Iterative Optimization in the Polyhedral Model

Louis-Noël Pouchet

ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France
January 18th, 2010

Ph.D Defense

A Brief History...

- A Quick look backward:
- 20 years ago: 80486 (1.2 M trans., $25 \mathrm{MHz}, 8 \mathrm{kB}$ cache)
- 10 years ago: Pentium 4 (42 M trans., $1.4 \mathrm{GHz}, 256 \mathrm{kB}$ cache, SSE)
- 7 years ago: Pentium 4EE (169 M trans., 3.8 GHz, 2 Mo cache, SSE2)
- 4 years ago: Core 2 Duo (291 M trans., 3.2 GHz, 4 Mo cache, SSE3)
- 1 years ago: Core i7 Quad (781 M trans., 3.2 GHz, 8 Mo cache, SSE4)
- Memory Wall: 400 MHz FSB speed vs 3+ GHz processor speed
- Power Wall: going multi-core, "slowing" processor speed
- Heterogeneous: CPU(s) + accelerators (GPUs, FPGA, etc.)

A Brief History...

- A Quick look backward:
- 20 years ago: 80486 (1.2 M trans., $25 \mathrm{MHz}, 8 \mathrm{kB}$ cache)
- 10 years ago: Pentium 4 (42 M trans., $1.4 \mathrm{GHz}, 256 \mathrm{kB}$ cache, SSE)
- 7 years ago: Pentium 4EE (169 M trans., 3.8 GHz, 2 Mo cache, SSE2)
- 4 years ago: Core 2 Duo (291 M trans., 3.2 GHz, 4 Mo cache, SSE3)
- 1 years ago: Core i7 Quad (781 M trans., 3.2 GHz, 8 Mo cache, SSE4)
- Memory Wall: 400 MHz FSB speed vs 3+ GHz processor speed
- Power Wall: going multi-core, "slowing" processor speed
- Heterogeneous: CPU(s) + accelerators (GPUs, FPGA, etc.)

Compilers are facing a much harder challenge

Important Issues

- New architecture \rightarrow New high-performance libraries needed
- New architecture \rightarrow New optimization flow needed
- Architecture complexity/diversity increases faster than optimization progress
- Traditional approaches are not oriented towards performance portability...

Important Issues

- New architecture \rightarrow New high-performance libraries needed
- New architecture \rightarrow New optimization flow needed
- Architecture complexity/diversity increases faster than optimization progress
- Traditional approaches are not oriented towards performance portability...

We need a portable optimization process

The Optimization Problem

The Optimization Problem

The Optimization Problem

The Optimization Problem

 architecture 1

The Optimization Problem

The Optimization Problem

In reality, there is a complex interplay between all components

Iterative Optimization Flow

High-level transformations

Iterative Optimization Flow

Program version = result of a sequence of loop transformation

Iterative Optimization Flow

Program version $=$ result of a sequence of loop transformation

Other Iterative Frameworks

- Focus usually on composing existing compiler flags/passes
- Optimization flags [Bodin et al.,PFDC98] [Fursin et al.,CGO06]
- Phase ordering [Kulkarni et al.,TACO05]
- Auto-tuning libraries (ATLAS, FFTW, ...)
- Others attempt to select a transformation sequence
- SPIRAL [Püschel et al.,HPEC00]
- Within UTF [Long and Fursin,ICPPW05], GAPS [Nisbet,HPCN98]
- CHiLL [Hall et al.,USCRR08], POET [Yi et al.,LCPC07], etc.
- URUK [Girbal et al.,IJPP06]

Other Iterative Frameworks

- Focus usually on composing existing compiler flags/passes
- Optimization flags [Bodin et al.,PFDC98] [Fursin et al.,CGO06]
- Phase ordering [Kulkarni et al.,TACO05]
- Auto-tuning libraries (ATLAS, FFTW, ...)
- Others attempt to select a transformation sequence
- SPIRAL [Püschel et al.,HPEC00]
- Within UTF [Long and Fursin,ICPPW05], GAPS [Nisbet,HPCN98]
- CHiLL [Hall et al.,USCRR08], POET [Yi et al.,LCPC07], etc.
- URUK [Girbal et al.,IJPP06]
- Capability proven for efficient optimization
- Limited in applicability (legality)
- Limited in expressiveness (mostly simple sequences)
- Traversal efficiency compromised (uniqueness)

