Polyhedral Compilation Foundations

Louis-Noél Pouchet

pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Feb 1, 2010

888.11, Class #2

Introduction:

Overview of Today’s Lecture

Outline:
» Follow-up on Z-polyhedra

» Data dependence

» Dependence representations
> Various analysis
» Data dependence algorithm in Candl/PoCC/Pluto

Mathematical concepts:
> Affine mapping
» Image, preimage by an affine mapping
» Cartesian product of polyhedra

osu

Mathematical Concepts:

osu

Affine Function and Lattices (Reminder)

Definition (Affine function)

A function f : K" — K" is affine if there exists a vector b € K" and a matrix
A € K™*" such that:

Vi e K", f(X) =A%+Db

Definition (Lattice)

A subset L in Q" is a lattice if is generated by integral combination of finitely
many vectors: ay,ay, . .. ,a, (a; € Q").

L=L(ay,...,an) = {May + ...+ Ay | A; € Z}

If the a; vectors have integral coordinates, L is an integer lattice.

Example: L} = {2i+1,3j+5 | i,j € Z} is a lattice.

Mathematical Concepts:

osu

Image and Preimage

Definition (Image)

The image of a polyhedron P € Z" by an affine function f : Z" — Z™ is a
Z-polyhedron P':
P ={f(X)eZ" %P}

Definition (Preimage)

The preimage of a polyhedron P € Z" by an affine function f : Z" — Z™ is a
Z-polyhedron P’
P={xeZ"|fF) eP}

We have Image(f !, P) = Preimage(f, P) if f is invertible.

Mathematical Concepts: C

Relation Between Image, Preimage and
Z~polyhedra

» The image of a Z-polyhedron by an unimodular function is a
Z-polyhedron

» The preimage of a Z-polyhedron by an affine function is a Z-polyhedron

» The image of a polyhedron by an affine invertible function is a
Z-polyhedron

» The preimage of a Z-polyhedron by an affine function is a Z-polyhedron

» The image by a non-invertible function is not a Z-polyhedron

osu

Example: C

Returning to the Example

Exercise: Compute the set of cells of A accessed

for (1 = 0; 1 < N; ++1)
for (j = 1i; 3 < N; ++7)
Af21 + 3][43] =1 * J;

» Ds: {i,j|0<i<N,i<j<N}
» Function: fs : {2i+3,4j | i,j € Z}
> Image(fs, Ds) is the set of cells of A accessed (a Z-polyhedron):

> Polyhedron: Q: {i,j |3 <i<2N+2,0<;j<4N}
> Lattice: L: {2i+3,4j|i,j € Z}

osu

Data Dependence: C

osu

Data Dependence

Definition (Bernstein conditions)

Given two references, there exists a dependence between them if the three
following conditions hold:

» they reference the same array (cell)
» one of this access is a write
» the two associated statements are executed

Three categories of dependences:
» RAW (Read-After-Write, aka flow): first reference writes, second reads
» WAR (Write-After-Read, aka anti): first reference reads, second writes
» WAW (Write-After-Write, aka output): both references writes

Another kind: RAR (Read-After-Read dependences), used for locality/reuse
computations

Data Dependence: C

Purpose of Dependence Analysis

v

Not all program transformations preserve the semantics

v

Semantics is preserved if the dependence are preserved

v

In standard frameworks, it means reordering statements
» Statements containing dependent references should not be executed in a
different order
> Granularity: usually a reference to an array

v

In the polyhedral framework, it means reordering statement instances
» Statement instances containing dependent references should not be
executed in a different order
> Granularity: a reference to an array cell

osu

Data Dependence: C

lllustrations

for (i = 0; 1 < N; ++i)
= 0; J < N; ++3)
= A[i + N][]];

for (1 = 0; 1 < N; ++i)
for (j = 0; j < N; ++3)
AL][3] =i * 3
for (i = 0; 1 < N; ++i)
for (3 = 0; j < N; ++3)
B[i][3] = A[i][3];

osu

Data Dependence: C ilati i -#2

An Intuitive Dependence Test Algorithm

Idea: compute the sets associated to the Bernstein conditions

Given two references a and b to the same array:
» Compute W,: Image(f,, D,) if a is a write, 0 otherwise
» Compute R,: Image(f,, D,) if a is a read, 0 otherwise
» Compute W: Image(fy,, D) if b is a write, @ otherwise
» Compute Ry: Image(fy, Dp) if b is a read, 0 otherwise

v

If W, N Ry £ OV Wy Wy #£ 0V Ry N W # 0 then adb

osu 10

Data Dependence:

A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program

osu

Data Dependence: C ilati i -#2

A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program

» Create the Data Dependence Graph, with one node per statement
» For all pairs a, b of distinct references, do
If a and b reference the same array, do
(i) Compute W), Ry, Wp, R,
(i MW, NR, OV W, N W), £ 0OV R, N W, # 0 then
Add an edge between the statement with the reference a
and the statement with the reference b in the DDG

osu 12

Data Dependence: C ilati i -#2

Connection with Statement Instances

Obijective: get the set of instances which are in dependence, not only
statements

