# Iterative Optimization in the Polyhedral Model

Louis-Noël Pouchet

ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France

January 18th, 2010

Ph.D Defense



### A Brief History...

- A Quick look backward:
  - 20 years ago: 80486 (1.2 M trans., 25 MHz, 8 kB cache)
  - > 10 years ago: Pentium 4 (42 M trans., 1.4 GHz, 256 kB cache, SSE)
  - > 7 years ago: Pentium 4EE (169 M trans., 3.8 GHz, 2 Mo cache, SSE2)
  - 4 years ago: Core 2 Duo (291 M trans., 3.2 GHz, 4 Mo cache, SSE3)
  - > 1 years ago: Core i7 Quad (781 M trans., 3.2 GHz, 8 Mo cache, SSE4)
- Memory Wall: 400 MHz FSB speed vs 3+ GHz processor speed
- Power Wall: going multi-core, "slowing" processor speed
- Heterogeneous: CPU(s) + accelerators (GPUs, FPGA, etc.)

### A Brief History...

- A Quick look backward:
  - 20 years ago: 80486 (1.2 M trans., 25 MHz, 8 kB cache)
  - > 10 years ago: Pentium 4 (42 M trans., 1.4 GHz, 256 kB cache, SSE)
  - > 7 years ago: Pentium 4EE (169 M trans., 3.8 GHz, 2 Mo cache, SSE2)
  - 4 years ago: Core 2 Duo (291 M trans., 3.2 GHz, 4 Mo cache, SSE3)
  - > 1 years ago: Core i7 Quad (781 M trans., 3.2 GHz, 8 Mo cache, SSE4)
- Memory Wall: 400 MHz FSB speed vs 3+ GHz processor speed
- Power Wall: going multi-core, "slowing" processor speed
- Heterogeneous: CPU(s) + accelerators (GPUs, FPGA, etc.)

### Compilers are facing a much harder challenge

### **Important Issues**

- $\blacktriangleright$  New architecture  $\rightarrow$  New high-performance libraries needed
- $\blacktriangleright\,$  New architecture  $\rightarrow$  New optimization flow needed
- Architecture complexity/diversity increases faster than optimization progress
- Traditional approaches are not oriented towards performance portability...

## **Important Issues**

- $\blacktriangleright$  New architecture  $\rightarrow$  New high-performance libraries needed
- $\blacktriangleright\,$  New architecture  $\rightarrow$  New optimization flow needed
- Architecture complexity/diversity increases faster than optimization progress
- Traditional approaches are not oriented towards performance portability...

### We need a portable optimization process













In reality, there is a complex interplay between all components



# **Iterative Optimization Flow**



### **Iterative Optimization Flow**



Program version = result of a sequence of loop transformation

## **Iterative Optimization Flow**



Program version = result of a sequence of loop transformation

### **Other Iterative Frameworks**

- Focus usually on composing existing compiler flags/passes
  - Optimization flags [Bodin et al., PFDC98] [Fursin et al., CGO06]
  - Phase ordering [Kulkarni et al., TACO05]
  - Auto-tuning libraries (ATLAS, FFTW, ...)
- Others attempt to select a transformation sequence
  - SPIRAL [Püschel et al., HPEC00]
  - Within UTF [Long and Fursin,ICPPW05], GAPS [Nisbet,HPCN98]
  - CHILL [Hall et al., USCRR08], POET [Yi et al., LCPC07], etc.
  - URUK [Girbal et al., IJPP06]

### **Other Iterative Frameworks**

- Focus usually on composing existing compiler flags/passes
  - Optimization flags [Bodin et al., PFDC98] [Fursin et al., CGO06]
  - Phase ordering [Kulkarni et al., TACO05]
  - Auto-tuning libraries (ATLAS, FFTW, ...)
- Others attempt to select a transformation sequence
  - SPIRAL [Püschel et al., HPEC00]
  - Within UTF [Long and Fursin, ICPPW05], GAPS [Nisbet, HPCN98]
  - CHiLL [Hall et al., USCRR08], POET [Yi et al., LCPC07], etc.
  - URUK [Girbal et al., IJPP06]
- Capability proven for efficient optimization
- Limited in applicability (legality)
- Limited in expressiveness (mostly simple sequences)
- Traversal efficiency compromised (uniqueness)

# **Our Approach: Set of Polyhedral Optimizations**

What matters is the **result of the application of optimizations**, not the optimization sequence

All-in-one approach: [Pouchet et al.,CGO07/PLDI08]