Our Approach: Set of Polyhedral Optimizations

What matters is the result of the application of optimizations, not the optimization sequence

All-in-one approach: [Pouchet et al.,CGO07/PLDI08]

- Legality: semantics is always preserved
- Uniqueness: all versions of the set are distinct
- Expressiveness: a version is the result of an arbitrarily complex sequence of loop transformation
- Completion algorithm to instantiate a legal version from a partially specified one
- Dedicated traversal heuristics to focus the search
(1) The Polyhedral Model

2) Search Space Construction and Evaluation
(3) Search Space Traversal

4 Interleaving Selection
(5) Conclusions and Future Work

The Polyhedral Model

The Polyhedral Model vs Syntactic Frameworks

Limitations of standard syntactic frameworks:

- Composition of transformations may be tedious
- Approximate dependence analysis
- Miss optimization opportunities
- Scalable optimization algorithms

The polyhedral model:

- Works on executed statement instances, finest granularity
- Model arbitrary compositions of transformations
- Requires computationally expensive algorithms

A Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools (some developed during this thesis)

- PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
- URUK, Omega, Loopo, ...
\rightarrow GCC GRAPHITE (now in mainstream)
\rightarrow Reservoir Labs R-Stream, IBM XL/Poly

A Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools (some developed during this thesis)

- PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
- URUK, Omega, Loopo, ...
\rightarrow GCC GRAPHITE (now in mainstream)
\rightarrow Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
\rightarrow Build and select a program transformation

A Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools (some developed during this thesis)

- PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
- URUK, Omega, Loopo, ...
\rightarrow GCC GRAPHITE (now in mainstream)
\rightarrow Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
\rightarrow Build and select a program transformation

3 Code generation: from model to code
\rightarrow "Apply" the transformation in the model
\rightarrow Regenerate syntactic (AST-based) code

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

```
for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...
```

$\mathcal{D}_{S 1}=\left[\begin{array}{rrrr}\mathbf{1} & \mathbf{0} & \mathbf{0} & -\mathbf{1} \\ -1 & 0 & 1 & 0 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -1 & -1 & 1 & 2\end{array}\right] \cdot\left(\begin{array}{c}i \\ j \\ n \\ 1\end{array}\right) \geq \overrightarrow{0}$

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of \vec{x}_{S} and \vec{p}

$$
f_{\mathrm{s}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right)
$$

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; ++i) $\{$
. $s[i]=0$;
. for ($j=0 ; j<n ;++j)$
. . s[i] = s[i]+a[i][j]*x[j];
\}

$$
\begin{aligned}
& f_{\mathbf{a}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right) \\
& f_{\mathbf{x}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right)
\end{aligned}
$$

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\overrightarrow{x_{S}}$ and \vec{p}
- Data dependence between S1 and S2: a subset of the Cartesian product of $\mathcal{D}_{S 1}$ and $\mathcal{D}_{S 2}$ (exact analysis)

```
for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;
}
```


Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Distribute loops

- All instances of S1 are executed before the first S2 instance

Program Transformations

Distribute loops + Interchange loops for S2

- The outer-most loop for $\mathbf{S} \mathbf{2}$ becomes k

Program Transformations

Illegal schedule

- All instances of S1 are executed after the last S2 instance

Program Transformations

A legal schedule

- Delay the S2 instances
- Constraints must be expressed between $\Theta^{S 1}$ and $\Theta^{S 2}$

