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Introduction: Polyhedral Compilation Foundations - #1

Objectives for this Class

Objectives for the next few lectures:
I Learning the basic mathematicals concept underlying polyhedral

compilation
I Build a survival kit of mathematical results
I Get a good understanding of why and how things are done

What this class is not about:
I Non topic-related mathematics, advanced polyhedral maths
I Standard program optimization

Requirements: basic (linear) algebra concepts, basic compilation concepts
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Introduction: Polyhedral Compilation Foundations - #1

Polyhedral Program Optimization: a Three-Stage
Process

1 Analysis: from code to model

→ Existing prototype tools
I PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
I URUK, Omega, Loopo, . . .

→ GCC GRAPHITE (now in mainstream)

→ Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model

→ Build and select a program transformation

3 Code generation: from model to code

→ "Apply" the transformation in the model

→ Regenerate syntactic (AST-based) code
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Introduction: Polyhedral Compilation Foundations - #1

Today

Stage 1: from syntactic code to polyhedral representation
I Modeling iteration domains with polytopes

Underlying mathematical concepts:
I Convexity
I Polyhedra (bounded, rational, integer and parametric)
I Lattices

Next weeks: (1) data dependence, (2) scheduling, (3) optimization I, (4)
optimization II, ...
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Representing Iteration Domains: Polyhedral Compilation Foundations - #1

Motivating Example [1/2]

Example

for (i = 0; i < 3; ++i)
for (j = 0; j < 3; ++j)
A[i][j] = i * j;

Program execution:

1: A[0][0] = 0 * 0;
2: A[0][1] = 0 * 1;
3: A[0][2] = 0 * 2;
4: A[1][0] = 1 * 0;
5: A[1][1] = 1 * 1;
6: A[1][2] = 1 * 2;
7: A[2][0] = 2 * 0;
8: A[2][1] = 2 * 1;
9: A[2][2] = 2 * 2;
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Representing Iteration Domains: Polyhedral Compilation Foundations - #1

Motivating Example [2/2]

A few observations:
I Statement is executed 9 times
I There is a different values for i, j associated to these 9 instances
I There is an order on them (the execution order)

Objective:
find a representation where these 3 characteristics are modeled
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Representing Iteration Domains: Polyhedral Compilation Foundations - #1

Exercise 1: Find a Representation

Find such a representation (not using polyhedra)

I One solution: instance graph (aka extended representation)
I 1 node per executed instance
I directed graph: reflect execution ordering

I Another: system of affine recurrence equations (SARE)
I ...
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Representing Iteration Domains: Polyhedral Compilation Foundations - #1

Exercise 2: Listing the Issues

Generalization: exhibit the key problems we can face for the modeling
of 1 statement

I Memory consumption (compact representation)
I Parametric loop bound / unbounded loops
I non-unit loop strides
I conditionals
I ...
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Representing Iteration Domains: Polyhedral Compilation Foundations - #1

Summarizing the Problems

Step 1:
I Find a compact representation (critical)
I 1 point in the set ↔ 1 executed instance (to allow optimization

operations, such as counting points)
I Can retrieve when the instance is executed (total order on the set)
I Easy manipulation: scanning code must be re-generated

Step 2:
I Deal with parametric and infinite domains
I Non-unit strides

Step 3:
I Generalized affine conditionals (union of polyhedra)
I Data-dependent conditionals
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Representing Iteration Domains: Polyhedral Compilation Foundations - #1

Overview of the Solution

I Iteration domain: set of totally ordered n-dimensional vectors
I Iteration vector~xS = (i, j)
I Iteration domain: the set of values of~xS

I Convenient approach: polytopes model sets of totally ordered
n-dimensional vectors

I One condition: the set must be convex
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The Convex Qualifier: Polyhedral Compilation Foundations - #1

Convexity [1/2]

Convexity is the central concept of polyhedral optimization

Definition (Convex set)

Given S a subset of Rn. S is convex iff, ∀µ,λ ∈ S and given c ∈ [0,1]:

(1− c).µ+ c.λ ∈ S

With words: drawing a line segment between any two points of S, each point
on this segment is also in S.

Warning: when K = Z, we use another definition
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The Convex Qualifier: Polyhedral Compilation Foundations - #1

Convexity [2/2]

Definition (Convex combination)

Given S a convex set. For any family of vectors~u1,~u2, . . . ,~ur ∈ S, and any
nonnegative numbers λ1,λ2, . . . ,λr such that ∑

r
i=1 λi = 1 , then:

~v =
r

∑
i=1

uiλi ∈ S

~v is a convex combination of {~ui}.

