Combined Iterative and Model-driven Optimization in an Automatic Parallelization Framework

Louis-Noël Pouchet¹ Uday Bondhugula² Cédric Bastoul³ Albert Cohen³ J. Ramanujam⁴ P. Sadayappan¹

¹ The Ohio State University
 ² IBM T.J. Watson Research Center
 ³ ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France
 ⁴ Louisiana State University

November 17, 2010 IEEE 2010 Conference on Supercomputing New Orleans, LA

Overview

Problem: How to improve program execution time?

- Focus on <u>shared-memory computation</u>
 - OpenMP parallelization
 - SIMD Vectorization
 - Efficient usage of the intra-node memory hierarchy
- Challenges to address:
 - Different machines require different compilation strategies
 - One-size-fits-all scheme hinders optimization opportunities

Question: how to restructure the code for performance?

Objectives for a Successful Optimization

During the program execution, interplay between the hardware ressources:

- Thread-centric parallelism
- SIMD-centric parallelism
- Memory layout, inc. caches, prefetch units, buses, interconnects...
- \rightarrow Tuning the trade-off between these is required
- A loop optimizer must be able to transform the program for:
 - Thread-level parallelism extraction
 - Loop tiling, for data locality
 - Vectorization

Our approach: form a tractable search space of possible loop transformations

Original code

Example (tmp = A.B, D = tmp.C)

```
for (i1 = 0; i1 < N; ++i1)
for (j1 = 0; j1 < N; ++j1) {
R: tmp[i1][j1] = 0;
for (k1 = 0; k1 < N; ++k1)
S: tmp[i1][j1] += A[i1][k1] * B[k1][j1];
}
for (i2 = 0; i2 < N; ++i2)
for (j2 = 0; j2 < N; ++j2) {
T: D[i2][j2] = 0;
for (k2 = 0; k2 < N; ++k2)
U: D[i2][j2] += tmp[i2][k2] * C[k2][j2];
}
</pre>
```

	Original	Max. fusion	Max. dist	Balanced
4× Xeon 7450 / ICC 11	1×			
4× Opteron 8380 / ICC 11	1×			

Cost model: maximal fusion, minimal synchronization [Bondhugula et al., PLDI'08]

Example (tmp = A.B, D = tmp.C)

```
parfor (c0 = 0; c0 < N; c0++)  {
   for (c1 = 0; c1 < N; c1++) {
R:
  tmp[c0][c1]=0;
Τ:
  D[c0][c1]=0;
     for (c6 = 0; c6 < N; c6++)
s:
        tmp[c0][c1] += A[c0][c6] * B[c6][c1];
     parfor (c6 = 0;c6 <= c1; c6++)
        D[c0][c6] += tmp[c0][c1-c6] * C[c1-c6][c6];
                                                     {R,S,T,U} fused
   for (c1 = N; c1 < 2*N - 1; c1++)
     parfor (c6 = c1-N+1; c6 < N; c6++)
U:
        D[c0][c6] += tmp[c0][1-c6] * C[c1-c6][c6];
```

	Original	Max. fusion	Max. dist	Balanced
4× Xeon 7450 / ICC 11	1×	2.4 imes		
4 imes Opteron 8380 / ICC 11	1×	$2.2 \times$		

Maximal distribution: best for Intel Xeon 7450

Poor data reuse, best vectorization

```
Example (tmp = A.B, D = tmp.C)
```

```
parfor (i1 = 0; i1 < N; ++i1)</pre>
   parfor (j1 = 0; j1 < N; ++j1)
R:
      tmp[i1][i1] = 0;
 parfor (i1 = 0; i1 < N; ++i1)
   for (k1 = 0; k1 < N; ++k1)
     parfor (j1 = 0; j1 < N; ++j1)
S:
         tmp[i1][j1] += A[i1][k1] * B[k1][j1];
                                 {R} and {S} and {T} and {U} distributed
 parfor (i2 = 0; i2 < N; ++i2)
   parfor (j2 = 0; j2 < N; ++j2)
т
     D[i2][i2] = 0;
 parfor (i2 = 0; i2 < N; ++i2)
   for (k2 = 0; k2 < N; ++k2)
     parfor (j_2 = 0; j_2 < N; ++j_2)
         D[i2][i2] += tmp[i2][k2] * C[k2][i2];
```

	Original	Max. fusion	Max. dist	Balanced
4× Xeon 7450 / ICC 11	1×	2.4 imes	$3.9 \times$	
4× Opteron 8380 / ICC 11	1×	$2.2 \times$	$6.1 \times$	

SC'10

Running Example

Balanced distribution/fusion: best for AMD Opteron 8380

Poor data reuse, best vectorization

Example (tmp = A.B, D = tmp.C)

	Original	Max. fusion	Max. dist	Balanced
4× Xeon 7450 / ICC 11	1×	$2.4 \times$	3.9×	3.1×
4 imes Opteron 8380 / ICC 11	1×	$2.2 \times$	$6.1 \times$	$8.3 \times$

