Polyhedral Compilation Foundations

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Jan 25, 2010
888.11, Class \#1

Objectives for this Class

Objectives for the next few lectures:

- Learning the basic mathematicals concept underlying polyhedral compilation
- Build a survival kit of mathematical results
- Get a good understanding of why and how things are done

What this class is not about:

- Non topic-related mathematics, advanced polyhedral maths
- Standard program optimization

Requirements: basic (linear) algebra concepts, basic compilation concepts

Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools

- PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
- URUK, Omega, Loopo, ...
\rightarrow GCC GRAPHITE (now in mainstream)
\rightarrow Reservoir Labs R-Stream, IBM XL/Poly

Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools

- PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
- URUK, Omega, Loopo, ...
\rightarrow GCC GRAPHITE (now in mainstream)
\rightarrow Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
\rightarrow Build and select a program transformation

Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools

- PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
- URUK, Omega, Loopo, ...
\rightarrow GCC GRAPHITE (now in mainstream)
\rightarrow Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
\rightarrow Build and select a program transformation

3 Code generation: from model to code
\rightarrow "Apply" the transformation in the model
\rightarrow Regenerate syntactic (AST-based) code

Today

Stage 1: from syntactic code to polyhedral representation

- Modeling iteration domains with polytopes

Underlying mathematical concepts:

- Convexity
- Polyhedra (bounded, rational, integer and parametric)
- Lattices

Next weeks: (1) data dependence, (2) scheduling, (3) optimization I, (4) optimization II, ...

Motivating Example [1/2]

```
Example
```

```
for (i = 0; i < 3; ++i)
```

for (i = 0; i < 3; ++i)
for (j = 0; j < 3; ++j)
for (j = 0; j < 3; ++j)
A[i][j] = i * j;

```
        A[i][j] = i * j;
```

Program execution:
1: A[0][0] = 0 * 0;
2: A[0][1] = 0 * 1;
3: A[0][2] = 0 * 2;
4: A[1][0] = 1 * 0;
5: $\mathrm{A}[1][1]=1$ * 1 ;
6: A[1][2] = 1 * 2;
7: $\mathrm{A}[2][0]=2$ * 0 ;
8: A[2][1] = 2 * 1;
9: A[2][2] = 2 * 2;

Motivating Example [2/2]

A few observations:

- Statement is executed 9 times
- There is a different values for i, j associated to these 9 instances
- There is an order on them (the execution order)

Objective:
find a representation where these 3 characteristics are modeled

Exercise 1: Find a Representation

Find such a representation (not using polyhedra)

Exercise 1: Find a Representation

Find such a representation (not using polyhedra)

- One solution: instance graph (aka extended representation)
- 1 node per executed instance
- directed graph: reflect execution ordering
- Another: system of affine recurrence equations (SARE)

Exercise 2: Listing the Issues

Generalization: exhibit the key problems we can face for the modeling of 1 statement

Exercise 2: Listing the Issues

Generalization: exhibit the key problems we can face for the modeling of 1 statement

- Memory consumption (compact representation)
- Parametric loop bound / unbounded loops
- non-unit loop strides
- conditionals
- ...

Summarizing the Problems

Step 1:

- Find a compact representation (critical)
- 1 point in the set $\leftrightarrow 1$ executed instance (to allow optimization operations, such as counting points)
- Can retrieve when the instance is executed (total order on the set)
- Easy manipulation: scanning code must be re-generated

Step 2:

- Deal with parametric and infinite domains
- Non-unit strides

Step 3:

- Generalized affine conditionals (union of polyhedra)
- Data-dependent conditionals

Overview of the Solution

- Iteration domain: set of totally ordered n -dimensional vectors
- Iteration vector $\vec{x}_{S}=(i, j)$
- Iteration domain: the set of values of \vec{x}_{S}
- Convenient approach: polytopes model sets of totally ordered n-dimensional vectors
- One condition: the set must be convex

Convexity [1/2]

Convexity is the central concept of polyhedral optimization

Definition (Convex set)

Given S a subset of \mathbb{R}^{n}. S is convex iff, $\forall \mu, \lambda \in S$ and given $c \in[0,1]$:

$$
(1-c) \cdot \mu+c \cdot \lambda \in S
$$

With words: drawing a line segment between any two points of S, each point on this segment is also in S.

