
A shorter way between Vaucanson and its
users

Louis-Noel Pouchet <louis-noel.pouchet@lrde.epita.fr >

LRDE seminar, June 23, 2004
http://vaucanson.lrde.epita.fr/

louis-noel.pouchet@lrde.epita.fr
http://vaucanson.lrde.epita.fr/

Copying this document

Copying this document

Copyright c© 2004 LRDE.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with the
Invariant Sections being just “Copying this document”, no Front-Cover
Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 1

Introduction

Introduction

The needs:

• get rid of annoying C++ syntax in Vaucanson[5],

• spare compilation time.

A solution:

• create an interpreter for Vaucanson,

• provide syntactic sugar for automaton manipulation.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 2

Introduction

Swig-less interpreter

• Entire design of the interpreter,

• define its own syntax,

• need to instantiate all types.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 3

Introduction

Vaucanswig

• Based on Swig[3][1],

• Python syntax,

• need to instantiate all types.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 4

Introduction

This approach

• Based on Swig and OCaml,

• modified OCaml syntax,

• use generic type adapters.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 5

Table of Contents

Table of Contents

Introduction .. 2

A binding for Vaucanson .. 7

Extending the interface ... 12

Grammar extension ... 22

Review of our solution .. 27

Conclusion ... 30

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 6

A binding for Vaucanson

A binding for Vaucanson

Our objectives:

• experiment algorithms in a dynamic environment,

• computations,

• fast and intuitive algorithm writing.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 7

A binding for Vaucanson

Using Swig

• Bind C / C++ code into various languages (Python, OCaml, PHP, . . .),

• actually only creates interfaces in destination languages,

• few parser limitations, that can be bypassed.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 8

A binding for Vaucanson

Bind to OCaml: why?

• Excellent interoperability with C / C++,

• interpreted and compiled,

• functional approach,

• known to be flexible,

• all the other advantages of the OCaml language. . .

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 9

A binding for Vaucanson

Swig Vaucanson into OCaml [1/2]

• Define all the methods for each object,

• objects have a special type c obj,

• can write object->method(arg1, arg2, . . .).

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 10

A binding for Vaucanson

Swig Vaucanson into OCaml [2/2]

A code sample:

let alphabet = make_alphabet ("ab" to string);;
let automaton = new_boolean_automaton_t alphabet;;
let state1 = automaton->add_states();;
let state2 = automaton->add_states();;
automaton->add_letter_edge(state1,

state2,
(C_char ’a’));;

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 11

Extending the interface

Extending the interface

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 12

Extending the interface

Genericity for an automaton

Our purpose here is to get:

• various types of alphabets,

• various types of semirings.

=⇒ Many kinds of multiplicity automaton can be generated.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 13

Extending the interface

How we want to write it

• Use OCaml types,

• get genericity on input types (alphabets).

Typically, we would like to write:

let alphabet = [’a’; ’b’];;
let automaton = new_boolean_automaton_t alphabet;;

let alphabet2 = [(’a’, 1); (’b’, 2)];;
let automaton2 = new_boolean_automaton_t alphabet2;;

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 14

Extending the interface

Interoperability between C and OCaml

• OCaml closure call from C code,

• C code call in OCaml,

• accessors macros to internal structure,

• only one C type for every OCaml type: value (typedef for long).

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 15

Extending the interface

The alphabet problem

Availability to use every letter type which can be defined in OCaml.

=⇒ Provide a generic adapter for letters.

• C++ letter class (one attribute containing the OCaml representation),

• OCaml method to print the letter.

=⇒ A single entry point for the constructor: Letter(const value l)

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 16

Extending the interface

The semiring problem [1/2]

We would like to define semiring properties in OCaml and use them in
Vaucanson.

=⇒ Provide a generic adapter for numbers.

• C++ number class (one attribute containing the OCaml representation),

• OCaml functions for all number operators.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 17

Extending the interface

The semiring problem [2/2]

To declare an operator function in OCaml (+ for Boolean semiring):

let add_ML a b = a || b;;

• No type specification, thanks to OCaml type inference,

• we only need to declare add, mul, identity, zero (and inf and eq for
comparison) for general use of the semiring.

