Polyhedral Compilation Foundations

Louis-Noël Pouchet

pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Jan 25, 2010

888.11, Class #1

Objectives for this Class

Objectives for the next few lectures:

- Learning the basic mathematicals concept underlying polyhedral compilation
- Build a survival kit of mathematical results
- Get a good understanding of why and how things are done

What this class is not about:

- Non topic-related mathematics, advanced polyhedral maths
- Standard program optimization

Requirements: basic (linear) algebra concepts, basic compilation concepts

Polyhedral Program Optimization: a Three-Stage Process

- 1 Analysis: from code to model
 - \rightarrow Existing prototype tools
 - PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
 - URUK, Omega, Loopo, ...
 - → GCC GRAPHITE (now in mainstream)
 - \rightarrow Reservoir Labs R-Stream, IBM XL/Poly

Polyhedral Program Optimization: a Three-Stage Process

- 1 Analysis: from code to model
 - \rightarrow Existing prototype tools
 - PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
 - URUK, Omega, Loopo, ...
 - → GCC GRAPHITE (now in mainstream)
 - \rightarrow Reservoir Labs R-Stream, IBM XL/Poly
- 2 Transformation in the model
 - \rightarrow Build and select a program transformation

Polyhedral Program Optimization: a Three-Stage Process

- 1 Analysis: from code to model
 - \rightarrow Existing prototype tools
 - PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
 - URUK, Omega, Loopo, ...
 - → GCC GRAPHITE (now in mainstream)
 - \rightarrow Reservoir Labs R-Stream, IBM XL/Poly
- 2 Transformation in the model
 - \rightarrow Build and select a program transformation
- 3 Code generation: from model to code
 - $\rightarrow~$ "Apply" the transformation in the model
 - \rightarrow Regenerate syntactic (AST-based) code

Today

Stage 1: from syntactic code to polyhedral representation

Modeling iteration domains with polytopes

Underlying mathematical concepts:

- Convexity
- > Polyhedra (bounded, rational, integer and parametric)
- Lattices

Next weeks: (1) data dependence, (2) scheduling, (3) optimization I, (4) optimization II, ...

Motivating Example [1/2]

Example

```
for (i = 0; i < 3; ++i)
for (j = 0; j < 3; ++j)
A[i][j] = i * j;</pre>
```

Program execution:

```
1: A[0][0] = 0 * 0;

2: A[0][1] = 0 * 1;

3: A[0][2] = 0 * 2;

4: A[1][0] = 1 * 0;

5: A[1][1] = 1 * 1;

6: A[1][2] = 1 * 2;

7: A[2][0] = 2 * 0;

8: A[2][1] = 2 * 1;

9: A[2][2] = 2 * 2;
```

Motivating Example [2/2]

A few observations:

- Statement is executed 9 times
- There is a different values for i, j associated to these 9 instances
- There is an order on them (the execution order)

Objective:

find a representation where these 3 characteristics are modeled

Exercise 1: Find a Representation

Find such a representation (not using polyhedra)

Exercise 1: Find a Representation

Find such a representation (not using polyhedra)

One solution: instance graph (aka extended representation)

- 1 node per executed instance
- directed graph: reflect execution ordering
- Another: system of affine recurrence equations (SARE)

▶ ...

Exercise 2: Listing the Issues

Generalization: exhibit the key problems we can face for the modeling of 1 statement

Exercise 2: Listing the Issues

Generalization: exhibit the key problems we can face for the modeling of 1 statement

- Memory consumption (compact representation)
- Parametric loop bound / unbounded loops
- non-unit loop strides
- conditionals
- ▶ ...

