
When Iterative Optimization Meets the
Polyhedral Model: One-Dimensional Date

Louis-Noël Pouchet

ALCHEMY, LRI - INRIA Futurs
Under the direction of A. Cohen & C. Bastoul

October 9, 2006

EPITA final internship defense, CSI 2006

Situation:

Problematic

Emerging microprocessors introduce more parallelism /
deeper memory hierarchies
Optimizing compilers are mandatory to take advantage of
processor architecture

But:
Processor mechanism is too complex to be modeled
entirely
Cost models for optimization phases are too restrictive

⇒ How can we override these difficulties ?

October 9, 2006 2

Situation:

Problematic

Emerging microprocessors introduce more parallelism /
deeper memory hierarchies
Optimizing compilers are mandatory to take advantage of
processor architecture

But:
Processor mechanism is too complex to be modeled
entirely
Cost models for optimization phases are too restrictive

⇒ How can we override these difficulties ?

October 9, 2006 2

Situation:

Problematic

Emerging microprocessors introduce more parallelism /
deeper memory hierarchies
Optimizing compilers are mandatory to take advantage of
processor architecture

But:
Processor mechanism is too complex to be modeled
entirely
Cost models for optimization phases are too restrictive

⇒ How can we override these difficulties ?

October 9, 2006 2

Outline:

1 Introduction
Iterative Optimization
The Polyhedral Model

2 Iterative Optimization in the Polyhedral Model
Polyhedral Representation of Programs
Legal Scheduling Space
Experimental Results

3 Internship Summary
Internship Overview
Personal Contribution

4 Conclusion

October 9, 2006 3

Introduction: Iterative Optimization

Iterative Optimization

Program transformations can result in unpredictable
performance degradation (Bodin et al., 98)

⇒ Instead of statically decide if a transformation is better, run
it on the target architecture

Pros:
Much more accurate than static optimization
Provide performance improvements
Enable machine learning techniques to discover accurate
transformation parameters (Stephenson et al., 03)
Optimization space search can be feedback-directed

October 9, 2006 4

Introduction: Iterative Optimization

Iterative Optimization

Program transformations can result in unpredictable
performance degradation (Bodin et al., 98)

⇒ Instead of statically decide if a transformation is better, run
it on the target architecture

Pros:
Much more accurate than static optimization
Provide performance improvements
Enable machine learning techniques to discover accurate
transformation parameters (Stephenson et al., 03)
Optimization space search can be feedback-directed

October 9, 2006 4

Introduction: Iterative Optimization

Iterative Optimization

Program transformations can result in unpredictable
performance degradation (Bodin et al., 98)

⇒ Instead of statically decide if a transformation is better, run
it on the target architecture

Pros:
Much more accurate than static optimization
Provide performance improvements
Enable machine learning techniques to discover accurate
transformation parameters (Stephenson et al., 03)
Optimization space search can be feedback-directed

October 9, 2006 4

Introduction: Iterative Optimization

Drawbacks

Limitations:
The set of combination of transformations is extremely
large
Only a subset of them respects the program semantic

→ Only a (very small) subset of transformation sequences is
actually tested

→ The search space is too restrictive or too large due to the
bottleneck of the legality condition

⇒ Can we improve the search space construction : model all
sequences of transformations, and model only legal ones ?

October 9, 2006 5

Introduction: Iterative Optimization

Drawbacks

Limitations:
The set of combination of transformations is extremely
large
Only a subset of them respects the program semantic

→ Only a (very small) subset of transformation sequences is
actually tested

→ The search space is too restrictive or too large due to the
bottleneck of the legality condition

⇒ Can we improve the search space construction : model all
sequences of transformations, and model only legal ones ?

October 9, 2006 5

Introduction: Iterative Optimization

Drawbacks

Limitations:
The set of combination of transformations is extremely
large
Only a subset of them respects the program semantic

→ Only a (very small) subset of transformation sequences is
actually tested

→ The search space is too restrictive or too large due to the
bottleneck of the legality condition

⇒ Can we improve the search space construction : model all
sequences of transformations, and model only legal ones ?