Warning: when $\mathbb{K}=\mathbb{Z}$, we use another definition

Convexity [2/2]

Definition (Convex combination)

Given S a convex set. For any family of vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{r} \in S$, and any nonnegative numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ such that $\sum_{i=1}^{r} \lambda_{i}=1$, then:

$$
\vec{v}=\sum_{i=1}^{r} u_{i} \lambda_{i} \in S
$$

\vec{v} is a convex combination of $\left\{\vec{u}_{i}\right\}$.

Convexity [2/2]

Definition (Convex combination)

Given S a convex set. For any family of vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{r} \in S$, and any nonnegative numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ such that $\sum_{i=1}^{r} \lambda_{i}=1$, then:

$$
\vec{v}=\sum_{i=1}^{r} u_{i} \lambda_{i} \in S
$$

\vec{v} is a convex combination of $\left\{\vec{u}_{i}\right\}$.
Exercise: Prove a statement surrounded by loops with unit-stride, no conditional and simple loop bounds has a convex iteration domain.

The Affine Qualifier

Definition (Affine function)

A function $f: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$ is affine if there exists a vector $\vec{b} \in \mathbb{K}^{n}$ and a matrix $A \in \mathbb{K}^{m \times n}$ such that:

$$
\forall \vec{x} \in \mathbb{K}^{m}, f(\vec{x})=A \vec{x}+\vec{b}
$$

Definition (Affine half-space)

An affine half-space of \mathbb{K}^{m} (affine constraint) is defined as the set of points:

$$
\left\{\vec{x} \in \mathbb{K}^{m} \mid \vec{a} \cdot \vec{x} \leq \vec{b}\right\}
$$

Polyhedron (Implicit Representation)

Definition (Polyhedron)

A set $\mathcal{S} \in \mathbb{K}^{m}$ is a polyhedron if there exists a system of a finite number of inequalities $A \vec{x} \leq \vec{b}$ such that:

$$
\mathcal{P}=\left\{\vec{x} \in \mathbb{K}^{m} \mid A \vec{x} \leq \vec{b}\right\}
$$

Equivalently, it is the intersection of finitely many half-spaces.

Definition (Polytope)

A polytope is a bounded polyhedron.

Integer Polyhedron

Definition (\mathbb{Z}-polyhedron)
It is a polyhedron where all its extreme points are integer valued

Definition (Integer hull)

The integer hull of a rational polyhedron \mathcal{P} is the largest set of integer points such that each of these points is in \mathcal{P}.

For the moment, we will "say" an integer polyhedron is a polyhedron of integer points (language abuse)

Rational and Integer Polytopes

Returning to the Example

Modeling the iteration domain:

- Polytope dimension: set by the number of surrounding loops
- Constraints: set by the loop bounds

$$
\begin{gathered}
\mathcal{D}_{R}:\left[\begin{array}{rr}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right] \cdot\binom{i}{j}+\left(\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right)=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 0 & 2 \\
0 & 1 & 0 \\
0 & -1 & 2
\end{array}\right] \cdot\left(\begin{array}{l}
i \\
j \\
1
\end{array}\right) \geq \overrightarrow{0} \\
0 \leq i \leq 2, \quad 0 \leq j \leq 2
\end{gathered}
$$

Another View of Polyhedra

The dual representation models a polyhedron as a combination of lines L and rays R (forming the polyhedral cone) and vertices V (forming the polytope)