Example (tmp = A.B, D = tmp.C)

```
parfor (c1 = 0; c1 < N; c1++)
parfor (c2 = 0; c2 < N; c2++)
R: C[c1][c2] = 0;
parfor (c1 = 0; c1 < N; c1++)
for (c3 = 0; c3 < N; c3++) {
T: E[c1][c3] = 0;
parfor (c2 = 0; c2 < N; c2++)
S: C[c1][c2] += A[c1][c3] * B[c3][c2];
}
for (c1 = 0; c1 < N; c1++)
for (c3 = 0; c3 < N; c3++)
parfor (c2 = 0; c2 < N; c2++)
U: E[c1][c2] += C[c1][c3] * D[c3][c2];</pre>
```

	Original	Max. fusion	Max. dist	Balanced
4× Xeon 7450 / ICC 11	1×	$2.4 \times$	$3.9 \times$	3.1×
4× Opteron 8380 / ICC 11	1×	$2.2 \times$	$6.1 \times$	$8.3 \times$

The best fusion/distribution choice drives the quality of the optimization

Loop Structures

Possible grouping + ordering of statements

- $\blacktriangleright \ \{\{\mathsf{R}\}, \{\mathsf{S}\}, \{\mathsf{T}\}, \{\mathsf{U}\}\}; \{\{\mathsf{R}\}, \{\mathsf{S}\}, \{\mathsf{U}\}, \{\mathsf{T}\}\}; \ \ldots$
- $\blacktriangleright \ \{\{\mathsf{R},\mathsf{S}\}, \{\mathsf{T}\}, \{\mathsf{U}\}\}; \{\{\mathsf{R}\}, \{\mathsf{S}\}, \{\mathsf{T},\mathsf{U}\}\}; \{\{\mathsf{R}\}, \{\mathsf{T},\mathsf{U}\}, \{\mathsf{S}\}\}; \{\{\mathsf{T},\mathsf{U}\}, \{\mathsf{R}\}, \{\mathsf{S}\}\}; \ldots$
- ▶ {{R,S,T}, {U}}; {{R}, {S,T,U}}; {{S}, {R,T,U}};...
- {{R,S,T,U}};

Number of possibilities: >> n! (number of total preorders)

Loop Structures

Removing non-semantics preserving ones

- $\blacktriangleright \ \{\{\mathsf{R}\}, \{\mathsf{S}\}, \{\mathsf{T}\}, \{\mathsf{U}\}\}; \{\{\mathsf{R}\}, \{\mathsf{S}\}, \{\mathsf{U}\}, \{\mathsf{T}\}\}; \dots$
- ▶ {{R,S}, {T}, {U}}; {{R}, {S}, {T,U}}; {{R}, {S}}; {{T,U}, {S}}; {{T,U}, {R}, {S}};...
- ▶ {{R,S,T}, {U}}; {{R}, {S,T,U}}; {{<mark>S}, {R,T,U}}</mark>;...
- {{R,S,T,U}}

Number of possibilities: 1 to 200 for our test suite

Loop Structures

For each partitioning, many possible loop structures

- {{R}, {S}, {T}, {U}}
- ► For **S**: {*i*,*j*,*k*}; {*i*,*k*,*j*}; {*k*,*i*,*j*}; {*k*,*j*,*i*}; ...
- However, only {i,k,j} has:
 - outer-parallel loop
 - inner-parallel loop
 - lowest striding access (efficient vectorization)

Possible Loop Structures for 2mm

- 4 statements, 75 possible partitionings
- 10 loops, up to 10! possible loop structures for a given partitioning

Two steps:

- Remove all partitionings which breaks the semantics: from 75 to 12
- Use static cost models to select the loop structure for a partitioning: from d! to 1
- Final search space: 12 possibilites

Workflow – Polyhedral Compiler

• ...

Contributions and Overview of the Approach

- Empirical search on possible fusion/distribution schemes
- Each structure drives the success of other optimizations
 - Parallelization
 - Tiling
 - Vectorization
- Use static cost models to compute a complex loop transformation for a specific fusion/distribution scheme
- Iteratively test the different versions, retain the best
 - Best performing loop structure is found

Static Control Parts

Loops have affine control only (over-approximation otherwise)

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}

$$f_{s}(\vec{x_{52}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

for (i=0; i. s[i] = 0;
. for (j=0; j. . s[i] = s[i]+a[i][j]*x[j];
}
$$f_{a}(\vec{x_{52}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

$$f_{x}(\vec{x_{52}}) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}
- ► Data dependence between S1 and S2: a subset of the Cartesian product of D_{S1} and D_{S2} (exact analysis)

Search Space of Loop Structures

Partition the set of statements into classes:

- This is deciding loop fusion / distribution
- Statements in the same class will share at least one common loop in the target code
- Classes are ordered, to reflect code motion

Locally on each partition, apply model-driven optimizations

- Leverage the polyhedral framework:
 - Build the smallest yet most expressive space of possible partitionings [Pouchet et al., POPL'11]
 - Consider semantics-preserving partitionings only: orders of magnitude smaller space

Model-driven Optimizations: Tiling

Two steps: pre-transform to make tiling legal, then tile the loop nest

Tiling in our framework:

- Partition the computation into blocks
- Resulting blocks can be executed with sync-free or pipeline parallelism
- Seamless integration in the polyhedral framework (imperfectly nested loops, parametric tiling)
- Systematic application of the pre-transformation (Tiling Hyperplane method [Bondhugula et al., PLDI'08])
- We tile the transformed loop nest only if:
 - ▶ There is at least *O*(*N*) reuse
 - the loop depth is > 1

Model-driven Optimizations: OpenMP parallelization

Assume pre-transformation for tiling already done

By definition, existing parallelism is brought on outer loops

- Property of the Tiling Hyperplane
- We drive the optimization to obtain this property on a specific subset of statements

Simply mark outer parallel loops with #pragma omp parallel for

First parallel outer tile loop, if any

Model-driven Optimizations: Vectorization

Focus on additional loop transformations, not codegen-related

Vectorization requires a sync-free parallel inner-most loop

- Candidate parallel loops can be moved inward
- Multiple choices!

To be efficient, favor stride-1 access for the inner-loop

- The loop iterator appears only in the last dimension of the array
- Loop permutation changes the stride of memory accesses
- Use a static cost model [Trifunovic et al., PACT'09]

Summary of the Optimization Process

	description	#loops	#stmts	#refs	#deps	#part.	#valid	Variability	Pb. Size
2mm	Linear algebra (BLAS3)	6	4	8	12	75	12	~	1024x1024
3mm	Linear algebra (BLAS3)	9	6	12	19	4683	128	~	1024x1024
adi	Stencil (2D)	11	8	36	188	545835	1		1024x1024
atax	Linear algebra (BLAS2)	4	4	10	12	75	16	~	8000x8000
bicg	Linear algebra (BLAS2)	3	4	10	10	75	26	~	8000x8000
correl	Correlation (PCA: StatLib)	5	6	12	14	4683	176	~	500x500
covar	Covariance (PCA: StatLib)	7	7	13	26	47293	96	~	500x500
doitgen	Linear algebra	5	3	7	8	13	4		128x128x128
gemm	Linear algebra (BLAS3)	3	2	6	6	3	2		1024x1024
gemver	Linear algebra (BLAS2)	7	4	19	13	75	8	~	8000x8000
gesummv	Linear algebra (BLAS2)	2	5	15	17	541	44	~	8000x8000
gramschmidt	Matrix normalization	6	7	17	34	47293	1		512x512
jacobi-2d	Stencil (2D)	5	2	8	14	3	1		20x1024x1024
lu	Matrix decomposition	4	2	7	10	3	1		1024x1024
ludcmp	Solver	9	15	40	188	1012	20	~	1024x1024
seidel	Stencil (2D)	3	1	10	27	1	1		20x1024x1024

Table: Summary of the optimization process

Experimental Setup

We compare three schemes:

- maxfuse: static cost model for fusion (maximal fusion)
- smartfuse: static cost model for fusion (fuse only if data reuse)
- Iterative: iterative compilation, output the best result

Performance Results - Intel Xeon 7450 - ICC 11

Performance Results - AMD Opteron 8380 - ICC 11

Performance Improvement - AMD Opteron 8380 (16 threads)

Performance Results - Intel Atom 330 - GCC 4.3

Performance Improvement - Intel Atom 230 (2 threads)

Assessment from Experimental Results

- Empirical tuning required for 9 out of 16 benchmarks
- 2 Strong performance improvements: $2.5 \times 3 \times$ on average
- Ortability achieved:
 - Automatically adapt to the program and target architecture
 - No assumption made about the target
 - Exhaustive search finds the optimal structure (1-176 variants)
- Substantial improvements over state-of-the-art (up to $2\times$)

Frameworks for Polyhedral Compilation

- IBM XL / Poly
- GCC / Graphite (now in mainstream 4.5)
- LLVM / Polly
- R-Stream (Reservoir Labs, Inc.)
- ROSE / Polyopt (DARPA PACE project)
- Numerous affine program fragments in computational applications
- Our goal: drive programmers to write polyhedral-compliant programs!

Conclusions

Take-home message:

- ⇒ Fusion / Distribution / Code motion highly program- and machine-specific
- ⇒ Minimum empirical tuning + polyhedral framework gives very good performance on several applications
- ⇒ Complete, end-to-end framework implemented and effectiveness demonstrated

Future work:

- Further pruning of the search space (additional static cost models)
- Statistical search techniques