Summarizing the Problems

Step 1:

- Find a <u>compact representation</u> (critical)
- I point in the set ↔ 1 executed instance (to allow optimization operations, such as counting points)
- Can retrieve when the instance is executed (total order on the set)
- Easy manipulation: scanning code must be re-generated

Step 2:

- Deal with parametric and infinite domains
- Non-unit strides

Step 3:

- Generalized affine conditionals (union of polyhedra)
- Data-dependent conditionals

Overview of the Solution

- Iteration domain: set of totally ordered n-dimensional vectors
 - Iteration vector $\vec{x}_S = (i,j)$
 - Iteration domain: the set of values of \vec{x}_S
- Convenient approach: polytopes model sets of totally ordered n-dimensional vectors
- One condition: the set must be convex

Convexity [1/2]

Convexity is the central concept of polyhedral optimization

Definition (Convex set)

Given *S* a subset of \mathbb{R}^n . *S* is convex iff, $\forall \mu, \lambda \in S$ and given $c \in [0, 1]$:

 $(1-c).\mu+c.\lambda \in S$

With words: drawing a line segment between any two points of S, each point on this segment is also in S.

Warning: when $\mathbb{K} = \mathbb{Z}$, we use another definition

Convexity [2/2]

Definition (Convex combination)

Given *S* a convex set. For any family of vectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_r \in S$, and any nonnegative numbers $\lambda_1, \lambda_2, \ldots, \lambda_r$ such that $\sum_{i=1}^r \lambda_i = 1$, then:

$$\vec{v} = \sum_{i=1}^r u_i \lambda_i \in S$$

 \vec{v} is a convex combination of $\{\vec{u}_i\}$.

Convexity [2/2]

Definition (Convex combination)

Given *S* a convex set. For any family of vectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_r \in S$, and any nonnegative numbers $\lambda_1, \lambda_2, \ldots, \lambda_r$ such that $\sum_{i=1}^r \lambda_i = 1$, then:

$$\vec{v} = \sum_{i=1}^r u_i \lambda_i \in S$$

 \vec{v} is a convex combination of $\{\vec{u}_i\}$.

Exercise: Prove a statement surrounded by loops with unit-stride, no conditional and simple loop bounds has a convex iteration domain.

The Affine Qualifier

Definition (Affine function)

A function $f : \mathbb{K}^m \to \mathbb{K}^n$ is affine if there exists a vector $\vec{b} \in \mathbb{K}^n$ and a matrix $A \in \mathbb{K}^{m \times n}$ such that:

 $\forall \vec{x} \in \mathbb{K}^m, \ f(\vec{x}) = A\vec{x} + \vec{b}$

Definition (Affine half-space)

An affine half-space of \mathbb{K}^m (affine constraint) is defined as the set of points:

 $\{\vec{x} \in \mathbb{K}^m \mid \vec{a}.\vec{x} \le \vec{b}\}$

Polyhedron (Implicit Representation)

Definition (Polyhedron)

A set $S \in \mathbb{K}^m$ is a polyhedron if there exists a system of a finite number of inequalities $A\vec{x} \leq \vec{b}$ such that:

$$\mathcal{P} = \{ \vec{x} \in \mathbb{K}^m \mid A\vec{x} \le \vec{b} \}$$

Equivalently, it is the intersection of finitely many half-spaces.

Definition (Polytope)

A polytope is a bounded polyhedron.

Integer Polyhedron

Definition (\mathbb{Z} -polyhedron)

It is a polyhedron where all its extreme points are integer valued

Definition (Integer hull)

The integer hull of a rational polyhedron \mathcal{P} is the largest set of integer points such that each of these points is in \mathcal{P} .

