A Note on the Performance Distribution of Affine Schedules

¹ALCHEMY, INRIA Futurs / University of Paris-Sud XI, France ²Computer and Information Sciences, University of Delaware, USA

January 27, 2008

2nd Workshop on Statistical and Machine learning approaches to ARchitectures and compilaTion Göteborg, Sweden

Outline

Motivation

- Automatic performance portability: iterative compilation
- ► Search space expressiveness → bring the iterative optimization problem into the polyhedral model
- Tradeoff expressiveness / traversal easiness
 - Improve static characterization of the search space
 - Highlight dynamic properties
 - Validate a dedicated heuristic to traverse the space

Original Schedule

т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Original Schedule

ī.

т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Original Schedule

$$\begin{array}{c} \text{for } (\mathbf{i} = 0; \ \mathbf{i} < \mathbf{n}; \ ++\mathbf{i}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \text{S1: } C[\mathbf{i}][\mathbf{j}] = 0; \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \text{S2: } C[\mathbf{i}][\mathbf{j}] \ += \mathbf{A}[\mathbf{i}][\mathbf{k}]^{*} \\ \mathbb{B}[\mathbf{k}][\mathbf{j}]; \\ \end{array} \\ \begin{array}{c} \Theta^{S2}.\vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} i \\ n \\ 1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \text{for } (\mathbf{i} = 0; \ \mathbf{i} < \mathbf{n}; \ ++\mathbf{i}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{C[i][j] = 0; } \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \mathbb{C}[\mathbf{i}][\mathbf{j}] \ += \mathbf{A}[\mathbf{i}][\mathbf{k}]^{*} \\ \mathbb{B}[\mathbf{k}][\mathbf{j}]; \end{array} \\ \end{array}$$

т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Distribute loops

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += A[i][k] \\ B[k][j]; \\ \end{cases} \\ \Theta^{S2}.\vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} . \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{c[i][j] = 0; } \\ \text{for } (i = n; i < 2^{*}n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (i = n; i < 2^{*}n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (i = n; i < 2^{*}n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (k = 0; k < n; ++k) \\ \text{C[i-n][j] += A[in][k] \\ B[k][j]; \end{cases}$$

i.

All instances of S1 are executed before the first S2 instance

Distribute loops + Interchange loops for S2

▶ The outer-most loop for S2 becomes *k*

Illegal schedule

i.

All instances of S1 are executed after the last S2 instance

A legal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j) {
S1: C[i][j] = 0;
for (k = 0; k < n; ++k)
S2: C[i][j] += A[i][k]*
B[k][j];
}
$$\Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{c} 1 & 0 \\ 0 & 0 \end{array}) \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \begin{pmatrix} i \\ n \\ 1 \end{pmatrix} \\ \begin{pmatrix} i \\ n \\ 1 \end{pmatrix} \\ \begin{pmatrix} i \\ j \\ k \\ 0 & 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \\ \begin{pmatrix} i \\ k \\ n \\ 1 \end{pmatrix} \\ \begin{array}{c} \text{for } (i = n; i < 2*n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (k = n+1; k <= 2*n; ++k) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{C[i][j] += A[i][k-n-1]*} \\ B[k-n-1][j]; \end{array}$$

Delay the S2 instances

• Constraints must be expressed between Θ^{S1} and Θ^{S2}

[j];