Exercise: Compute this set, from 7/, and R, (RAW dependence)

osu 13

Data Dependence: C ilati i -#2

Connection with Statement Instances

Obijective: get the set of instances which are in dependence, not only
statements

Exercise: Compute this set, from 7/, and R, (RAW dependence)

» ldea: Preimage(f,, W, N Ry) gives the set of instances
» Must generalize to multiple references, we lose convexity (unions)

osu 14

Data Dependence: C ilati i -#2

Some Terminology on Dependence Relations

We categorize the dependence relation in three kinds:

» Uniform dependences: the distance between two dependent iterations
is a constant
> exii—i+1
> exiij—i+1,j+1

» Non-uniform dependences: the distance between two dependent
iterations varies along the execution

> exii—i+j
> ex:i—2i

» Parametric dependences: at least a parameter is involved in the
dependence relation

> ex:i—i+N
> ex:i+N—j+M

osu 15

Data Dependence:

Data Dependence Analysis

Objective: compute the set of statement instances which are in
dependence

Some of the several possible approaches:
» Compute the transitive closure of the access function
> Problems: transitive closure is not convex in general, and not even
computable in many situations
» Compute an indicator of the distance between two dependent iterations
> Problems: approximative for non-uniform dependences
» dependence cone: do the union of dependence relations
> Problems: over-approximative as it requires union and transitive closure to
model all dependences in a single cone
» Retained solution: dependence polyhedron, list of sets of dependent
instances

osu

Dependence Polyhedra:

Dependence Polyhedron [1/3]

Principle: model all pairs of instances in dependence

Definition (Dependence of statement instances)

A statement S depends on a statement R (written R —) if there exists an
operation S(Xs) and R(Xg) and a memory location m such that:

@ S(Xs5) and R(Zg) refer to the same memory location m, and at least one
of them writes to that location,

@ x5 and xy belongs to the iteration domain of R and S,
@ in the original sequential order, S(Xs) is executed before R(Xg).

osu

Dependence Polyhedra: C

Dependence Polyhedron [2/3]

@ Same memory location: equality of the subscript functions of a pair of
references to the same array: FsXs + as = FrXg + ag.

@ lteration domains: both S and R iteration domains can be described
using affine inequalities, respectively Asxs + cs > 0 and AgXg +cg > 0.

@ Precedence order: each case corresponds to a common loop depth,
and is called a dependence level.
For each dependence level [, the precedence constraints are the equality
of the loop index variables at depth lesser to I: xg ; = x5 ; for i </ and
Xg > xg if Lis less than the common nesting loop level. Otherwise, there
is no additional constraint and the dependence only exists if S is textually
before R.

Such constraints can be written using linear inequalities:
Py sXs — P rXp+b > 0.

osu

Dependence Polyhedra: C ilati ;i -#2

Dependence Polyhedron [3/3]

The dependence polyhedron for R — S at a given level [and for a given pair
of references fr,fs is described as [Feautrier/Bastoul]:

Fg —Fg as —ag
Xs Ag 0 Xg cs =0
D : :D d = = B
RS frfs:d <}R> + 0 Agr (xle) t CR >0
PS —Pp b o

A few properties:

» We can always build the dep polyhedron for a given pair of affine array
accesses (it is convex)

» |t is exact, if the iteration domain and the access functions are also exact

> it is over-approximated if the iteration domain or the access function is
an approximation

osu 19

Dependence Polyhedra:

Polyhedral Representation of Programs

Static Control Parts
» Loops have affine control only (over-approximation otherwise)

osu

20

Dependence Polyhedra: C

Polyhedral Representation of Programs

Static Control Parts
» Loops have affine control only (over-approximation otherwise)
> lteration domain: represented as integer polyhedra

<

for (i=1l; i<=n; ++i) -1

. for (j=1; j<=n; ++j)
. if (i<=n-j+2)
.os[i] = ...

Dgy =

_— e
_-o =
o

1 2 n n+2
lteration domain of Sy

osu

21

Dependence Polyhedra: C ilati ;i -#2

Polyhedral Representation of Programs

Static Control Parts
» Loops have affine control only (over-approximation otherwise)
> lteration domain: represented as integer polyhedra

» Memory accesses: static references, represented as affine functions of
Xs and p

for (i=0; i<n; ++i) {

X$2
f@R)=[1 0 0 0] =n
1
. s[i] = 0;

; - - 10 0 0 82
. for (3j=0; j<n; ++3j) faldsa) = 01 0 o } n
. s[i] = s[il+alil[j1*x[]];

AGR)=[0 1 0 o0]. "

osu 22

Dependence Polyhedra: C

Polyhedral Representation of Programs

Static Control Parts
» Loops have affine control only (over-approximation otherwise)
> lteration domain: represented as integer polyhedra