- Legality: semantics is always preserved
- Uniqueness: all versions of the set are distinct
- Expressiveness: a version is the result of an arbitrarily complex sequence of loop transformation
- Completion algorithm to instantiate a legal version from a partially specified one
- Dedicated traversal heuristics to focus the search











# **The Polyhedral Model**

# The Polyhedral Model vs Syntactic Frameworks

Limitations of standard syntactic frameworks:

- Composition of transformations may be tedious
- Approximate dependence analysis
  - Miss optimization opportunities
  - Scalable optimization algorithms

The polyhedral model:

- Works on executed statement instances, finest granularity
- Model arbitrary compositions of transformations
- Requires computationally expensive algorithms

### **A Three-Stage Process**

- 1 Analysis: from code to model
  - $\rightarrow$  Existing prototype tools (some developed during this thesis)
    - PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
    - URUK, Omega, Loopo, ...
  - → GCC GRAPHITE (now in mainstream)
  - $\rightarrow$  Reservoir Labs R-Stream, IBM XL/Poly

### **A Three-Stage Process**

- 1 Analysis: from code to model
  - $\rightarrow$  Existing prototype tools (some developed during this thesis)
    - PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
    - URUK, Omega, Loopo, ...
  - → GCC GRAPHITE (now in mainstream)
  - $\rightarrow$  Reservoir Labs R-Stream, IBM XL/Poly
- 2 Transformation in the model
  - $\rightarrow$  Build and select a program transformation

### A Three-Stage Process

- 1 Analysis: from code to model
  - $\rightarrow$  Existing prototype tools (some developed during this thesis)
    - PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
    - URUK, Omega, Loopo, ...
  - → GCC GRAPHITE (now in mainstream)
  - $\rightarrow$  Reservoir Labs R-Stream, IBM XL/Poly
- 2 Transformation in the model
  - $\rightarrow$  Build and select a program transformation
- 3 Code generation: from model to code
  - $\rightarrow~$  "Apply" the transformation in the model
  - $\rightarrow$  Regenerate syntactic (AST-based) code

Static Control Parts

Loops have affine control only (over-approximation otherwise)

#### Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra



#### Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of  $\vec{x_S}$  and  $\vec{p}$

$$f_{s}(\vec{x_{S2}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{S2}} \\ n \\ 1 \end{pmatrix}$$
  
for (i=0; i. s[i] = 0;  
. for (j=0; j. . s[i] = s[i]+a[i][j]\*x[j];  
}  
$$f_{a}(\vec{x_{S2}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{S2}} \\ n \\ 1 \end{pmatrix}$$
  
$$f_{x}(\vec{x_{S2}}) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{S2}} \\ n \\ 1 \end{pmatrix}$$

#### Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of  $\vec{x_S}$  and  $\vec{p}$
- ► Data dependence between S1 and S2: a subset of the Cartesian product of  $D_{S1}$  and  $D_{S2}$  (exact analysis)



#### **Original Schedule**

$$\begin{cases} \text{for } (\mathbf{i} = 0; \ \mathbf{i} < \mathbf{n}; \ ++\mathbf{i}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \text{S1: } C[\mathbf{i}][\mathbf{j}] = 0; \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \text{S2: } C[\mathbf{i}][\mathbf{j}] \ += \mathbf{A}[\mathbf{i}][\mathbf{k}] \ast \\ \mathbb{B}[\mathbf{k}][\mathbf{j}]; \\ \mathbf{g}^{S2}. \vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{i} \\ \mathbf{j} \\ \mathbf{n} \\ \mathbf{l} \end{pmatrix} \\ \end{cases} \\ \begin{cases} \text{for } (\mathbf{i} = 0; \ \mathbf{i} < \mathbf{n}; \ ++\mathbf{i}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \mathbb{C}[\mathbf{i}][\mathbf{j}] \ = 0; \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \mathbb{C}[\mathbf{i}][\mathbf{j}] \ += \mathbf{A}[\mathbf{i}][\mathbf{k}] \ast \\ \mathbb{B}[\mathbf{k}][\mathbf{j}]; \end{cases} \\ \mathbf{g}^{S2}. \vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{n} \\ \mathbf{l} \end{pmatrix} \\ \end{cases} \\ \end{cases}$$

Т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

### **Original Schedule**

Т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

#### **Original Schedule**

$$\begin{array}{c} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ \text{S2: } C[i][j] \ += A[i][k] \\ B[k][j]; \\ \end{array} \\ \left\{ \begin{array}{c} \Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \end{array} \right\} \\ \left\{ \begin{array}{c} \Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \left\{ \begin{array}{c} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++k) \\ C[i][j] \ = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ C[i][j] \ += A[i][k] \\ B[k][j]; \\ B[k][j]; \\ \end{array} \right\} \\ \end{array} \right\}$$

