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Outline: SMART’08

Outline

Motivation
I Automatic performance portability: iterative compilation
I Search space expressiveness→ bring the iterative optimization

problem into the polyhedral model

I Tradeoff expressiveness / traversal easiness

I Improve static characterization of the search space

I Highlight dynamic properties

I Validate a dedicated heuristic to traverse the space
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Building the Search Space: SMART’08

The Model

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.
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j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)
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Building the Search Space: SMART’08

The Model

Distribute loops

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.
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n
1



Θ
S2.~xS2 =

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

)
.
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for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
for (k = 0; k < n; ++k)
C[i-n][j] += A[i-n][k]*

B[k][j];

I All instances of S1 are executed before the first S2 instance
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Building the Search Space: SMART’08

The Model

Distribute loops + Interchange loops for S2

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
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for (k = 0; k < n; ++k)
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B[k][j];

}

Θ
S1.~xS1 =
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S2.~xS2 =
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.
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for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I The outer-most loop for S2 becomes k
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Building the Search Space: SMART’08

The Model

Illegal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.
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Θ
S2.~xS2 =
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0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

)
.
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for (k = 0; k < n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k]*

B[k][j];
for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i-n][j] = 0;

I All instances of S1 are executed after the last S2 instance
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Building the Search Space: SMART’08

The Model

A legal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.
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Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.
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for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

I Delay the S2 instances
I Constraints must be expressed between ΘS1 and ΘS2
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Building the Search Space: SMART’08

The Model

Implicit fine-grain parallelism

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 = ( 1 0 0 0 ) .

 i
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n
1



Θ
S2.~xS2 = ( 0 0 1 1 0 ) .
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1



for (i = 0; i < n; ++i)
pfor (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
pfor (j = 0; j < n; ++j)

pfor (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I Number of rows of Θ↔ number of outer-most sequential loops
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Building the Search Space: SMART’08

The Model

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =
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Θ
S2.~xS2 =
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for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

( 1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

( i j i j k n n 1 1 )T

~p
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Building the Search Space: SMART’08

The Model

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

( 1 0 1 0
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Θ
S2.~xS2 =
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0 1 0 0 0
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.
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for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

( 1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

( i j i j k n n 1 1 )T

0 0

~ı

0 0 0

~p

0

c

0
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Building the Search Space: SMART’08

The Model

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
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for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Transformation Description

~ı
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

~p fusion Fuses two loops, a.k.a. jamming
distribution Splits a single loop nest into many, a.k.a. fission or splitting

c peeling Extracts one iteration of a given loop
shifting Allows to reorder loops
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Building the Search Space: SMART’08

The Search Space

Challenges
I Completeness (combinatorial problem)
I Scalability (large integer polyhedra computation)

Proposed solution
I Philosophically close to Feautrier’s maximal fine-grain parallelism
I One point in the space⇔ one distinct legal program version
I Bound schedule coefficients in [−1,1] to limit control overhead
I No completeness, but decent scalability
I Deliver a mechanism to automatically complete / correct schedules
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Building the Search Space: SMART’08

The Hypothesis

Extremely large generated spaces: > 1030 points

→ we must leverage static characteristics to build traversal mechanisms

Hypothesis:
I It is possible to statically order the impact on performance of

transformation coefficients, that is, decompose the search space in
subspaces where the performance variation is maximal or reduced

I The more a schedule dimension impacts a performance
distribution, the more it is constrained
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Performance Distribution: DCT Benchmark SMART’08

DCT benchmark

I 32x32 Discrete Cosine Transform, 5 statements, 35 dependences
I 2 imperfectly nested loops
I 3 sequential schedule dimensions outputted

Schedule dimension ~ı ~ı+~p ~ı+~p+ c
Dimension 1 39 66 471
Dimension 2 729 19683 531441
Dimension 3 60750 1006020 64855485

Total combined 1.7×109 1.3×1012 1.6×1016

Figure: Search Space Statistics for dct

I Search space analyzed: 66×19683 = 1.29×106 different legal
program versions (arbitrary compositions of skewing, reversal,
interchange, fusion, distribution)
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Performance Distribution: DCT Benchmark SMART’08

Performance Distribution [1/2]
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Figure: Performance Distribution for DCT

I Only 0.14% of analyzed points achieve at least 80% of the speedup
I Θ1 is a good discriminant for performance
I Variance analysis shows~ı >~p >~c
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Performance Distribution: DCT Benchmark SMART’08

Performance Distribution [2/2]
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Figure: Hardware Counters Distribution for DCT

I L1 Accesses captures the performance distribution shape
I Branch count shows control overhead introduced
I Origin of performance improvement is opaque most of the time

I Interaction with the compiler (trigger optimizations)
I Better use of processor features
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Performance Distribution: Highly Constrained Benchmarks SMART’08

Search Space Statistics

Benchmark # St. # Deps. # Dim. ~ı ~ı+~p ~ı+~p+ c
latnrm 11 75 3 1 9 27
fir 4 36 2 1 9 18

lmsfir 9 112 2 1 9 27
iir 8 66 3 1 9 18

Figure: Search Space Statistics

I Only one sequence of interchange + skewing + reversal possible for the
outer-most loop

I Highly constrained benchmark: side effect of the search space
construction algorithm

I Search space must be computed to detect the pattern
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Performance Distribution: Highly Constrained Benchmarks SMART’08

Performance Distribution
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Figure: Performance Distribution for 3 UTDSP benchmarks

I Significant speedup to discover
I Performance distribution is almost flat
I Final variance analysis confirm the base hypothesis
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Performance Distribution: Heuristic Traversal of the Search Space SMART’08

Results of the Decoupling Heuristic

I Capitalize on the performance distribution ordering: propose a
decoupling heuristic mechanism

I Principle: Iterate first on the most performance impacting coefficients,
use a completion algorithm for the non-explored coefficients

dct matmult lpc edge-c2d iir fir lmsfir latnrm
#Inst. 5 2 12 3 8 4 9 11

#Loops 6 3 7 4 2 2 3 3
i 39 76 243 1 1 1 1 1

Space 1.6×1016 912 > 1025 5.6×1015 > 1019 9.5×107 2.8×108 > 1022

Id Best 46 16 489 11 34 33 51 6
Speedup 57.1% 42.87% 31.15% 5.58% 37.50% 40.24% 30.98% 15.11%

Figure: Heuristic Performance for AMD Athlon

I Near space optimal speedup discovered in at most 51 runs for
SCoPs of less than 10 statements
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Conclusion: SMART’08

Conclusion

Properties of the search space
I "Classical" transformations usually associated to specific schedule

coefficients
I Classes of schedule coefficients (~ı,~p, c) map into subspaces ordered

w.r.t performance variation
I Schedule rows map into subspaces ordered w.r.t. performance
I Very low density of the best transformations (0.xx%)

Application
I Partition the optimization space to narrow the search
I Motivate a heuristic traversal leveraging these characteristics
I Validated on Intel x86_32, AMD x86_64, embedded MIPS32 (Au1500),

embedded VLIW (ST231)
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Conclusion: SMART’08

Ongoing Work

I Scalability Use genetic algorithm traversal for the larger SCoPs
I Legality preserving operators

I Expressiveness Integrate tiling by means of permutability constraints
I New (static/dynamic) properties of the search space

I Parallelism Express coarse-grain parallelism thanks to tiling
I New search algorithm
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