Exercise: Prove a statement surrounded by loops with unit-stride, no
conditional and simple loop bounds has a convex iteration domain.
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The Affine Qualifier: Polyhedral Compilation Foundations - #1

The Affine Qualifier

Definition (Affine function)

A function f : Km →Kn is affine if there exists a vector~b ∈Kn and a matrix
A ∈Km×n such that:

∀~x ∈Km, f (~x) = A~x+~b

Definition (Affine half-space)

An affine half-space of Km (affine constraint) is defined as the set of points:

{~x ∈Km |~a.~x≤~b}

OSU 18



Definition of Polyhedra: Polyhedral Compilation Foundations - #1

Polyhedron (Implicit Representation)

Definition (Polyhedron)

A set S ∈Km is a polyhedron if there exists a system of a finite number of
inequalities A~x≤~b such that:

P = {~x ∈Km | A~x≤~b}

Equivalently, it is the intersection of finitely many half-spaces.

Definition (Polytope)

A polytope is a bounded polyhedron.
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Definition of Polyhedra: Polyhedral Compilation Foundations - #1

Integer Polyhedron

Definition (Z-polyhedron)

It is a polyhedron where all its extreme points are integer valued

Definition (Integer hull)

The integer hull of a rational polyhedron P is the largest set of integer points
such that each of these points is in P .

For the moment, we will "say" an integer polyhedron is a polyhedron of
integer points (language abuse)
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Definition of Polyhedra: Polyhedral Compilation Foundations - #1

Rational and Integer Polytopes
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Modeling Iteration Domains: Polyhedral Compilation Foundations - #1

Returning to the Example

Modeling the iteration domain:
I Polytope dimension: set by the number of surrounding loops
I Constraints: set by the loop bounds

DR :


1 0

−1 0
0 1
0 −1

 .

(
i
j

)
+


0
2
0
2

 =


1 0 0

−1 0 2
0 1 0
0 −1 2

 .

 i
j
1

≥~0

0≤ i≤ 2, 0≤ j≤ 2
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Dual Description of Polyhedra: Polyhedral Compilation Foundations - #1

Another View of Polyhedra
The dual representation models a polyhedron as a combination of lines L and
rays R (forming the polyhedral cone) and vertices V (forming the polytope)

Definition (Dual representation)

P : {~x ∈Qn |~x = L~λ+R~µ+V~ν, ~µ≥ 0, ~ν≥ 0, ∑
i

νi = 1}

Definition (Face)

A face F of P is the intersection of P with a supporting hyperplane of P . We
have:

dim(F )≤ dim(P )

Definition (Facet)

A facet F of P is a face of P such that:

dim(F ) = dim(P )−1
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Dual Description of Polyhedra: Polyhedral Compilation Foundations - #1

Getting Some Intuition...

Exercise:
I Give the facets of DS

I Give some faces of DS

Example

for (i = 0; i < 3; ++i)
for (j = 0; j < 3; ++j)
A[i][j] = i * j;
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Dual Description of Polyhedra: Polyhedral Compilation Foundations - #1

The Face Lattice
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Dual Description of Polyhedra: Polyhedral Compilation Foundations - #1

Some Equivalence Properties

Theorem (Fundamental Theorem on Polyhedral Decomposition)

If P is a polyhedron, then it can be decomposed as a polytope V plus a
polyhedral cone L .

Theorem (Equivalence of Representations)

Every polyhedron has both an implicit and dual representation

I Chernikova’s algorithm can compute the dual representation from the
implicit one

I The Dual representation is heavily used in polyhedral compilation
I Some works operate on the constraint-based representation (Pluto)
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Dual Description of Polyhedra: Polyhedral Compilation Foundations - #1

Some Useful Algorithms

I Compute the facets of a polytope

I Compute the volume of a polytope (number of points)

I Scan a polytope (code generation)

I Find the lexicographic minimum
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Modeling Iteration Domains: Polyhedral Compilation Foundations - #1

Increasing the Expressiveness

Problems:
I Unbounded domains: use polyhedra!
I Parametric loop bounds: use parametric polyhedra!
I Non-unit loop bounds: normalize the loop!

I Conditionals:
I Those which preserve convexity: ok! (add affine constraints)
I Problem remains for the others...
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Parametric Polyhedra: Polyhedral Compilation Foundations - #1

Parametric Polyhedra

Definition (Paramteric polyhedron)

Given~n the vector of symbolic parameters, P is a parametric polyhedron if it
is defined by:

P = {~x ∈Km | A~x≤ B~n+~b}

I Requires to adapt theory and tools to parameters
I Can become nasty: case distinctions (QUAST)
I Reflects nicely the program context
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Parametric Polyhedra: Polyhedral Compilation Foundations - #1

Some Useful Algorithms

All extended to parametric polyhedra:
I Compute the facets of a polytope: PolyLib [Wilde et al]

I Compute the volume of a polytope (number of points): Barvinok
[Claus/Verdoolaege]

I Scan a polytope (code generation): CLooG [Quillere/Bastoul]

I Find the lexicographic minimum: PIP [Feautrier]
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Exercises: Polyhedral Compilation Foundations - #1

Practicing Your Knowledge

Find the iteration domain for the following programs:

Example

for (i = 0; i < N; ++i)
for (j = i; j < N; ++j)
A[3i + j] = K;

Example

for (i = 0; i < N; ++i)
for (j = 0; j < i; ++j)
A[j] = 0;

OSU 31



Exercises: Polyhedral Compilation Foundations - #1

Practicing Again!