Т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

#### **Distribute loops**

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += A[i][k] * \\ B[k][j]; \\ \} \end{cases} \\ \qquad \Theta^{S2}.\vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}. \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{C[i][j] = 0; } \\ \text{for } (i = n; i < 2^{n}n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (i = n; i < 2^{n}n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (k = 0; k < n; ++k) \\ \text{C[i-n][j] += A[in][k] * \\ B[k][j]; \end{cases}$$

All instances of S1 are executed before the first S2 instance

#### Distribute loops + Interchange loops for S2

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += A[i][k] * \\ B[k][j]; \\ \end{cases} \\ \Theta^{S2}.\vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} . \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ C[i][j] = 0; \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (j = 0; j$$

L

▶ The outer-most loop for S2 becomes k

I.

#### **Illegal schedule**

$$\begin{array}{l} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ \text{S2: } C[i][j] \ += A[i][k] \\ B[k][j]; \\ \end{array} \\ \end{array} \\ \left. \Theta^{S2}_{\vec{X}S2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \left. \begin{pmatrix} \text{for } (k = 0; \ k < n; \ ++k) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (i = 0; \ i < n; \ ++j) \\ \text{for } (i = 0; \ i < n; \ ++j) \\ \text{for } (i = 0; \ i < n; \ ++j) \\ \text{for } (i = 0; \ i < n; \ ++j) \\ \text{for } (i = 0; \ i < n; \ ++j) \\ \text{for } (i = n; \ i < 2 kn; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ +j \\ \text{for } (j = 0; \ +j < n; \ ++j) \\ \text{for } (j = 0; \ +j < n; \ ++j) \\ \text{for } (j = 0; \ +j < n; \ ++j) \\ \text{for } (j = 0; \ ++j) \\ \text{for } (j = 0; \ +j < n; \ ++j) \\ \text{for } (j = 0; \ +j < n; \ ++j) \\ \text{for } (j = 0; \ +j < n; \ ++j) \\ \text{for } (j = 0; \ +j < n; \ ++j) \\ \text{for } (j = 0; \ +j < n; \ ++j) \\ \text{for$$

L

All instances of S1 are executed <u>after</u> the last S2 instance

#### A legal schedule

$$\begin{array}{l} \text{for } (\mathbf{i} = 0; \ \mathbf{i} < \mathbf{n}; \ ++\mathbf{i}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \text{S2: } C[\mathbf{i}][\mathbf{j}] \ = 0; \\ \mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \mathbf{k} \begin{bmatrix} \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{j} \end{bmatrix} \\ \mathbf{k} \end{bmatrix} \\ \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{k} \end{bmatrix} \\ \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{k} \end{bmatrix} \\ \mathbf{k} \end{bmatrix} \\ \mathbf{k} \end{bmatrix}$$

#### Delay the S2 instances

Constraints must be expressed between Θ<sup>S1</sup> and Θ<sup>S2</sup>

#### Implicit fine-grain parallelism

▶ Number of rows of  $\Theta \leftrightarrow$  number of outer-most <u>sequential</u> loops

#### **Representing a schedule**

$$\Theta \vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} . (\mathbf{i} \ \mathbf{j} \ \mathbf{i} \ \mathbf{j} \ \mathbf{k} \ \mathbf{n} \ \mathbf{n} \ \mathbf{1} \ \mathbf{1})^{T}$$
# **Program Transformations**

#### **Representing a schedule**

i.

$$\Theta \vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i & j & i & j & k & n & n & 1 & 1 \\ \vec{r} & \vec{p} & \mathbf{c} \end{pmatrix}^{T}$$

# **Program Transformations**

i.

#### **Representing a schedule**

i.

|          | Transformation | Description                                                         |  |  |  |
|----------|----------------|---------------------------------------------------------------------|--|--|--|
| ī        | reversal       | Changes the direction in which a loop traverses its iteration range |  |  |  |
|          | skewing        | Makes the bounds of a given loop depend on an outer loop counter    |  |  |  |
|          | interchange    | Exchanges two loops in a perfectly nested loop, a.k.a. permutation  |  |  |  |
| <i>p</i> | fusion         | Fuses two loops, a.k.a. jamming                                     |  |  |  |
|          | distribution   | Splits a single loop nest into many, a.k.a. fission or splitting    |  |  |  |
| С        | peeling        | Extracts one iteration of a given loop                              |  |  |  |
|          | shifting       | Allows to reorder loops                                             |  |  |  |









#### Property (Causality condition for schedules)

Given  $R\delta S$ ,  $\theta_R$  and  $\theta_S$  are legal iff for each pair of instances in dependence:

 $\theta_R(\vec{x_R}) < \theta_S(\vec{x_S})$ 

Equivalently: 
$$\Delta_{R,S} = \theta_S(\vec{x_S}) - \theta_R(\vec{x_R}) - 1 \ge 0$$





#### Lemma (Affine form of Farkas lemma)

Let  $\mathcal{D}$  be a nonempty polyhedron defined by  $A\vec{x} + \vec{b} \ge \vec{0}$ . Then any affine function  $f(\vec{x})$  is non-negative everywhere in  $\mathcal{D}$  iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$$

 $\lambda_0$  and  $\vec{\lambda^T}$  are called the Farkas multipliers.









$$\theta_{S}(\vec{x_{S}}) - \theta_{R}(\vec{x_{R}}) - 1 = \lambda_{0} + \vec{\lambda}^{T} \left( D_{R,S} \begin{pmatrix} \vec{x_{R}} \\ \vec{x_{S}} \end{pmatrix} + \vec{d}_{R,S} \right) \ge 0$$

$$\begin{cases} D_{R\delta S} \quad \begin{array}{c} \mathbf{i_R} \quad : \qquad & \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,3}} - \lambda_{D_{1,4}} \\ \mathbf{i_S} \quad : \qquad & -\lambda_{D_{1,1}} + \lambda_{D_{1,2}} + \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\ \mathbf{j_S} \quad : \qquad & \lambda_{D_{1,7}} - \lambda_{D_{1,8}} \\ \mathbf{n} \quad : \qquad & \lambda_{D_{1,4}} + \lambda_{D_{1,6}} + \lambda_{D_{1,8}} \\ \mathbf{1} \quad : \qquad & \lambda_{D_{1,0}} \end{cases}$$





$$\theta_{S}(\vec{\mathbf{x}_{S}}) - \theta_{R}(\vec{\mathbf{x}_{R}}) - 1 = \lambda_{0} + \vec{\lambda}^{T} \left( D_{R,S} \begin{pmatrix} \vec{\mathbf{x}_{R}} \\ \vec{\mathbf{x}_{S}} \end{pmatrix} + \vec{d}_{R,S} \right) \geq 0$$





- Solve the constraint system
- Use (purpose-optimized) Fourier-Motzkin projection algorithm
  - Reduce redundancy
  - Detect implicit equalities





- ➤ One point in the space ⇔ one set of legal schedules w.r.t. the dependences
- These conditions for semantics preservation are not new! [Feautrier,92]
- But never coupled with iterative search before

## **Generalization to Multidimensional Schedules**

*p*-dimensional schedule is not  $p \times 1$ -dimensional schedule:

- Once a dependence is strongly satisfied ("loop"-carried), must be discarded in subsequent dimensions
- Until it is strongly satisfied, must be respected ("non-negative")
- $\rightarrow$  Combinatorial problem: lexicopositivity of dependence satisfaction

A solution:

Encode dependence satisfaction with decision variables [Feautrier,92]

$$\Theta_k^S(\vec{x}_S) - \Theta_k^R(\vec{x}_R) \ge \delta, \ \delta \in \{0, 1\}$$

 Bound schedule coefficients, and nullify the precedence constraint when needed [Vasilache,07]

# Legality as an Affine Constraint

#### Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules  $\Theta^R, \Theta^S \dots$  of dimension *m*, the program semantics is preserved if the three following conditions hold:

(i) 
$$\forall \mathcal{D}_{R,S}, \ \delta_p^{\mathcal{D}_{R,S}} \in \{0,1\}$$
  
(ii)  $\forall \mathcal{D}_{R,S}, \ \sum_{p=1}^m \delta_p^{\mathcal{D}_{R,S}} = 1$  (1)  
(iii)  $\forall \mathcal{D}_{R,S}, \ \forall p \in \{1,\dots,m\}, \ \forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S},$  (2)  
 $\Theta_p^S(\vec{x}_S) - \Theta_p^R(\vec{x}_R) \ge -\sum_{k=1}^{p-1} \delta_k^{\mathcal{D}_{R,S}}.(K.\vec{n}+K) + \delta_p^{\mathcal{D}_{R,S}}$ 

- ightarrow Note: schedule coefficients must be bounded for Lemma to hold
- → Severe scalability challenge for large programs

# Search Space Construction and Evaluation

## **Objectives for the Search Space Construction**

- Provide scalable techniques to construct the search space
- Adapt the space construction to the machine specifics (esp. parallelism)
- Search space is infinite: requires appropriate bounding
- Expressiveness: allow for a rich set of transformations sequences
- Compiler optimization heuristics are fragile, manage it!

