

Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ;++i) \\
& \text { for }(j=0 ; j<N ;++j) \\
& A[i][j]=A[i+N][j] ;
\end{aligned}
$$

Example

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
            A[i][j] = i * j;
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        B[i][j] = A[i][j];
```


An Intuitive Dependence Test Algorithm

Idea: compute the sets associated to the Bernstein conditions

Given two references a and b to the same array:

- Compute \mathcal{W}_{a} : Image $\left(f_{a}, \mathcal{D}_{a}\right)$ if a is a write, \emptyset otherwise
- Compute \mathcal{R}_{a} : Image $\left(f_{a}, \mathcal{D}_{a}\right)$ if a is a read, \emptyset otherwise
- Compute \mathcal{W}_{b} : Image $\left(f_{b}, \mathcal{D}_{b}\right)$ if b is a write, \emptyset otherwise
- Compute \mathcal{R}_{b} : Image $\left(f_{b}, \mathcal{D}_{b}\right)$ if b is a read, \emptyset otherwise
- If $\mathcal{W}_{a} \cap \mathcal{R}_{b} \neq \emptyset \vee \mathcal{W}_{a} \cap \mathcal{W}_{b} \neq \emptyset \vee \mathcal{R}_{a} \cap \mathcal{W}_{b} \neq \emptyset$ then $a \delta b$

A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program

A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program

- Create the Data Dependence Graph, with one node per statement
- For all pairs a, b of distinct references, do

If a and b reference the same array, do
(i) Compute $\mathcal{W}_{a}, \mathcal{R}_{a}, \mathcal{W}_{b}, \mathcal{R}_{v}$
(ii) If $\mathcal{W}_{a} \cap \mathcal{R}_{b} \neq \emptyset \vee \mathcal{W}_{a} \cap \mathcal{W}_{b} \neq \emptyset \vee \mathcal{R}_{a} \cap \mathcal{W}_{b} \neq \emptyset$ then

Add an edge between the statement with the reference a and the statement with the reference b in the DDG

Connection with Statement Instances

Objective: get the set of instances which are in dependence, not only statements

Exercise: Compute this set, from \mathcal{W}_{a} and \mathcal{R}_{b} (RAW dependence)

Connection with Statement Instances

Objective: get the set of instances which are in dependence, not only statements

Exercise: Compute this set, from \mathcal{W}_{a} and \mathcal{R}_{b} (RAW dependence)

- Idea: Preimage $\left(f_{a}, \mathcal{W}_{a} \cap \mathcal{R}_{b}\right)$ gives the set of instances
- Must generalize to multiple references, we lose convexity (unions)

Some Terminology on Dependence Relations

We categorize the dependence relation in three kinds:

- Uniform dependences: the distance between two dependent iterations is a constant
- ex: $i \rightarrow i+1$
- ex: $i, j \rightarrow i+1, j+1$
- Non-uniform dependences: the distance between two dependent iterations varies along the execution
- ex: $i \rightarrow i+j$
- ex: $i \rightarrow 2 i$
- Parametric dependences: at least a parameter is involved in the dependence relation
- ex: $i \rightarrow i+N$
- ex: $i+N \rightarrow j+M$

Data Dependence Analysis

Objective: compute the set of statement instances which are in dependence

Some of the several possible approaches:

- Compute the transitive closure of the access function
- Problems: transitive closure is not convex in general, and not even computable in many situations
- Compute an indicator of the distance between two dependent iterations
- Problems: approximative for non-uniform dependences
- dependence cone: do the union of dependence relations
- Problems: over-approximative as it requires union and transitive closure to model all dependences in a single cone
- Retained solution: dependence polyhedron, list of sets of dependent instances

Dependence Polyhedron [1/3]

Principle: model all pairs of instances in dependence

Definition (Dependence of statement instances)

A statement S depends on a statement $R($ written $R \rightarrow S$) if there exists an operation $S\left(\vec{x}_{S}\right)$ and $R\left(\vec{x}_{R}\right)$ and a memory location m such that:
© $S\left(\vec{x}_{S}\right)$ and $R\left(\vec{x}_{R}\right)$ refer to the same memory location m, and at least one of them writes to that location,
(2) x_{S} and x_{R} belongs to the iteration domain of R and S,
((in the original sequential order, $S\left(\vec{x}_{S}\right)$ is executed before $R\left(\vec{x}_{R}\right)$.

Dependence Polyhedron [2/3]

(1) Same memory location: equality of the subscript functions of a pair of references to the same array: $F_{S} \vec{x}_{S}+a_{S}=F_{R} \vec{x}_{R}+a_{R}$.
(2) Iteration domains: both S and R iteration domains can be described using affine inequalities, respectively $A_{S} \vec{x}_{S}+c_{S} \geq 0$ and $A_{R} \vec{x}_{R}+c_{R} \geq 0$.
(Precedence order: each case corresponds to a common loop depth, and is called a dependence level.

For each dependence level l, the precedence constraints are the equality of the loop index variables at depth lesser to $l: x_{R, i}=x_{S, i}$ for $i<l$ and $x_{R, l}>x_{S, l}$ if l is less than the common nesting loop level. Otherwise, there is no additional constraint and the dependence only exists if S is textually before R.
Such constraints can be written using linear inequalities:
$P_{l, S \vec{x}} \vec{x}_{S}-P_{l, R} \vec{x}_{R}+b \geq 0$.

Dependence Polyhedron [3/3]

The dependence polyhedron for $R \rightarrow S$ at a given level l and for a given pair of references f_{R}, f_{S} is described as [Feautrier/Bastoul]:

$$
\mathcal{D}_{R, S, f_{R}, f_{S}, l}: D\binom{\vec{x}_{S}}{\vec{x}_{R}}+d=\left[\begin{array}{rr}
F_{S} & -F_{R} \\
\hline A_{S} & 0 \\
0 & A_{R} \\
P S & -P_{R}
\end{array}\right]\binom{\vec{x}_{S}}{\vec{x}_{R}}+\left(\begin{array}{c}
a_{S}-a_{R} \\
c_{S} \\
c_{R} \\
b
\end{array}\right)=\begin{aligned}
& =0 \\
& \geq \overrightarrow{0}
\end{aligned}
$$

A few properties:

- We can always build the dep polyhedron for a given pair of affine array accesses (it is convex)
- It is exact, if the iteration domain and the access functions are also exact
- it is over-approximated if the iteration domain or the access function is an approximation

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