Implicit fine-grain parallelism

$$\begin{array}{c} \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (j = 0; \ j < n; \ +i) \\ \text{for } (j = 0; \ j < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (j = 0; \ j < n; \ +i) \\ \text{for } (k = 0; \ k < n; \ +k) \\ \text{S2: } C[i][j] = 0; \\ \text{for } (k = 0; \ k < n; \ +k) \\ B[k][j]; \\ \end{array} \right) \\ \begin{array}{c} \Theta^{S1} \vec{x}_{S1} = (1 \ 0 \ 0 \ 0) \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \end{array} \right) \\ \begin{array}{c} \Theta^{S2} \vec{x}_{S2} = (0 \ 0 \ 1 \ 1 \ 0) \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \end{array} \right) \\ \begin{array}{c} \text{for } (i = 0; \ i < n; \ +i) \\ \text{pfor } (j = 0; \ j < n; \ +i) \\ \text{pfor } (j = 0; \ j < n; \ +i) \\ \text{pfor } (i = 0; \ i < n; \ +i) \\ \text{pfor } (j = 0; \ j < n; \ +i) \\ \text{pfor } (j = 0; \ j < n; \ +i) \\ \text{pfor } (i = 0; \ i < n; \ +i) \\ \text{pfor } (j = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{pfor } (j = 0; \ j < n; \ +i) \\ \text{pfor } (j = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ i < n; \ +i) \\ \text{for } (i = 0; \ +i < n; \ +i <$$

• Number of rows of $\Theta \leftrightarrow$ number of outer-most sequential loops

Representing a schedule

$$\Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}. \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$
$$\Theta^{S2}.\vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}. \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix}$$

$$\Theta \vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} . (\mathbf{i} \ \mathbf{j} \ \mathbf{i} \ \mathbf{j} \ \mathbf{k} \ \mathbf{n} \ \mathbf{n} \ \mathbf{1} \ \mathbf{1})^{T}$$

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j) {
S1: C[i][j] = 0;
for (k = 0; k < n; ++k)
S2: C[i][j] += A[i][k]*
$$B[k][j];$$

}

$$\Theta^{S1} \vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$
$$\Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix}$$

$$\Theta.\vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} . (\mathbf{i} \ \mathbf{j} \ \mathbf{i} \ \mathbf{j} \ \mathbf{k} \ \mathbf{n} \ \mathbf{n} \ \mathbf{1} \ \mathbf{1})^T$$

Representing a schedule

$$\Theta^{S1} \vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$
$$\Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix}$$

	Transformation	Description				
ī	reversal	Changes the direction in which a loop traverses its iteration range				
	skewing	Makes the bounds of a given loop depend on an outer loop counter				
	interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation				
\vec{p}	fusion	Fuses two loops, a.k.a. jamming				
	distribution	Splits a single loop nest into many, a.k.a. fission or splitting				
С	peeling	Extracts one iteration of a given loop				
	shifting	Allows to reorder loops				

The Search Space

Challenges

- Completeness (combinatorial problem)
- Scalability (large integer polyhedra computation)

Proposed solution

- Philosophically close to Feautrier's maximal fine-grain parallelism
- \blacktriangleright One point in the space \Leftrightarrow one distinct legal program version
- ▶ Bound schedule coefficients in [-1,1] to limit control overhead
- No completeness, but decent scalability
- Deliver a mechanism to automatically complete / correct schedules

The Hypothesis

Extremely large generated spaces: $> 10^{30}$ points

 \rightarrow we must leverage static characteristics to build traversal mechanisms

Hypothesis:

- It is possible to statically order the impact on performance of transformation coefficients, that is, decompose the search space in subspaces where the performance variation is maximal or reduced
- The more a schedule dimension impacts a performance distribution, the more it is constrained

DCT benchmark

- 32x32 Discrete Cosine Transform, 5 statements, 35 dependences
- 2 imperfectly nested loops
- 3 sequential schedule dimensions outputted

Schedule dimension	ĩ	$\vec{\imath} + \vec{p}$	$\vec{\imath} + \vec{p} + c$
Dimension 1	39	66	471
Dimension 2	729	19683	531441
Dimension 3	60750	1006020	64855485
Total combined	1.7×10^{9}	$1.3 imes 10^{12}$	$1.6 imes 10^{16}$

Figure: Search Space Statistics for dct

DCT benchmark

- 32x32 Discrete Cosine Transform, 5 statements, 35 dependences
- 2 imperfectly nested loops
- 3 sequential schedule dimensions outputted