Program Transformations

Implicit fine-grain parallelism

$\begin{aligned} & \text { for }(i=0 ; i<n ;++i) \\ & \text { for }(j=0 ; j<n ;++j)(\\ & f 1: C[i][j]=0 ; \\ & \text { for }(k=0 ; k<n ;++k) \end{aligned}$	$\Theta^{S 1} \cdot \vec{x}_{S 1}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right) \cdot\left(\begin{array}{l}\mathbf{i} \\ \mathbf{j} \\ \mathbf{n} \\ \mathbf{1}\end{array}\right)$	```for (\(i=0 ; i<n ;++i)\) pfor (\(\mathrm{j}=0\); j < n ; +j) \(\mathrm{C}[\mathrm{i}][\mathrm{j}]=0\); for (\(k=n ; k<2 * n ;++k)\)```
$\text { S2: } \begin{aligned} C[i][j]+= & A[i][k] * \\ & B[k][j] ; \end{aligned}$	$\Theta^{S 2} \cdot \vec{x}_{S 2}=\left(\begin{array}{lllll} 0 & 0 & 1 & 1 & 0 \end{array}\right) \cdot\left(\begin{array}{l} \mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{n} \\ \mathbf{1} \end{array}\right)$	$\begin{aligned} & \text { pfor }(j=0 ; j<n ;++j) \\ & \text { pfor }(i=0 ; i<n ;++i) \\ & C[i][j]+=A[i][k-n] * \\ & B[k-n][j] ; \end{aligned}$

- Number of rows of $\Theta \leftrightarrow$ number of outer-most sequential loops

Program Transformations

Representing a schedule

$$
\begin{aligned}
& \Theta \cdot \vec{x}=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{lllllll}
\mathbf{i} & j & i & j & k & n & n \\
1 & 1 & 1
\end{array}\right)^{T}
\end{aligned}
$$

Program Transformations

Representing a schedule

Program Transformations

Representing a schedule

```
    for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j){
S1: C[i][j] = 0;
        for (k = 0; k < n; ++k)
S2: C[i][j] += A[i][k]*
                        B[k][j];
    }
```

$\Theta^{S 1} \cdot \vec{x}_{S 1}=\left(\begin{array}{llll}\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & 0 & \mathbf{0}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathrm{n} \\ \mathbf{1}\end{array}\right)$
$\Theta^{S 2} \cdot \vec{x}_{S 2}=\left(\begin{array}{ccccc}\mathbf{0} & \mathbf{0} & \mathbf{1} & 1 & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & 0 & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & 0 & \mathbf{0}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathrm{n} \\ \mathbf{1}\end{array}\right)$

```
for (i = n; i < 2*n; ++i)
    for (j = 0; j < n; ++j)
        C[i][j] = 0;
        for (k= n+1; k<= 2*n; ++k)
        for (j = 0; j < n; ++j)
        for (i = 0; i < n; ++i)
            C[i][j] += A[i][k-n-1]*
                        B[k-n-1][j];
```

	Transformation	Description
\vec{l}	reversal	Changes the direction in which a loop traverses its iteration range
	skewing	Makes the bounds of a given loop depend on an outer loop counter
	interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation
\vec{p}	fusion	Fuses two loops, a.k.a. jamming
	distribution	Splits a single loop nest into many, a.k.a. fission or splitting
c	peeling	Extracts one iteration of a given loop
	shifting	Allows to reorder loops

Example: Semantics Preservation (1-D)

Example: Semantics Preservation (1-D)

Property (Causality condition for schedules)
Given $R \delta S, \theta_{R}$ and θ_{S} are legal iff for each pair of instances in dependence:

$$
\begin{gathered}
\theta_{R}\left(\overrightarrow{x_{R}}\right)<\theta_{S}\left(\overrightarrow{x_{S}}\right) \\
\text { Equivalently: } \Delta_{R, S}=\theta_{S}\left(\overrightarrow{x_{S}}\right)-\theta_{R}\left(\overrightarrow{x_{R}}\right)-1 \geq 0
\end{gathered}
$$

Example: Semantics Preservation (1-D)

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by $A \vec{x}+\vec{b} \geq \overrightarrow{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$
f(\vec{x})=\lambda_{0}+\vec{\lambda}^{T}(A \vec{x}+\vec{b}), \text { with } \lambda_{0} \geq 0 \text { and } \vec{\lambda} \geq \overrightarrow{0}
$$

λ_{0} and $\overrightarrow{\lambda^{T}}$ are called the Farkas multipliers.