```
for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...
```

$\mathcal{D}_{S 1}=\left[\begin{array}{rrrr}\mathbf{1} & \mathbf{0} & \mathbf{0} & -\mathbf{1} \\ -1 & 0 & 1 & 0 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -1 & -1 & 1 & 2\end{array}\right] \cdot\left(\begin{array}{c}i \\ j \\ n \\ 1\end{array}\right) \geq \overrightarrow{0}$

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of \vec{x}_{S} and \vec{p}

$$
f_{s}\left(\overrightarrow{s_{2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
x_{s_{2}} \\
n \\
1
\end{array}\right)
$$

for (i=0; $i<n ;++i)\{$
. $s[i]=0$;
. for ($j=0 ; j<n ;++j)$
. . s[i] = s[i]+a[i][j]*x[j];
\}

$$
\begin{aligned}
& f_{\mathbf{a}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right) \\
& f_{\mathbf{x}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right)
\end{aligned}
$$

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\overrightarrow{x_{S}}$ and \vec{p}
- Data dependence between S1 and S2: a subset of the Cartesian product of $\mathcal{D}_{S 1}$ and $\mathcal{D}_{S 2}$ (exact analysis)

```
for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;
}
```


A Dependence Polyhedra Construction Algorithm

1 Initialize reduced dependence graph with one node per program statement

2 For each pairs of statements R, S do
3 For each pairs of distinct references f_{R}, f_{S} to the same array, do
4 If R, S does not share any loop, min_depth $=0$ else min_depth $=1$
5 For each level l from min_depth to $n b$ _common_loops, do Build the dependence polyhedron $\mathcal{D}_{R, S, f_{R}, f f_{S}, l}$ If $\mathcal{D}_{R, S, f_{R}, f_{S}, l} \neq \emptyset$ then If f_{R} is a write and f_{S} is a read, type $=R A W$ If f_{R} is a write and f_{S} is a write, type $=W A W$ If f_{R} is a read and f_{S} is a write, type $=W A R$ If f_{R} is a read and f_{S} is a read, type $=R A R$ $a d d _e d g e\left(R, S,\left\{l, \mathcal{D}_{R, S_{,}, f_{R}, f_{S}, l}\right.\right.$, type $\left.\}\right)$

The PolyLib Matrix Format

All our tools use this notation (Candl, Pluto, Cloog, PIPLib, etc.)

On the first column, 0 stands for $=0,1$ for ≥ 0

Practicing

Exercise: Give all dependence polyhedra

Example

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = A[i + 1][j + 1];
```


Example

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = i * j;
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
    B[i][j] = A[i][j];
```


Connection with Parallelism

- A dependence is loop-carried if 2 iterations of this loop access the same array cell
- If no such dependence exists, the loop is parallel
- A parallel loop can be transformed arbitrarily
- OpenMP free parallelization or vectorization is possible

```
Example
```

```
for (i \(=0 ; i<N\); ++i)
```

for (i $=0 ; i<N$; ++i)
for (j $=0 ; j<N$; $++j$)
for (j $=0 ; j<N$; $++j$)
C[i][j] = 0;
C[i][j] = 0;
for (i = 0; $i<N$; ++i)
for (i = 0; $i<N$; ++i)
for ($j=0 ; j<N ;++j)$
for ($j=0 ; j<N ;++j)$
for ($k=0 ; k<N ;++k)$
for ($k=0 ; k<N ;++k)$
C[i][j] +=A[i][k] * B[k][j];

```
        C[i][j] +=A[i][k] * B[k][j];
```


Practicing Parallelism

Exercise: Give all parallel loops

Example

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = i * j;
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
    B[i][j] = A[i][j];
```


Example

```
for (t = 0; t < L; ++t)
    for (j = 1; j < N - 1; ++j)
    A[j] = A[j - 1] + A[j] + A[j + 1];
```


Visual Intuition

- Synchronization-free parallelism means "slices" in the dependence polyhedron
- The shape of the independent slices gives an intuition of which loop of the program are parallel
- Transforming the code may expose (more) parallelism possibilities
- Be careful of multiple references: must do the union of the dependence relations

Other Techniques for Dependence Analysis

- Scalars are a particular case of array ($\mathrm{c}=\mathrm{c}[0]$)
- Privatization: a variable is written before it is read (use-def chains)
- Renaming: two privatized variables having the same name
- Expansion: remove dependences by increasing the array dimension
- Transform program to Single-Assignment-Form (SSA)
- Scalar privatization / renaming / expansion is implemented in Candl
- Maximal static expansion is efficient but difficult!

Hands On!

Demo of Clan + Candl

A First Intuition About Scheduling

Intuition: the source iteration must be executed before the target iteration

Definition (Precedence condition)

Given Θ_{R} a schedule for the instances of R, Θ_{S} a schedule for the instances of S. Then, $\forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}$:

$$
\Theta_{R}\left(\vec{x}_{R}\right) \prec \Theta_{S}\left(\vec{x}_{S}\right)
$$

Next week: scheduling and semantics preservation (Farkas method, convex space of legal schedules, tiling hyperplane method)