Example

for (i = 0; i < N; ++i)
for (j = 0; j < i; ++j)
if (i > M)
A[j] = 0;

Example

for (i = 0; i < N; i += 2)
for (j = 0; j < N; ++j)
A[i] = 0;

Example

for (i = 0; i < N; i += 2)
for (j = 0; j < N; ++j)
if (i % 3 == 1 && j % 2 == 0)
A[i] = 0;
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Support of Conditionals: Polyhedral Compilation Foundations - #1

Generalized Conditionals

Case distinction:
I Conjunctions (a && b)

I Disjunctions (a || b)

I Non-affine (i * j < 2)

I Data-dependent (a[i] == 0)
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Support of Conditionals: Polyhedral Compilation Foundations - #1

Relation with Operations on Polyhedra

Considering conjunctions:

Definition (Intersection)

The intersection of two convex sets P1 and P2 is a convex set P :

P = {~x ∈Km |~x ∈ P1∧~x ∈ P2}

Considering disjunctions:

Definition (Union)

The union of two convex sets P1 and P2 is a set P :

P = {~x ∈Km |~x ∈ P1∨~x ∈ P2}

The union of two convex sets may not be a convex set
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Support of Conditionals: Polyhedral Compilation Foundations - #1

Generalized Conditionals

Case distinction (with a,b two affine expressions):
I Conjunctions (a && b) → OK! Convexity preserved

I Disjunctions (a || b) → Use a list of iteration domains

I Non-affine (i * j < 2) → Use affine hull (loss of precision)

I Data-dependent (a[i] == 0) → Use predicates + affine hull
[Benabderrahmane]
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Exercises: Polyhedral Compilation Foundations - #1

Polyhedra in Use [1/2]

Exercise: Compute the footprint of A

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = i * j;

Example

for (i = 0; i < N; ++i)
for (j = i; j < N; ++j)
A[2i + 3][4j] = i * j;
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Exercises: Polyhedral Compilation Foundations - #1

Polyhedra in Use [2/2]

Exercise: Compute the set of cells of A accessed

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
A[i][j] = i * j;

Example

for (i = 0; i < N; ++i)
for (j = i; j < N; ++j)
A[2i + 3][4j] = i * j;
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Lattices: Polyhedral Compilation Foundations - #1

Lattices

Definition (Lattice)

A subset L in Qn is a lattice if is generated by integral combination of finitely
many vectors: a1,a2, . . . ,an (ai ∈Qn). If the ai vectors have integral
coordinates, L is an integer lattice.

Definition (Z-polyhedron)

A Z-polyhedron is the intersection of a polyhedron and an affine integral full
dimensional lattice.
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Lattices: Polyhedral Compilation Foundations - #1

Pictured Example

Example of a Z-polyhedron:
I Q1 = {i, j | 0≤ i≤ 5, 0≤ 3j≤ 20}
I L1 = {2i+1,3j+5 | i, j ∈ Z}
I Z1 = Q1∩L1
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Complex Example: Polyhedral Compilation Foundations - #1

Complex Example

Computing the set of cells of A accessed

Example

for (i = 0; i < N; ++i)
for (j = i; j < N; ++j)
A[2i + 3][4j] = i * j;

I DS: {i, j | 0≤ i < N, i≤ j < N}
I Function: fA : {2i+3,4j | i, j ∈ Z}
I Image(DS, fA) is the set of cells of A accessed (a Z-polyhedron):

I Polyhedron: Q : {i, j | 3≤ i < 2N +2, 0≤ j < 4N}
I Lattice: L : {2i+3,4j | i, j ∈ Z}

OSU 40



Complex Example: Polyhedral Compilation Foundations - #1

Quick Facts on Z-polyhedra

I Iteration domains are in fact Z-polyhedra with unit lattice
I Intersection of Z-polyhedra is not convex in general
I Union is complex to compute
I Parametric lattices are challenging!
I Can count points, can optimize, can scan

I Implementation available for most operations in PolyLib
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Complex Example: Polyhedral Compilation Foundations - #1

Some Interesting Problems

I Write generalized loop normalization algorithms
I Stride normalization
I while loop / do loop conversion
I Conditional normalization

I ...
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