Definition (Dual representation)

$$
P:\left\{\vec{x} \in \mathbb{Q}^{n} \mid \vec{x}=L \vec{\lambda}+R \vec{\mu}+V \vec{v}, \vec{\mu} \geq 0, \vec{v} \geq 0, \sum_{i} v_{i}=1\right\}
$$

Definition (Face)

A face \mathcal{F} of \mathcal{P} is the intersection of \mathcal{P} with a supporting hyperplane of \mathcal{P}. We have:

$$
\operatorname{dim}(\mathcal{F}) \leq \operatorname{dim}(\mathcal{P})
$$

Definition (Facet)

A facet \mathcal{F} of \mathcal{P} is a face of \mathcal{P} such that:

$$
\operatorname{dim}(\mathcal{F})=\operatorname{dim}(\mathcal{P})-1
$$

Getting Some Intuition...

Exercise:

- Give the facets of \mathcal{D}_{S}
- Give some faces of \mathcal{D}_{S}

Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<3 ;++i) \\
& \text { for }(j=0 ; j<3 ;++j) \\
& A[i][j]=i * j ;
\end{aligned}
$$

The Face Lattice

Some Equivalence Properties

Theorem (Fundamental Theorem on Polyhedral Decomposition)

If \mathcal{P} is a polyhedron, then it can be decomposed as a polytope \mathcal{V} plus a polyhedral cone \mathcal{L}.

Theorem (Equivalence of Representations)

Every polyhedron has both an implicit and dual representation

- Chernikova's algorithm can compute the dual representation from the implicit one
- The Dual representation is heavily used in polyhedral compilation
- Some works operate on the constraint-based representation (Pluto)

Some Useful Algorithms

- Compute the facets of a polytope
- Compute the volume of a polytope (number of points)
- Scan a polytope (code generation)
- Find the lexicographic minimum

Increasing the Expressiveness

Problems:

- Unbounded domains: use polyhedra!
- Parametric loop bounds: use parametric polyhedra!
- Non-unit loop bounds: normalize the loop!
- Conditionals:
- Those which preserve convexity: ok! (add affine constraints)
- Problem remains for the others...

Parametric Polyhedra

Definition (Paramteric polyhedron)

Given \vec{n} the vector of symbolic parameters, \mathcal{P} is a parametric polyhedron if it is defined by:

$$
\mathcal{P}=\left\{\vec{x} \in \mathbb{K}^{m} \mid A \vec{x} \leq B \vec{n}+\vec{b}\right\}
$$

- Requires to adapt theory and tools to parameters
- Can become nasty: case distinctions (QUAST)
- Reflects nicely the program context

Some Useful Algorithms

All extended to parametric polyhedra:

- Compute the facets of a polytope: PolyLib [Wilde et al]
- Compute the volume of a polytope (number of points): Barvinok [Claus/Verdoolaege]
- Scan a polytope (code generation): CLooG [Quillere/Bastoul]
- Find the lexicographic minimum: PIP [Feautrier]

Practicing Your Knowledge

Find the iteration domain for the following programs:

```
Example
```

```
for (i = 0; i < N; ++i)
```

for (i = 0; i < N; ++i)
for (j = i; j < N; ++j)
for (j = i; j < N; ++j)
A[3i + j] = K;

```
    A[3i + j] = K;
```


Example

```
for (i = 0; i < N; ++i)
    for (j = 0; j < i; ++j)
    A[j] = 0;
```


Practicing Again!

Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ;++i) \\
& \text { for }(j=0 ; j<i ;++j) \\
& \text { if }(i>M) \\
& A[j]=0 ;
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i+=2) \\
& \text { for }(j=0 ; j<N ;++j) \\
& A[i]=0 ;
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i+=2) \\
& \text { for }(j=0 ; j<N ;++j) \\
& \text { if }(i \% 3==1 \& \& j \% 2==0) \\
& \text { A[i] }=0 ;
\end{aligned}
$$

Generalized Conditionals

Case distinction:

- Conjunctions (a \& \& b)
- Disjunctions (a || b)
- Non-affine ($\mathrm{i}^{*} \mathrm{j}<2$)
- Data-dependent (a[i] == 0)

Relation with Operations on Polyhedra

Considering conjunctions:

Definition (Intersection)

The intersection of two convex sets \mathcal{P}_{1} and \mathcal{P}_{2} is a convex set \mathscr{P} :

$$
\mathcal{P}=\left\{\vec{x} \in \mathbb{K}^{m} \mid \vec{x} \in \mathcal{P}_{1} \wedge \vec{x} \in \mathcal{P}_{2}\right\}
$$

Considering disjunctions:

Definition (Union)

The union of two convex sets \mathcal{P}_{1} and \mathcal{P}_{2} is a set \mathcal{P} :

$$
\mathcal{P}=\left\{\vec{x} \in \mathbb{K}^{m} \mid \vec{x} \in \mathcal{P}_{1} \vee \vec{x} \in \mathcal{P}_{2}\right\}
$$

The union of two convex sets may not be a convex set

Generalized Conditionals

Case distinction (with a,b two affine expressions):

- Conjunctions (a \&\& b) \rightarrow OK! Convexity preserved
- Disjunctions (a || b) \rightarrow Use a list of iteration domains
- Non-affine (${ }^{*}$ j <2) \rightarrow Use affine hull (loss of precision)
- Data-dependent (a[i] ==0) \rightarrow Use predicates + affine hull [Benabderrahmane]

Polyhedra in Use [1/2]

Exercise: Compute the footprint of A

```
Example
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
    A[i][j] = i * j;
```


Example

```
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
    A[2i + 3][4j] = i * j;
```


Polyhedra in Use [2/2]

Exercise: Compute the set of cells of A accessed

```
Example
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
    A[i][j] = i * j;
```


Example

```
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
    A[2i + 3][4j] = i * j;
```


Lattices

Definition (Lattice)

A subset L in \mathbb{Q}^{n} is a lattice if is generated by integral combination of finitely many vectors: $a_{1}, a_{2}, \ldots, a_{n}\left(a_{i} \in \mathbb{Q}^{n}\right)$. If the a_{i} vectors have integral coordinates, L is an integer lattice.

Definition (Z-polyhedron)

A Z-polyhedron is the intersection of a polyhedron and an affine integral full dimensional lattice.

Pictured Example

Example of a Z-polyhedron:

- $Q_{1}=\{i, j \mid 0 \leq i \leq 5,0 \leq 3 j \leq 20\}$
- $L_{1}=\{2 i+1,3 j+5 \mid i, j \in \mathbb{Z}\}$
- $Z_{1}=Q_{1} \cap L_{1}$

Complex Example

Computing the set of cells of A accessed

Example

```
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
        A[2i + 3][4j] = i * j;
```

- $\mathcal{D}_{S}:\{i, j \mid 0 \leq i<N, i \leq j<N\}$
- Function: $f_{A}:\{2 i+3,4 j \mid i, j \in \mathbb{Z}\}$
- Image $\left(\mathcal{D}_{S}, f_{A}\right)$ is the set of cells of A accessed (a Z-polyhedron):
- Polyhedron: $Q:\{i, j \mid 3 \leq i<2 N+2,0 \leq j<4 N\}$
- Lattice: $L:\{2 i+3,4 j \mid i, j \in \mathbb{Z}\}$

Quick Facts on Z-polyhedra

- Iteration domains are in fact Z-polyhedra with unit lattice
- Intersection of Z-polyhedra is not convex in general
- Union is complex to compute
- Parametric lattices are challenging!
- Can count points, can optimize, can scan
- Implementation available for most operations in PolyLib

Some Interesting Problems

- Write generalized loop normalization algorithms
- Stride normalization
- while loop / do loop conversion
- Conditional normalization