For the moment, we will "say" an integer polyhedron is a polyhedron of integer points (language abuse)

Rational and Integer Polytopes

Returning to the Example

Modeling the iteration domain:

- Polytope dimension: set by the number of surrounding loops
- Constraints: set by the loop bounds

$$\mathcal{D}_{R}: \begin{bmatrix} 1 & 0\\ -1 & 0\\ 0 & 1\\ 0 & -1 \end{bmatrix} \cdot \begin{pmatrix} i\\ j \end{pmatrix} + \begin{pmatrix} 0\\ 2\\ 0\\ 2 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0\\ -1 & 0 & 2\\ 0 & 1 & 0\\ 0 & -1 & 2 \end{bmatrix} \cdot \begin{pmatrix} i\\ j\\ 1 \end{pmatrix} \ge \vec{0}$$

$$0 \le i \le 2, \quad 0 \le j \le 2$$

Another View of Polyhedra

The <u>dual</u> representation models a polyhedron as a combination of lines L and rays R (forming the polyhedral cone) and vertices V (forming the polytope)

Definition (Dual representation)

$$\mathcal{P}: \{ \vec{x} \in \mathbb{Q}^n \mid \vec{x} = L\vec{\lambda} + R\vec{\mu} + V\vec{\nu}, \ \vec{\mu} \ge 0, \ \vec{\nu} \ge 0, \ \sum \nu_i = 1 \}$$

Definition (Face)

A face ${\mathcal F}$ of ${\mathcal P}$ is the intersection of ${\mathcal P}$ with a supporting hyperplane of ${\mathcal P}.$ We have:

 $\dim(\mathcal{F}) \leq \dim(\mathcal{P})$

Definition (Facet)

A facet $\mathcal F$ of $\mathcal P$ is a face of $\mathcal P$ such that:

 $\dim(\mathcal{F}) = \dim(\mathcal{P}) - 1$

Getting Some Intuition...

Exercise:

- ▶ Give the facets of D_S
- Give some faces of \mathcal{D}_S

Example for (i = 0; i < 3; ++i) for (j = 0; j < 3; ++j) A[i][j] = i * j;

The Face Lattice

Some Equivalence Properties

Theorem (Fundamental Theorem on Polyhedral Decomposition)

If $\mathcal P$ is a polyhedron, then it can be decomposed as a polytope $\mathcal V$ plus a polyhedral cone $\mathcal L$.

Theorem (Equivalence of Representations)

Every polyhedron has both an implicit and dual representation

- Chernikova's algorithm can compute the dual representation from the implicit one
- The Dual representation is heavily used in polyhedral compilation
- Some works operate on the constraint-based representation (Pluto)

Some Useful Algorithms

Compute the facets of a polytope

Compute the volume of a polytope (number of points)

- Scan a polytope (code generation)
- Find the lexicographic minimum

Increasing the Expressiveness

Problems:

- Unbounded domains: use polyhedra!
- Parametric loop bounds: use parametric polyhedra!
- Non-unit loop bounds: normalize the loop!
- Conditionals:
 - Those which preserve convexity: ok! (add affine constraints)
 - Problem remains for the others...

Parametric Polyhedra

Definition (Paramteric polyhedron)

Given \vec{n} the vector of symbolic parameters, \mathcal{P} is a parametric polyhedron if it is defined by:

$$\mathcal{P} = \{ \vec{x} \in \mathbb{K}^m \mid A\vec{x} \le B\vec{n} + \vec{b} \}$$

- Requires to adapt theory and tools to parameters
- Can become nasty: case distinctions (QUAST)
- Reflects nicely the program context

Some Useful Algorithms

All extended to parametric polyhedra:

- Compute the facets of a polytope: PolyLib [Wilde et al]
- Compute the volume of a polytope (number of points): Barvinok [Claus/Verdoolaege]
- Scan a polytope (code generation): CLooG [Quillere/Bastoul]
- Find the lexicographic minimum: PIP [Feautrier]

Practicing Your Knowledge

Find the iteration domain for the following programs:

Example

```
for (i = 0; i < N; ++i)
for (j = 0; j < i; ++j)
A[j] = 0;</pre>
```

Practicing Again!