# **Overview of the Proposed Approach**

Build a convex set of candidate program versions

- Affine set of schedule coefficients
- Enforce legality and uniqueness as affine constraints

Shape this set to a form which allows an efficient traversal

- Redundancy-less Fourier-Motzkin elimination algorithm
- Force FM-property by applying Fourier-Motzkin elim. on the set

#### Traverse the set

- Exhaustively, for performance analysis
- Heuristically, for scalability

## **Search Space Construction**

Principle: Feautrier's + coefficient bounding Output: 1 independent polytope per schedule dimension

#### Algorithm

Init: Set all dependencies as unresolved

- **○** k = 1
- Set T<sub>k</sub> as the **polytope** of valid schedules with all unresolved dependencies weakly satisfied (i.e., set δ = 0)
- For each unresolved dependence  $\mathcal{D}_{R,S}$ :
  - build  $S_{\mathcal{D}_{R,S}}$  the set of schedules strongly satisfying  $\mathcal{D}_{R,S}$  (i.e., set  $\delta = 1$ )

() if  $\mathcal{T}_{k}^{'} \neq \emptyset$ ,  $\mathcal{T}_{k} = \mathcal{T}_{k}^{'}$ . Mark  $\mathcal{D}_{R,S}$  as resolved

If unresolved dependence remains, increment k and go to 1

# Some Properties of the Algorithm

- Without bounding, equivalent to Feautrier's genuine scheduling algorithm
- With bounding, sensitive to the dependence traversal order
  - Heuristics to select the dependence order: pairwise interference, traffic ranking, etc.
  - May also search for different orders
- May not minimize the schedule dimensionality
- Outer dimensions (i.e., outer loops) are more constrained
- Inner dimensions tend to be parallel, if possible (SIMD friendly)

## **Search Space Size**

Bound each coefficient between [-1,1] to avoid complex control overhead and drive the search

| Benchmark        | #Inst. | #Dep. | #Dim. | dim 1 | dim 2       | dim 3       | dim 4    | Total                |
|------------------|--------|-------|-------|-------|-------------|-------------|----------|----------------------|
| compress         | 6      | 56    | 3     | 20    | 136         | 10857025    | n/a      | $2.9 	imes 10^{10}$  |
| edge             | 3      | 30    | 4     | 27    | 54          | 90534       | 43046721 | $5.6 \times 10^{15}$ |
| iir              | 8      | 66    | 3     | 18    | 6984        | $> 10^{15}$ | n/a      | $> 10^{19}$          |
| fir              | 4      | 36    | 2     | 18    | 52953       | n/a         | n/a      | $9.5 \times 10^{7}$  |
| lmsfir           | 9      | 112   | 2     | 27    | 10534223    | n/a         | n/a      | $2.8 \times 10^{8}$  |
| mult             | 3      | 27    | 3     | 9     | 27          | 3295        | n/a      | $8.0 \times 10^{5}$  |
| latnrm           | 11     | 75    | 3     | 9     | 1896502     | $> 10^{15}$ | n/a      | $> 10^{22}$          |
| lpc-LPC_analysis | 12     | 85    | 2     | 63594 | $> 10^{20}$ | n/a         | n/a      | $> 10^{25}$          |
| ludcmp           | 14     | 187   | 3     | 36    | $> 10^{20}$ | $> 10^{25}$ | n/a      | $> 10^{46}$          |
| radar            | 17     | 153   | 3     | 400   | $> 10^{20}$ | $> 10^{25}$ | n/a      | $> 10^{48}$          |

Figure: Search Space Statistics

#### Performance Distribution for 1-D Schedules [1/2]



#### Figure: Performance distribution for matmult and locality

## Performance Distribution for 1-D Schedules [2/2]



(a) GCC -03



#### Figure: The effect of the compiler

# **Quantitative Analysis: The Hypothesis**

Extremely large generated spaces:  $> 10^{50}$  points

→ we must leverage static and dynamic characteristics to build traversal mechanisms

Hypothesis: [Pouchet et al,SMART08]

It is possible to statically order the impact on performance of transformation coefficients, that is, decompose the search space in subspaces where the performance variation is maximal or reduced

▶ First rows of Θ are more performance impacting than the last ones



- Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
- Search space analyzed: 66 × 19683 = 1.29 × 10<sup>6</sup> different legal program versions



- Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
- Search space analyzed: 66 × 19683 = 1.29 × 10<sup>6</sup> different legal program versions



- Take one specific value for the first row
- Try the 19863 possible values for the second row