Example: Semantics Preservation (1-D)

Example: Semantics Preservation (1-D)

Example: Semantics Preservation (1-D)

$$
\begin{aligned}
& \theta_{S}\left(\vec{x}_{S}\right)-\theta_{R}\left(\overrightarrow{x_{R}}\right)-1=\lambda_{0}+\vec{\lambda}^{T}\left(D_{R, S}\binom{\overrightarrow{x_{R}}}{\overrightarrow{x_{S}}}+\vec{d}_{R, S}\right) \geq 0 \\
& \left\{\begin{array}{rcll}
D_{R} \delta S & \mathbf{i}_{\mathbf{R}} & : & \lambda_{D_{1,1}}-\lambda_{D_{1,2}}+\lambda_{D_{1,3}}-\lambda_{D_{1,4}} \\
& \mathbf{i}_{\mathbf{S}} & : & -\lambda_{D_{1,1}}+\lambda_{D_{1,2}}+\lambda_{D_{1,5}}-\lambda_{D_{1,6}} \\
& \mathbf{j}_{\mathbf{S}} & : & \lambda_{D_{1,7}}-\lambda_{D_{1,8}} \\
& \mathbf{n} & : & \lambda_{D_{1,4}}+\lambda_{D_{1,6}}+\lambda_{D_{1,8}} \\
& \mathbf{1} & : & \lambda_{D_{1,0}}
\end{array}\right.
\end{aligned}
$$

Example: Semantics Preservation (1-D)

$$
\begin{aligned}
& \theta_{S}\left(\overrightarrow{\mathbf{x}_{\mathbf{S}}}\right)-\theta_{R}\left(\overrightarrow{\mathbf{x}_{\mathbf{R}}}\right)-1=\lambda_{0}+\vec{\lambda}^{T}\left(D_{R, S}\binom{\overrightarrow{\mathbf{x}_{\mathbf{R}}}}{\overrightarrow{\mathbf{x}_{\mathbf{S}}}}+\vec{d}_{R, S}\right) \geq 0 \\
& \left\{\begin{array}{rrrrl}
D_{R \delta S} & \mathbf{i}_{\mathbf{R}} & : & -t_{1_{R}} & =\lambda_{D_{1,1}}-\lambda_{D_{1,2}}+\lambda_{D_{1,3}}-\lambda_{D_{1,4}} \\
\mathbf{i}_{\mathbf{S}} & : & t_{1_{S}} & =-\lambda_{D_{1,1}}+\lambda_{D_{1,2}}+\lambda_{D_{1,5}}-\lambda_{D_{1,6}} \\
& \mathbf{j S}_{S} & : & t_{2_{S}} & =\lambda_{D_{1,7}}-\lambda_{D_{1,8}} \\
\mathbf{n} & : & t_{3_{S}}-t_{2_{R}} & =\lambda_{D_{1,4}}+\lambda_{D_{1,6}}+\lambda_{D_{1,8}} \\
& \mathbf{1} & : & t_{4_{S}}-t_{3_{R}}-1 & =\lambda_{D_{1,0}}
\end{array}\right.
\end{aligned}
$$

Example: Semantics Preservation (1-D)

- Solve the constraint system
- Use (purpose-optimized) Fourier-Motzkin projection algorithm
- Reduce redundancy
- Detect implicit equalities

Example: Semantics Preservation (1-D)

Example: Semantics Preservation (1-D)

- One point in the space \Leftrightarrow one set of legal schedules w.r.t. the dependences
- These conditions for semantics preservation are not new! [Feautrier,92]
- But never coupled with iterative search before

Generalization to Multidimensional Schedules

p-dimensional schedule is not $p \times 1$-dimensional schedule:

- Once a dependence is strongly satisfied ("loop"-carried), must be discarded in subsequent dimensions
- Until it is strongly satisfied, must be respected ("non-negative")
\rightarrow Combinatorial problem: lexicopositivity of dependence satisfaction

A solution:

- Encode dependence satisfaction with decision variables [Feautrier,92]

$$
\Theta_{k}^{S}\left(\vec{x}_{S}\right)-\Theta_{k}^{R}\left(\vec{x}_{R}\right) \geq \delta, \quad \delta \in\{0,1\}
$$

- Bound schedule coefficients, and nullify the precedence constraint when needed [Vasilache,07]