Schedule dimension	ĩ	$\vec{\imath} + \vec{p}$	$\vec{\imath} + \vec{p} + c$
Dimension 1	39	66	471
Dimension 2	729	19683	531441
Dimension 3	60750	1006020	64855485
Total combined	1.7×10^{9}	$1.3 imes 10^{12}$	$1.6 imes 10^{16}$

Figure: Search Space Statistics for dct

Search space analyzed: 66 × 19683 = 1.29 × 10⁶ different legal program versions (arbitrary compositions of skewing, reversal, interchange, fusion, distribution)

Performance Distribution [1/2]

(a) Representatives for each point of Θ_1

(b) Raw performance of each point of $\Theta_2,$ for the best value for Θ_1

Figure: Performance Distribution for DCT

- Only 0.14% of analyzed points achieve at least 80% of the speedup
- Θ₁ is a good discriminant for performance
- Variance analysis shows $\vec{i} > \vec{p} > \vec{c}$

Performance Distribution [2/2]

Figure: Hardware Counters Distribution for DCT

- L1 Accesses captures the performance distribution shape
- Branch count shows control overhead introduced
- Origin of performance improvement is opaque most of the time
 - Interaction with the compiler (trigger optimizations)
 - Better use of processor features

Search Space Statistics

Benchmark	# St.	# Deps.	# Dim.	ī	$\vec{\imath} + \vec{p}$	$\vec{\imath} + \vec{p} + c$
latnrm	11	75	3	1	9	27
fir	4	36	2	1	9	18
lmsfir	9	112	2	1	9	27
iir	8	66	3	1	9	18

Figure: Search Space Statistics

- Only one sequence of interchange + skewing + reversal possible for the outer-most loop
- Highly constrained benchmark: side effect of the search space construction algorithm
- Search space must be computed to detect the pattern

Performance Distribution

Figure: Performance Distribution for 3 UTDSP benchmarks

- Significant speedup to discover
- Performance distribution is almost flat
- Final variance analysis confirm the base hypothesis

Results of the Decoupling Heuristic

- Capitalize on the performance distribution ordering: propose a decoupling heuristic mechanism
- Principle: Iterate first on the most performance <u>impacting</u> coefficients, use a completion algorithm for the non-explored coefficients

	dct	matmult	lpc	edge-c2d	iir	fir	lmsfir	latnrm
#Inst.	5	2	12	3	8	4	9	11
#Loops	6	3	7	4	2	2	3	3
i	39	76	243	1	1	1	1	1
Space	1.6×10^{16}	912	$> 10^{25}$	$5.6 imes 10^{15}$	$> 10^{19}$	$9.5 imes 10^7$	$2.8 imes 10^8$	$> 10^{22}$
Id Best	46	16	489	11	34	33	51	6
Speedup	57.1%	42.87%	31.15%	5.58%	37.50%	40.24%	30.98%	15.11%

Figure: Heuristic Performance for AMD Athlon

Near space optimal speedup discovered in at most 51 runs for SCoPs of less than 10 statements

Conclusion

Properties of the search space

- "Classical" transformations usually associated to specific schedule coefficients
- Classes of schedule coefficients (*i*, *p*, *c*) map into subspaces ordered w.r.t performance variation
- Schedule rows map into subspaces ordered w.r.t. performance
- Very low density of the best transformations (0.xx%)

Application

- Partition the optimization space to narrow the search
- Motivate a heuristic traversal leveraging these characteristics
- Validated on Intel x86_32, AMD x86_64, embedded MIPS32 (Au1500), embedded VLIW (ST231)

Ongoing Work

- Scalability Use genetic algorithm traversal for the larger SCoPs
 - Legality preserving operators
- Expressiveness Integrate tiling by means of permutability constraints
 - New (static/dynamic) properties of the search space
- > Parallelism Express coarse-grain parallelism thanks to tiling
 - New search algorithm