- Take one specific value for the first row
- Try the 19863 possible values for the second row
- Very low proportion of best points: < 0.02%



Performance variation is large for good values of the first row



- Performance variation is large for good values of the first row
- It is usually reduced for bad values of the first row

# Scanning The Space of Program Versions

The search space:

• Performance variation indicates to partition the space:  $\vec{i} > \vec{p} > c$ 

#### Non-uniform distribution of performance

No clear analytical property of the optimization function

 $\rightarrow$  Build dedicated heuristic and genetic operators aware of these static and dynamic characteristics

## **Search Space Traversal**

# **Objectives for Efficient Traversal**

Main goals:

- Enable feedback-directed search
- Focus the search on interesting subspaces

Provide mechanisms to decouple the traversal:

- Leverage our knowledge on the performance distribution
- Leverage static properties of the search space
- Completion mechanism, to instantiate a full schedule from a partial one
- Traversal heuristics adapted to the problem complexity
  - Decoupling heuristic: explore first iterator coefficients (deterministic)
  - Genetic algorithm: improve further scalability (non-deterministic)

### Some Results for 1-D Schedules



Figure: Comparison between random and decoupling heuristics



#### **Inserting Randomness in the Search**

About the performance distribution:

- The performance distribution is not uniform
- Wild jump in the space: tune  $\vec{i}$  coefficients of upper dimensions
- Refinement: tune  $\vec{p}$  and  $\vec{c}$  coefficients

About the space of schedules:

- Highly constrained: small change in i may alter many other coefficients
- Rows are independent: no inter-dimension constraint
- Some transformations (e.g., interchange) must operate between rows

# **Genetic Operators**

#### Mutation

- Probability varies along with evolution
- Tailored to focus on the most promising subspaces
- Preserves legality (closed under affine constraints)

#### **Cross-over**



Both preserve legality

### **Dedicated GA Results**



GA converges towards the maximal space speedup
### **Experimental Results [1/2]**



baseline: gcc -O3 -ftree-vectorize -msse2

# **Experimental Results [2/2]**



baseline: st200cc -O3 -OPT:alias=restrict -mauto-prefetch

ALCHEMY, INRIA Saclay

# **Assessments from Experimental Results**

Looking into details (hardware counters+compilation trace):

- Better activity of the processing units
- Best version may vary significantly for different architectures
- > Different source code may trigger different compiler optimizations

 $\rightarrow$  Portability of the optimization process validated w.r.t. architecture/compiler

# **Assessments from Experimental Results**

Looking into details (hardware counters+compilation trace):

- Better activity of the processing units
- Best version may vary significantly for different architectures
- Different source code may trigger different compiler optimizations

# $\rightarrow$ Portability of the optimization process validated w.r.t. architecture/compiler

Limitation: poor compatibility with coarse-grain parallelism Can we reconcile tiling, parallelization, SIMD and iterative search?

# **Multidimensional Interleaving Selection**

# **Overview of the Problem**

Objectives:

- Achieve efficient coarse-grain parallelization
- Combine iterative search of profitable transformations for tiling
  - $\rightarrow~$  loop fusion and loop distribution

Existing framework: tiling hyperplane [Bondhugula,08]

- Model-driven approach for automatic parallelization + locality improvement
- Tiling-oriented
- Poor model-driven heuristic for the selection of loop fusion (not portable)
- Overly relaxed definition of fused statements

# Our Strategy in a Nutshell...

#### Introduce the concept of fusability

Introduce a modeling for arbitrary loop fusion/distribution combinations

- Equivalence 1-d interleaving with total preorders
- Affine encoding of total preorders
- Generalization to multidimensional interleavings
- Pruning technique to keep only semantics-preserving ones
- Design a mixed iterative and model-driven algorithm to build optimizing transformations

#### **Fusability of Statements**

► Fusion ⇔ interleaving of statement instances

Two statements are fused if their timestamp overlap

$$\Theta_k^R(\vec{x_R}) \le \Theta_k^S(\vec{x_S}) \land \Theta_k^S(\vec{x_S}') \le \Theta_k^R(\vec{x_R}')$$

▶ Better approach: at most *c* instances are not fused (approximation)

#### Definition (Fusability restricted to non-negative schedule coefficients)

Given two statements R, S such that R is surrounded by  $d^R$  loops, and S by  $d^S$  loops. They are fusable at level p if,  $\forall k \in \{1 \dots p\}$ , there exists two semantics-preserving schedules  $\Theta_k^R$  and  $\Theta_k^S$  such that:

(i) 
$$\forall k \in \{1, \dots, p\}, \quad -c < \Theta_k^R(\vec{0}) - \Theta_k^S(\vec{0}) < c$$
  