Legality as an Affine Constraint

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension m, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii) $\forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}$,

$$
\begin{equation*}
\Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq-\sum_{k=1}^{p-1} \delta_{k}^{\mathcal{D}_{R, S}} \cdot(K . \vec{n}+K)+\delta_{p}^{\mathcal{D}_{R, S}} \tag{2}
\end{equation*}
$$

\rightarrow Note: schedule coefficients must be bounded for Lemma to hold
\rightarrow Severe scalability challenge for large programs

Search Space Construction and Evaluation

Objectives for the Search Space Construction

- Provide scalable techniques to construct the search space
- Adapt the space construction to the machine specifics (esp. parallelism)
- Search space is infinite: requires appropriate bounding
- Expressiveness: allow for a rich set of transformations sequences
- Compiler optimization heuristics are fragile, manage it!

Overview of the Proposed Approach

(1) Build a convex set of candidate program versions

- Affine set of schedule coefficients
- Enforce legality and uniqueness as affine constraints
(2) Shape this set to a form which allows an efficient traversal
- Redundancy-less Fourier-Motzkin elimination algorithm
- Force FM-property by applying Fourier-Motzkin elim. on the set
(3) Traverse the set
- Exhaustively, for performance analysis
- Heuristically, for scalability

Search Space Construction

Principle: Feautrier's + coefficient bounding
Output: 1 independent polytope per schedule dimension

Algorithm

Init: Set all dependencies as unresolved
(1) $k=1$
(2) Set \mathcal{I}_{k} as the polytope of valid schedules with all unresolved dependencies weakly satisfied (i.e., set $\delta=0$)
(3) For each unresolved dependence $\mathcal{D}_{R, S}$:
(1) build $S_{\mathcal{D}_{R, S}}$ the set of schedules strongly satisfying $\mathcal{D}_{R, S}$ (i.e., set $\delta=1$)
(2) $\mathcal{T}_{k}^{\prime}=\mathcal{T}_{k} \bigcap \mathcal{S}_{\mathcal{D}_{R, S}}$
(3) if $\mathcal{T}_{k}^{\prime} \neq \emptyset, \mathcal{T}_{k}=\mathcal{T}_{k}^{\prime}$. Mark $\mathcal{D}_{R, S}$ as resolved
(4) If unresolved dependence remains, increment k and go to 1

Some Properties of the Algorithm

- Without bounding, equivalent to Feautrier's genuine scheduling algorithm
- With bounding, sensitive to the dependence traversal order
- Heuristics to select the dependence order: pairwise interference, traffic ranking, etc.
- May also search for different orders
- May not minimize the schedule dimensionality
- Outer dimensions (i.e., outer loops) are more constrained
- Inner dimensions tend to be parallel, if possible (SIMD friendly)

Search Space Size

- Bound each coefficient between $[-1,1]$ to avoid complex control overhead and drive the search

Benchmark	\#Inst.	\#Dep.	\#Dim.	$\operatorname{dim} 1$	$\operatorname{dim} 2$	$\operatorname{dim} 3$	$\operatorname{dim} 4$	Total
compress	6	56	3	20	136	10857025	n / a	2.9×10^{10}
edge	3	30	4	27	54	90534	43046721	5.6×10^{15}
iir	8	66	3	18	6984	$>10^{15}$	n / a	$>10^{19}$
fir	4	36	2	18	52953	n / a	n / a	9.5×10^{7}
lmsfir	9	112	2	27	10534223	n / a	n / a	2.8×10^{8}
mult	3	27	3	9	27	3295	n / a	8.0×10^{5}
latnrm	11	75	3	9	1896502	$>10^{15}$	n / a	$>10^{22}$
lpc-LPC_analysis	12	85	2	63594	$>10^{20}$	n / a	n / a	$>10^{25}$
ludcmp	14	187	3	36	$>10^{20}$	$>10^{25}$	n / a	$>10^{46}$
radar	17	153	3	400	$>10^{20}$	$>10^{25}$	n / a	$>10^{48}$

Figure: Search Space Statistics

Performance Distribution for 1-D Schedules [1/2]

Figure: Performance distribution for matmult and locality

Performance Distribution for 1-D Schedules [2/2]