Example

Example

```
for (i = 0; i < N; i += 2)
for (j = 0; j < N; ++j)
A[i] = 0;</pre>
```

Example

Generalized Conditionals

Case distinction:

- Conjunctions (a && b)
- Disjunctions (a || b)
- Non-affine (i * j < 2)</p>
- Data-dependent (a[i] == 0)

Relation with Operations on Polyhedra

Considering conjunctions:

Definition (Intersection)

The intersection of two convex sets \mathcal{P}_1 and \mathcal{P}_2 is a convex set \mathcal{P} :

 $\mathcal{P} = \{ \vec{x} \in \mathbb{K}^m \mid \vec{x} \in \mathcal{P}_1 \land \vec{x} \in \mathcal{P}_2 \}$

Considering disjunctions:

Definition (Union)

The union of two convex sets \mathcal{P}_1 and \mathcal{P}_2 is a set \mathcal{P} :

 $\mathcal{P} = \{ \vec{x} \in \mathbb{K}^m \mid \vec{x} \in \mathcal{P}_1 \lor \vec{x} \in \mathcal{P}_2 \}$

The union of two convex sets may not be a convex set

Generalized Conditionals

Case distinction (with a,b two affine expressions):

- Conjunctions (a && b) → OK! Convexity preserved
- Disjunctions (a || b) \rightarrow Use a list of iteration domains
- ▶ Non-affine (i * j < 2) \rightarrow Use affine hull (loss of precision)
- Data-dependent (a[i] == 0) → Use predicates + affine hull [Benabderrahmane]

Polyhedra in Use [1/2]

Exercise: Compute the footprint of A

Example	
for $(i = 0; i < N; ++i)$	l
for (j = 0; j < N; ++j)	I
A[i][j] = i * j;	J

Example

```
for (i = 0; i < N; ++i)
for (j = i; j < N; ++j)
A[2i + 3][4j] = i * j;</pre>
```

Polyhedra in Use [2/2]

Exercise: Compute the set of cells of A accessed

Example	
for (i = 0; i < N; ++i)	
for (j = 0; j < N; ++j)	
A[i][j] = i * j;	

Example

```
for (i = 0; i < N; ++i)
for (j = i; j < N; ++j)
A[2i + 3][4j] = i * j;</pre>
```

Lattices

Definition (Lattice)

A subset *L* in \mathbb{Q}^n is a lattice if is generated by integral combination of finitely many vectors: a_1, a_2, \ldots, a_n ($a_i \in \mathbb{Q}^n$). If the a_i vectors have integral coordinates, *L* is an integer lattice.

Definition (*Z*-polyhedron)

A Z-polyhedron is the intersection of a polyhedron and an affine integral full dimensional lattice.

Pictured Example

Example of a *Z*-polyhedron:

•
$$Q_1 = \{i, j \mid 0 \le i \le 5, 0 \le 3j \le 20\}$$

• $L_1 = \{2i+1, 3j+5 \mid i, j \in \mathbb{Z}\}$
• $Z_1 = Q_1 \cap L_1$

Complex Example

Computing the set of cells of A accessed

xample	
or (i = 0; i < N; ++i)	
for (j = i; j < N; ++j)	
A[2i + 3][4j] = i * j;	

- $\mathcal{D}_{S}: \{i, j \mid 0 \le i < N, i \le j < N\}$
- Function: $f_A : \{2i + 3, 4j \mid i, j \in \mathbb{Z}\}$
- Image(\mathcal{D}_S, f_A) is the set of cells of A accessed (a Z-polyhedron):
 - Polyhedron: $Q: \{i, j \mid 3 \le i < 2N+2, 0 \le j < 4N\}$
 - Lattice: $L: \{2i+3, 4j \mid i, j \in \mathbb{Z}\}$

Quick Facts on *Z***-polyhedra**

Iteration domains are in fact Z-polyhedra with unit lattice

- Intersection of Z-polyhedra is not convex in general
- Union is complex to compute
- Parametric lattices are challenging!
- Can count points, can optimize, can scan
- Implementation available for most operations in PolyLib

Some Interesting Problems

Write generalized loop normalization algorithms

- Stride normalization
- while loop / do loop conversion
- Conditional normalization

► ...