October 9, 2006 5

Introduction: Iterative Optimization

Drawbacks

Limitations:
The set of combination of transformations is extremely
large
Only a subset of them respects the program semantic

→ Only a (very small) subset of transformation sequences is
actually tested

→ The search space is too restrictive or too large due to the
bottleneck of the legality condition

⇒ Can we improve the search space construction : model all
sequences of transformations, and model only legal ones ?

October 9, 2006 5

Introduction: The Polyhedral Model

Iterative Optimization in the Polyhedral
Model

Focus on a subclass of programs: Static Control Parts
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
space

→ In the polyhedral model (Feautrier, 92):
Composition of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

October 9, 2006 6

Introduction: The Polyhedral Model

Iterative Optimization in the Polyhedral
Model

Focus on a subclass of programs: Static Control Parts
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
space

→ In the polyhedral model (Feautrier, 92):
Composition of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

October 9, 2006 6

Introduction: The Polyhedral Model

Iterative Optimization in the Polyhedral
Model

Focus on a subclass of programs: Static Control Parts
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
space

→ In the polyhedral model (Feautrier, 92):
Composition of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

October 9, 2006 6

Introduction: The Polyhedral Model

Iterative Optimization in the Polyhedral
Model

Focus on a subclass of programs: Static Control Parts
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
space

→ In the polyhedral model (Feautrier, 92):
Composition of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

October 9, 2006 6

Introduction: The Polyhedral Model

The Polyhedral Model

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here : θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation :
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

October 9, 2006 7

Introduction: The Polyhedral Model

The Polyhedral Model

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here : θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation :
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

October 9, 2006 7

Introduction: The Polyhedral Model

The Polyhedral Model

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here : θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation :
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

October 9, 2006 7

Introduction: The Polyhedral Model

The Polyhedral Model

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here : θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation :
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

October 9, 2006 7

Iterative Optimization in the Polyhedral Model: Polyhedral Representation of Programs

A First Example

matvect
do i = 0, n

R s(i) = 0
do j = 0, n

S s(i) = s(i) + a(i,j) * x(j)
end do

end do

Iteration domain of R:
iteration vector ~xR = (i)
DR : {i | 0 ≤ i ≤ n}

DR :

[
1

−1

]
. (i) +

(
0
n

)
=

[
1 0 0

−1 1 0

]
.

(
i
n
1

)
≥ ~0

October 9, 2006 9

Iterative Optimization in the Polyhedral Model: Polyhedral Representation of Programs

A First Example

matvect
do i = 0, n

R s(i) = 0
do j = 0, n

S s(i) = s(i) + a(i,j) * x(j)
end do

end do

Iteration domain of R:
iteration vector ~xR = (i)
DR : {i | 0 ≤ i ≤ n}

DR :

[
1

−1

]
. (i) +

(
0
n

)
=

[
1 0 0

−1 1 0

]
.

(
i
n
1

)
≥ ~0

October 9, 2006 9

Iterative Optimization in the Polyhedral Model: Polyhedral Representation of Programs

A First Example

matvect
do i = 0, n

R s(i) = 0
do j = 0, n

S s(i) = s(i) + a(i,j) * x(j)
end do

end do

Iteration domain of S:
iteration vector ~xS =

(i
j

)
DS : {i , j | 0 ≤ i ≤ n, 0 ≤ j ≤ n, }

DS :

 1 0 0 0
−1 0 1 0

0 1 0 0
0 −1 1 0

 .

 i
j
n
1

 ≥ ~0

October 9, 2006 9

Iterative Optimization in the Polyhedral Model: Polyhedral Representation of Programs

Expressing Transformations
Interchange Transformation

The transformation matrix is the identity with a permutation of two rows.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’0
1
2
3

j’

=⇒

„
i′

j′

«
=

h 0 1
1 0

i „
i
j

«

transformation function
~y = T1~x

do i = 1, 2
do j = 1, 3

do j = 1, 3
do i = 1, 2

October 9, 2006 11

Iterative Optimization in the Polyhedral Model: Polyhedral Representation of Programs

Expressing Transformations
Interchange Transformation

The transformation matrix is the identity with a permutation of two rows.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’0
1
2
3

j’