(a) Gcc-03
(b) ICC -fast

Figure: The effect of the compiler

Quantitative Analysis: The Hypothesis

Extremely large generated spaces: $>10^{50}$ points
\rightarrow we must leverage static and dynamic characteristics to build traversal mechanisms

Hypothesis: [Pouchet et al,SMART08]

- It is possible to statically order the impact on performance of transformation coefficients, that is, decompose the search space in subspaces where the performance variation is maximal or reduced
- First rows of Θ are more performance impacting than the last ones

Observations on the Performance Distribution


```
for (i = 0; i < M; i++)
    for (j = 0; j < M; j++) {
        tmp[i][j] = 0.0;
        for (k = 0; k < M; k++)
            tmp[i][j] += block[i][k] *
                                    cos1[j][k];
}
for (i = 0; i < M; i++)
    for (j = 0; j < M; j++) {
        sum2 = 0.0;
        for (k = 0; k < M; k++)
            sum2 += cos1[i][k] * tmp[k][j];
        block[i][j] = ROUND(sum2);
    }
```

- Extensive study of 8×8 Discrete Cosine Transform (UTDSP)
- Search space analyzed: $66 \times 19683=1.29 \times 10^{6}$ different legal program versions

Observations on the Performance Distribution

- Extensive study of 8×8 Discrete Cosine Transform (UTDSP)
- Search space analyzed: $66 \times 19683=1.29 \times 10^{6}$ different legal program versions

Observations on the Performance Distribution

- Take one specific value for the first row
- Try the 19863 possible values for the second row

Observations on the Performance Distribution

Performance distribution - 8x8 DCT

- Take one specific value for the first row
- Try the 19863 possible values for the second row
- Very low proportion of best points: $<0.02 \%$

Observations on the Performance Distribution

- Performance variation is large for good values of the first row

Observations on the Performance Distribution

- Performance variation is large for good values of the first row
- It is usually reduced for bad values of the first row

Scanning The Space of Program Versions

The search space:

- Performance variation indicates to partition the space: $\vec{\imath}>\vec{p}>c$
- Non-uniform distribution of performance
- No clear analytical property of the optimization function
\rightarrow Build dedicated heuristic and genetic operators aware of these static and dynamic characteristics

Search Space Traversal

Objectives for Efficient Traversal

Main goals:

- Enable feedback-directed search
- Focus the search on interesting subspaces

Provide mechanisms to decouple the traversal:

- Leverage our knowledge on the performance distribution
- Leverage static properties of the search space
- Completion mechanism, to instantiate a full schedule from a partial one
- Traversal heuristics adapted to the problem complexity
- Decoupling heuristic: explore first iterator coefficients (deterministic)
- Genetic algorithm: improve further scalability (non-deterministic)

Some Results for 1-D Schedules

Figure: Comparison between random and decoupling heuristics

Inserting Randomness in the Search

About the performance distribution:

- The performance distribution is not uniform
- Wild jump in the space: tune $\vec{\imath}$ coefficients of upper dimensions
- Refinement: tune \vec{p} and \vec{c} coefficients

About the space of schedules:

- Highly constrained: small change in $\vec{\imath}$ may alter many other coefficients
- Rows are independent: no inter-dimension constraint
- Some transformations (e.g., interchange) must operate between rows

Genetic Operators

Mutation

- Probability varies along with evolution
- Tailored to focus on the most promising subspaces
- Preserves legality (closed under affine constraints)

Cross-over

- Row cross-over

$$
(\square)+(\square)=(\square)
$$

- Column cross-over

$$
(\square)+(\square)=(\square)
$$

- Both preserve legality

Dedicated GA Results

- GA converges towards the maximal space speedup

Experimental Results [1/2]

Performance improvement for AMD Athlon64

baseline: gcc -O3 -ftree-vectorize -msse2

Experimental Results [2/2]

Performance improvement for ST231

baseline: st200cc -O3-OPT:alias=restrict -mauto-prefetch

Assessments from Experimental Results

Looking into details (hardware counters+compilation trace):

- Better activity of the processing units
- Best version may vary significantly for different architectures
- Different source code may trigger different compiler optimizations
\rightarrow Portability of the optimization process validated w.r.t. architecture/compiler

Assessments from Experimental Results

Looking into details (hardware counters+compilation trace):

- Better activity of the processing units
- Best version may vary significantly for different architectures
- Different source code may trigger different compiler optimizations
\rightarrow Portability of the optimization process validated w.r.t. architecture/compiler
- Limitation: poor compatibility with coarse-grain parallelism Can we reconcile tiling, parallelization, SIMD and iterative search?