» Memory accesses: static references, represented as affine functions of
Xs and p

» Data dependence between S1 and S2: a subset of the Cartesian
product of Dg; and Ds; (exact analysis)

Sl iterations

for (i=1; i<=3; ++i) { 1 -t 0 0
; . T 0 0 1 .
. s[i] = 0; 1 0 0 3 is) o o\ \®
. for (3=1; 3<=3; ++3) ogs0:| 0 1 0 1 [== < iteration ®
.. s[i] = s[i] + 1; o 103) =0
0 0 1 -1 @
} o0 -1 3

—t—t—=

osu

23

Dependence Polyhedra: C ilati ;i -#2

A Dependence Polyhedra Construction Algorithm

1 Initialize reduced dependence graph with one node per program
statement

2 For each pairs of statements R, S do

3 For each pairs of distinct references fg, fs to the same array, do
4 If R, S does not share any loop, min_depth = 0 else min_depth = 1
5 For each level [from min_depth to nb_common_loops, do
6 Build the dependence polyhedron Dy s s, fo.1
7 If Drs iz fe1 7 0 then
8 If fg is a write and fs is a read, type = RAW
9 If fr is a write and f5 is a write, type = WAW
10 If fr is a read and fs is a write, type = WAR
11 If fr is a read and fs is a read, type = RAR
12 add_edge(R,S,{l, Dg s sz s, tyPe})

osu 24

Dependence Polyhedra: C ilati ;i -#2

osu

The PolyLib Matrix Format

All our tools use this notation (Candl, Pluto, Cloog, PIPLib, etc.)

Il
1L

Given Drs :

—_—0 = O = Ol0
SO OO OO
~
@

==]
[=NeNeleloNelel
~
@

0
1
1
It is written: 1
1
1
1

On the first column, 0 stands for =0, 1 for > 0

25

Exercise: C

Practicing

Exercise: Give all dependence polyhedra

Example

for (i = 0; 1 < N; ++1)
for (3 = 0; j < N; ++7)
A[i][J] = A[i + 1]([] + 1];

N

for (1 = 0; 1 < N; ++1)
for (j = 0; j < N; ++3)
A[Li][3] =1 * 3;
for (i = 0; 1 < N; ++i)
for (j = 0; j < N; ++3)
B[i][]J] = A[i][3]];

\

osu

26

Parallelism: C

Connection with Parallelism

> A dependence is loop-carried if 2 iterations of this loop access the same
array cell

» If no such dependence exists, the loop is parallel
» A parallel loop can be transformed arbitrarily
» OpenMP free parallelization or vectorization is possible

for (1 = 0; 1 < N; ++1)
for (3 = 0; j < N; ++3)
Clil[j] = 0;
for (i = 0; 1 < N; ++i)
for (j = 0; j < N; ++3)
for (k = 0; k < N; ++k)
Cli][J] += A[i][k] * BIk][]I];

osu

27

Parallelism: C

Practicing Parallelism

Exercise: Give all parallel loops

for (i = 0; 1 < N; ++i)
for (j = 0; j < N; ++3)
ALLTI3) = i * 3
for (i = 0; 1 < N; ++1i)
for (3 = 0; j < N; ++3)
B[i][J] = A[i][]];

for (£t = 0; t < L; ++t)
for (j =1; j <N - 1; ++73)
A[J - 11 + A[J] + A[] + 11;

>
O
I

osu

Parallelism: C

osu

Visual Intuition

» Synchronization-free parallelism means "slices" in the dependence
polyhedron

» The shape of the independent slices gives an intuition of which loop of
the program are parallel

» Transforming the code may expose (more) parallelism possibilities

» Be careful of multiple references: must do the union of the dependence
relations

29

Dependence Analysis: C ilati i -#2

osu

Other Techniques for Dependence Analysis

vV v v v Y

Scalars are a particular case of array (c = ¢[0])

Privatization: a variable is written before it is read (use-def chains)
Renaming: two privatized variables having the same name
Expansion: remove dependences by increasing the array dimension
Transform program to Single-Assignment-Form (SSA)

» Scalar privatization / renaming / expansion is implemented in Cand|

Maximal static expansion is efficient but difficult!

30

Dependence Analysis:

Hands On!

Demo of Clan + Candl

osu

31

Scheduling: C TPy : -#2

A First Intuition About Scheduling

Intuition: the source iteration must be executed before the target
iteration

Definition (Precedence condition)

Given ®g a schedule for the instances of R, @g a schedule for the instances
of S. Then, V<}R,}5> € @R,S:

Or(¥r) < Os(Xs)

Next week: scheduling and semantics preservation (Farkas method, convex
space of legal schedules, tiling hyperplane method)

osu 32

	Introduction
	Mathematical Concepts
	Example
	Data Dependence
	Dependence Polyhedra
	Exercise
	Parallelism
	Dependence Analysis
	Scheduling