• like for letters, we need a printing function.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 18

Extending the interface

Some glue in C++

• New context in Vaucanson: generic automaton ,

• wrap some Vaucanson functions: explore the OCaml value to build the
alphabet,

• wrap C++ function outputs to generate OCaml compliant values.

Now we have:

let alphabet = [’a’; ’b’];;
let automaton = new_automaton_t alphabet;;

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 19

Extending the interface

The OCaml glue

• Provide some predefined semirings,

• handle properly the KRat expressions,

• provide an automaton constructor:

let automaton = build_automaton states semiring
alphabet edges
initials finals;;

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 20

Extending the interface

Little summary

• Genericity on alphabets and semirings,

• OCaml types usable everywhere,

• wrappers for each wanted service,

• nice constructor for automata.

=⇒ Let’s extend the grammar!

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 21

Grammar extension

Grammar extension

• Extend syntax with Camlp4,

• files must be parsed with our grammar extension.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 22

Grammar extension

Automaton construction

Let an automaton be a six-tuple[4]:
automaton = < Q, A, K, E, I, T >

=⇒ We provide a similar constructor in the interpreter:

let states = [0; 1; 2];;
let alphabet = [’a’; ’b’];;
let edges = [(0, ’a’, 1); (1, ’b’, 2)];;
let initials = [0];;
let finals = [2];;
let automaton = < states, boolean_semiring, alphabet,

edges, initials, finals >;;

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 23

Grammar extension

Semiring construction [1/2]

Define a semiring by its calculus properties[2]:

let n_semiring = < (+):0, (*):1 >;;

let min a b = if a > b then b else a;;
let tropical_min_semiring = < min:infinity, (+):0 >;;

Notice that:

• you still need to define a print number function and register it,

• type inference in OCaml permits to omit the type of numbers.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 24

Grammar extension

Semiring construction [2/2]

Support of the Kleene star:

let is_starable x = x == 0;;
let star x = 0;

let n_semiring = < (+):0, (*):1, is_starable, star >;;

Notice that:

• you may not need star functions,

• the interpreter tells you when star functions are needed.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 25

Grammar extension

Other extensions

Some extensions about algebraic structures are welcome:

• set union and intersection,

• element membership.

(Notice that sets are here implemented with OCaml list).

let sum = [0; 1; 2] |/ set2;;
let diff = set1 /| set2;;
let x = 4;;
let is_included = x <! set1;;
let not_included = x <+ set1;;

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 26

Review of our solution

Review of our solution

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 27

Review of our solution

What is good. . .

• Genericity over alphabets and semirings,

• syntax extension,

• fast compilation of the interpreter,

• code can be compiled / interpreted,

• it is implemented.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 28

Review of our solution

. . . and what is not

• Wilder automata are not supported,

• type checking is actually weak (loss of Vaucanson typing force),

• work with a subset of Vaucanson functionalities.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 29

Conclusion

Conclusion

Future work:

• enforce type checking,

• add more sugar,

• add more services from Vaucanson,

• mechanize some processes.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 30

References

References

[1] Swig 1.3 reference manual.

[2] Loic Fosse. Domain specific language on automata. Technical report,
Epita Research and Development Laboratory, 2003.

[3] Raphael Poss. Liaison de bibliothèques a généricité statique avec un
langage interprèté. Technical report, Epita Research and Development
Laboratory, 2002.

[4] Jacques Sakarovitch. Elements de théorie des automates. 2003.

[5] Jacques Sakarovitch Sylvain Lombardy, Yann Regis-Gianas.
Introducing vaucanson. 2004.

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 31

References

Questions

A shorter way between Vaucanson and its users, Louis-Noel Pouchet - LRDE seminar, June 23, 2004 32

	Introduction
	A binding for Vaucanson
	Extending the interface
	Grammar extension
	Review of our solution
	Conclusion