Multidimensional Interleaving Selection

Overview of the Problem

Objectives:

- Achieve efficient coarse-grain parallelization
- Combine iterative search of profitable transformations for tiling
\rightarrow loop fusion and loop distribution

Existing framework: tiling hyperplane [Bondhugula,08]

- Model-driven approach for automatic parallelization + locality improvement
- Tiling-oriented
- Poor model-driven heuristic for the selection of loop fusion (not portable)
- Overly relaxed definition of fused statements

Our Strategy in a Nutshell...

(1) Introduce the concept of fusability
(2) Introduce a modeling for arbitrary loop fusion/distribution combinations
(1) Equivalence 1-d interleaving with total preorders
(2) Affine encoding of total preorders
(3) Generalization to multidimensional interleavings
(Pruning technique to keep only semantics-preserving ones
(3) Design a mixed iterative and model-driven algorithm to build optimizing transformations

Fusability of Statements

- Fusion \Leftrightarrow interleaving of statement instances
- Two statements are fused if their timestamp overlap

$$
\Theta_{k}^{R}\left(\overrightarrow{x_{R}}\right) \leq \Theta_{k}^{S}\left(\overrightarrow{x_{S}}\right) \wedge \Theta_{k}^{S}\left(\vec{x}_{S}^{\prime}\right) \leq \Theta_{k}^{R}\left(\vec{x}_{R}^{\prime}\right)
$$

- Better approach: at most c instances are not fused (approximation)

Definition (Fusability restricted to non-negative schedule coefficients)

Given two statements R, S such that R is surrounded by d^{R} loops, and S by d^{S} loops. They are fusable at level p if, $\forall k \in\{1 \ldots p\}$, there exists two semantics-preserving schedules Θ_{k}^{R} and Θ_{k}^{S} such that:

$$
\begin{aligned}
& \text { (i) } \forall k \in\{1, \ldots, p\}, \quad-c<\Theta_{k}^{R}(\overrightarrow{0})-\Theta_{k}^{S}(\overrightarrow{0})<c \\
& \text { (ii) } \sum_{i=1}^{d^{R}} \theta_{k, i}^{R}>0, \sum_{i=1}^{d^{S}} \theta_{k, i}^{S}>0
\end{aligned}
$$

Exact solution is hard: may require Ehrart polynomials for general case

Affine Encoding of Total Preorders

Principle: [Pouchet,PhD10]

- Model a total preorder with 3 binary variables

$$
p_{i, j}: i<j \quad s_{i, j}: i>j \quad e_{i, j}: i=j
$$

- Enforce totality and mutual exclusion
- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: $e_{i, j}=1 \wedge e_{j, k}=1 \Rightarrow e_{i, k}=1$

Search Space Statistics

Pruning for semantics preservation (\mathcal{F}) :

- Start from all total preorders (O)
- Prove when fusability is a transitive relation: equivalent to checking the existence of pairwise compatible loop permutations
- Check graph of compatible permutations to determine fusable sets, prune O from non-fusable ones

			O			\mathcal{F}^{1}				
Benchmark	\#loops	\#refs	\#dim	\#cst	\#points	\#dim	\#cst	\#points	\#Tested	Time
advect3d	12	32	12	58	75	9	43	26	52	0.82s
atax	4	10	12	58	75	6	25	16	32	0.06s
bicg	3	10	12	58	75	10	52	26	52	0.05s
gemver	7	19	12	58	75	6	28	8	16	0.06s
ludcmp	9	35	182	3003	$\approx 10^{12}$	40	443	8	16	0.54s
doitgen	5	7	6	22	13	3	10	4	8	0.08s
varcovar	7	26	42	350	47293	22	193	96	192	0.09s
correl	5	12	30	215	4683	21	162	176	352	0.09s