(ii)  $\sum_{i=1}^{d^R} \Theta_{k,i}^R > 0, \; \sum_{i=1}^{d^S} \Theta_{k,i}^S > 0$ 

Exact solution is hard: may require Ehrart polynomials for general case

# Affine Encoding of Total Preorders

Principle: [Pouchet,PhD10]

Model a total preorder with 3 binary variables

 $p_{i,j}: i < j$   $s_{i,j}: i > j$   $e_{i,j}: i = j$ 

- Enforce totality and mutual exclusion
- ► Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: e<sub>i,j</sub> = 1 ∧ e<sub>j,k</sub> = 1 ⇒ e<sub>i,k</sub> = 1

$$\mathcal{O} = \left\{ \begin{array}{c} 0 \leq p_{i,j} \leq 1\\ 0 \leq e_{i,j} \leq 1\\ 0 \leq e_{i,j} \leq 1 \end{array} \right\} \quad \text{constrained to:} \quad \mathcal{O} = \left\{ \begin{array}{c} 0 \leq p_{i,j} \leq 1\\ 0 \leq e_{i,j} \leq 1\\ 0 \leq s_{i,j} \leq 1 \end{array} \right\} \quad \text{constrained to:} \quad \mathcal{O} = \left\{ \begin{array}{c} 0 \leq p_{i,j} \leq 1\\ \forall k \in ]j,n] \quad e_{i,j} + e_{i,k} \leq 1 + e_{j,k}\\ \forall k \in ]i,j[ \qquad p_{i,k} + p_{k,j} \leq 1 + e_{i,k} \end{cases} \quad \begin{array}{c} \text{Basic transitivity}\\ \text{on } e \end{array} \right\} \quad \begin{array}{c} \text{Basic transitivity}\\ \text{on } e \end{array} \right\} \quad \begin{array}{c} \forall k \in ]j,n] \quad e_{i,j} + p_{i,k} \leq 1 + e_{j,k}\\ \forall k \in ]i,j[ \qquad p_{i,k} + p_{k,j} \leq 1 + p_{i,k} \end{cases} \quad \begin{array}{c} \text{Basic transitivity}\\ \text{on } p \end{array} \right\} \quad \begin{array}{c} \text{Complex}\\ \forall k \in ]i,j[ \qquad e_{k,j} + p_{i,k} \leq 1 + p_{i,k} \\ \forall k \in ]i,j[ \qquad e_{k,j} + p_{i,k} \leq 1 + p_{i,k} \\ \forall k \in ]i,j[ \qquad e_{k,j} + p_{i,k} \leq 1 + p_{i,k} \\ \forall k \in ]i,j[ \qquad e_{k,j} + p_{i,k} \leq 1 + p_{i,k} \\ \forall k \in ]i,n] \quad e_{i,j} + p_{i,j} + p_{i,k} \leq 1 + p_{i,k} \\ \forall k \in ]i,n] \quad e_{i,j} + p_{i,j} + p_{i,k} \leq 1 + p_{i,k} \\ \end{array} \right\} \quad \begin{array}{c} \text{Complex}\\ \text{transitivity}\\ \text{on } s \text{ and } p \end{array}$$

#### **Search Space Statistics**

Pruning for semantics preservation ( $\mathcal{F}$ ):

- ► Start from all total preorders (*O*)
- Prove when fusability is a transitive relation: equivalent to checking the existence of pairwise compatible loop permutations
- Check graph of compatible permutations to determine fusable sets, prune O from non-fusable ones

|           |        |       | 0    |      |                   | $\mathcal{F}^1$ |      |         | ]       |       |
|-----------|--------|-------|------|------|-------------------|-----------------|------|---------|---------|-------|
| Benchmark | #loops | #refs | #dim | #cst | #points           | #dim            | #cst | #points | #Tested | Time  |
| advect3d  | 12     | 32    | 12   | 58   | 75                | 9               | 43   | 26      | 52      | 0.82s |
| atax      | 4      | 10    | 12   | 58   | 75                | 6               | 25   | 16      | 32      | 0.06s |
| bicg      | 3      | 10    | 12   | 58   | 75                | 10              | 52   | 26      | 52      | 0.05s |
| gemver    | 7      | 19    | 12   | 58   | 75                | 6               | 28   | 8       | 16      | 0.06s |
| ludcmp    | 9      | 35    | 182  | 3003 | $\approx 10^{12}$ | 40              | 443  | 8       | 16      | 0.54s |
| doitgen   | 5      | 7     | 6    | 22   | 13                | 3               | 10   | 4       | 8       | 0.08s |
| varcovar  | 7      | 26    | 42   | 350  | 47293             | 22              | 193  | 96      | 192     | 0.09s |
| correl    | 5      | 12    | 30   | 215  | 4683              | 21              | 162  | 176     | 352     | 0.09s |