Figure: Search space statistics

Optimization Algorithm

- Proceeds level-by-level
- Starting from the outer-most level, iteratively select an interleaving
- For this interleaving, compute an optimization which respects it
- Compound of skewing, shifting, fusion, distribution, interchange, tiling and parallelization (OpenMP)
- Maximize locality for each partition of statements
- Automatically adapt to the target architecture
- Solid improvement over existing model-driven approach
- Up to $150 \times$ speedup on 24 cores, $15 \times$ speedup over autopll compiler

Performance Results for Intel Xeon 24-cores

Conclusions and Future Work

Summary of Contributions

We have designed, built and experimented all required blocks to perform an efficient iterative selection of fine-grain loop transformations in the polyhedral model.

- Theoretically sound and practical iterative optimization algorithms
- Significant increase in expressiveness of iterative techniques
- Well-designed (but complex) problems
- Extensive experimental analysis of the performance distribution
- Subspace-driven traversal techniques for polytopes
- Theoretical framework for generalized fusion
- Practical solution for machine-dependent parallelization + vectorization + locality
- Implementation in publicly available tools: PoCC, LetSee, FM, etc.

Future Work: Machine Learning

Machine Learning could improve the scalability:

- Currently, no reuse from previous compilation / space traversal
- Efficiency proved on (simpler) compilation problems

Main issues:

- Fine-grain vs. coarse-grain optimization
- Knowledge representation
- Features for similarity computation

Take-Home Message

Iterative Optimization: the last hope, or a new hope?

- Efficient, more expressive and portable mechanisms can be built
- The polyhedral representation is adaptable to iterative compilation
- Performance-demanding programmers can afford long compilation time
- Still require to execute different codes: not always possible
- Downside of polyhedral expressiveness: algorithmic complexity

Questions:

- Can we increase the accuracy of static models, given the complexity of modern compilers and chips?
- Can we systematically reach the performance of hand-tuned code with an automatic approach?

Take-Home Message

Iterative Optimization: the last hope, or a new hope?

- Efficient, more expressive and portable mechanisms can be built
- The polyhedral representation is adaptable to iterative compilation
- Performance-demanding programmers can afford long compilation time
- Still require to execute different codes: not always possible
- Downside of polyhedral expressiveness: algorithmic complexity

Questions:

- Can we increase the accuracy of static models, given the complexity of modern compilers and chips?
- Can we systematically reach the performance of hand-tuned code with an automatic approach?

Thank you!

Supplementary Slides

Yet Another Completion Algorithm

Principle: [Pouchet et al,PLDI08]

- Rely on a pre-pass to normalize the space (improved full polytope projection)
- Works in polynomial time w.r.t. the number of constraints in the normalized space
See also [Li et al,IJPP94] [Griebl,PACT98] [Vasilache,PACT07]...

Three fundamental properties:

(1) If v_{1}, \ldots, v_{k} is a prefix of a legal point v, a completion is always found
(2) This completion will only update $v_{k+1}, \ldots, v_{d_{\max }}$, if needed;
(3) When v_{1}, \ldots, v_{k} are the $\vec{\imath}$ coefficients, the heuristic looks for the smallest absolute value for the \vec{p} and c coefficients

Performance Results for AMD Opteron 16-cores

Variability for GEMVER

Future Work: Knowledge Transfer

Current approach:

- Training: 1 program $\rightarrow 1$ effective transformation
- On-line: Compute similarities with existing program, apply the same transformation
\rightarrow Does not work well for fine-grain optimization

Future Work: Knowledge Transfer

Current approach:

- Training: 1 program $\rightarrow 1$ effective transformation
- On-line: Compute similarities with existing program, apply the same transformation
\rightarrow Does not work well for fine-grain optimization

Proposed approach:

- Don't care about the sequence, only about properties of the schedule (parallelism degree, locality, etc.)
- Learn how to prioritize performance anomaly solving instead
- Rely on the polyhedral model to compute a matching optimization
- Some open problems:
- How to compute (polyhedral) features? They are parametric
- How to compute the optimization (combinatorial decision problem)?