Figure: Search space statistics

### **Optimization Algorithm**

#### Proceeds level-by-level

- Starting from the outer-most level, iteratively select an interleaving
- > For this interleaving, compute an optimization which respects it
  - Compound of skewing, shifting, fusion, distribution, interchange, tiling and parallelization (OpenMP)
  - Maximize locality for each partition of statements

#### Automatically adapt to the target architecture

- Solid improvement over existing model-driven approach
- ▶ Up to 150× speedup on 24 cores, 15× speedup over autopll compiler

### **Performance Results for Intel Xeon 24-cores**



baseline: ICC 11.0 -fast -parallel -fopenmp

# **Conclusions and Future Work**

# **Summary of Contributions**

We have designed, built and experimented **all required blocks to perform an efficient iterative selection of fine-grain loop transformations** in the polyhedral model.

- Theoretically sound and practical iterative optimization algorithms
  - Significant increase in expressiveness of iterative techniques
  - Well-designed (but complex) problems
  - Extensive experimental analysis of the performance distribution
  - Subspace-driven traversal techniques for polytopes
- Theoretical framework for generalized fusion
- Practical solution for machine-dependent parallelization + vectorization + locality
- Implementation in publicly available tools: PoCC, LetSee, FM, etc.

# **Future Work: Machine Learning**

Machine Learning could improve the scalability:

- Currently, no reuse from previous compilation / space traversal
- Efficiency proved on (simpler) compilation problems

Main issues:

- Fine-grain vs. coarse-grain optimization
- Knowledge representation
- Features for similarity computation

# **Take-Home Message**

Iterative Optimization: the last hope, or a new hope?

- Efficient, more expressive and portable mechanisms can be built
- > The polyhedral representation is adaptable to iterative compilation
- > Performance-demanding programmers can afford long compilation time
- Still require to execute different codes: not always possible
- Downside of polyhedral expressiveness: algorithmic complexity

Questions:

- Can we increase the accuracy of static models, given the complexity of modern compilers and chips?
- Can we <u>systematically</u> reach the performance of hand-tuned code with an automatic approach?

# **Take-Home Message**

Iterative Optimization: the last hope, or a new hope?

- Efficient, more expressive and portable mechanisms can be built
- > The polyhedral representation is adaptable to iterative compilation
- > Performance-demanding programmers can afford long compilation time
- Still require to execute different codes: not always possible
- Downside of polyhedral expressiveness: algorithmic complexity

Questions:

- Can we increase the accuracy of static models, given the complexity of modern compilers and chips?
- Can we <u>systematically</u> reach the performance of hand-tuned code with an automatic approach?

#### Thank you!

# **Supplementary Slides**

# Yet Another Completion Algorithm

Principle: [Pouchet et al,PLDI08]

- Rely on a pre-pass to normalize the space (improved full polytope projection)
- Works in polynomial time w.r.t. the number of constraints in the normalized space

See also [Li et al,IJPP94] [Griebl,PACT98] [Vasilache,PACT07]...

#### Three fundamental properties:

- If  $v_1, \ldots, v_k$  is a prefix of a legal point v, a completion is always found
- 2 This completion will only update  $v_{k+1}, \ldots, v_{d_{\text{max}}}$ , if needed;
- When v<sub>1</sub>,..., v<sub>k</sub> are the i coefficients, the heuristic looks for the smallest absolute value for the p and c coefficients

### Performance Results for AMD Opteron 16-cores



#### Variability for **GEMVER**



### Future Work: Knowledge Transfer

Current approach:

- Training: 1 program  $\rightarrow$  1 effective transformation
- On-line: Compute similarities with existing program, apply the same transformation
- $\rightarrow~$  Does not work well for fine-grain optimization

# Future Work: Knowledge Transfer

Current approach:

- Training: 1 program  $\rightarrow$  1 effective transformation
- On-line: Compute similarities with existing program, apply the same transformation
- $\rightarrow~$  Does not work well for fine-grain optimization

Proposed approach:

- Don't care about the sequence, only about properties of the schedule (parallelism degree, locality, etc.)
- Learn how to prioritize performance anomaly solving instead
- Rely on the polyhedral model to compute a matching optimization
- Some open problems:
  - How to compute (polyhedral) features? They are parametric
  - How to compute the optimization (combinatorial decision problem)?