=⇒

264 1 0
−1 0

0 1
0 −1

375 „
i
j

«
+

0B@−1
2
−1

3

1CA ≥ ~0 „
i′

j′

«
=

h 0 1
1 0

i „
i
j

«
264 0 1

0 −1
1 0
−1 0

375 „
i′

j′

«
+

0B@−1
2
−1

3

1CA ≥ ~0

transformation function
~y = T1~x

do i = 1, 2
do j = 1, 3

do j = 1, 3
do i = 1, 2

October 9, 2006 11

Iterative Optimization in the Polyhedral Model: Polyhedral Representation of Programs

Expressing Transformations
Reversal Transformation

The transformation matrix is the identity with one diagonal element replaced by−1.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

5

4

6 1

2

3

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

„
i′

j′

«
=

h−1 0
0 1

i „
i
j

«

transformation function
~y = T2~x

do i = 1, 2
do j = 1, 3

do i = -1, -2, -1
do j = 1, 3

October 9, 2006 11

Iterative Optimization in the Polyhedral Model: Polyhedral Representation of Programs

Expressing Transformations
Compound Transformation

The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

„
i′

j′

«
=

h 0 − 1
1 0

i „
i
j

«

transformation function
~y = T~x = T1T2~x

do i = 1, 2
do j = 1, 3

do j = -1, -3, -1
do i = 1, 2

October 9, 2006 11

Iterative Optimization in the Polyhedral Model: Polyhedral Representation of Programs

Expressing Transformations
Compound Transformation

The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

264 1 0
−1 0

0 1
0 −1

375 „
i
j

«
+

0B@−1
2
−1

3

1CA ≥ ~0
„

i′

j′

«
=

h 0 − 1
1 0

i „
i
j

«
264 0 −1

0 1
1 0
−1 0

375 „
i′

j′

«
+

0B@−1
2
−1

3

1CA ≥ ~0

(a) original polyhedron (b) transformation function (c) target polyhedron
A~x +~a ≥ ~0 ~y = T~x = T1T2~x (AT−1)~y +~a ≥ ~0

do i = 1, 2
do j = 1, 3

do j = -1, -3, -1
do i = 1, 2

October 9, 2006 11

Iterative Optimization in the Polyhedral Model: Polyhedral Representation of Programs

Scheduling a Program

Definition (Schedule)
A schedule of a program is a function which associates a
timestamp to each instance of each instruction. It can be
written, for a statement S (T is a constant matrix):

θS(~xS) = T
(

~xS
~n
1

)

Example:
θR(~xR) = [1] . (i)
θS(~xS) =

[
1 0
0 1

]
.
(i

j

)
Is the original lexicographic order for R and S.

October 9, 2006 12

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Objectives

Focus on one-dimensional schedules (T is a constant row
matrix)
Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)

→ Perform an exact dependence analysis
→ Build the set of all possible values of T

⇒ The resulting space represents all the distinct possible ways
to legally reschedule the program, using arbitrarily complex
sequence of transformations.

October 9, 2006 13

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Objectives

Focus on one-dimensional schedules (T is a constant row
matrix)
Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)

→ Perform an exact dependence analysis
→ Build the set of all possible values of T

⇒ The resulting space represents all the distinct possible ways
to legally reschedule the program, using arbitrarily complex
sequence of transformations.

October 9, 2006 13

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Objectives

Focus on one-dimensional schedules (T is a constant row
matrix)
Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)

→ Perform an exact dependence analysis
→ Build the set of all possible values of T

⇒ The resulting space represents all the distinct possible ways
to legally reschedule the program, using arbitrarily complex
sequence of transformations.

October 9, 2006 13

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Dependence Expression

Need to represent the exact set of instances in
dependence
Exact computation made possible thanks to the SCoP and
Static reference assumptions (Bastoul, 04)
Use a subset of the Cartesian product of iteration domains:

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i,j) * x(j)

i

Iterations of R

Iterations of S DRδS :

1 −1 0 0 0
1 0 0 0 0
−1 0 0 1 0

0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0

 .

(iR
iS
jS
n
1

)
= 0

≥ ~0

October 9, 2006 15

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Formal Definition [1/2]

Assuming RδS, DRδS is the exact set of instances of R and S
where the dependence exists.

A schedule is legal iff, ∀ ~xR × ~xS ∈ DRδS, θR(~xR) < θS(~xS).

Legal Schedule

⇒ Assuming RδS, θR(~xR) and θS(~xS) are legal iff:

∆R,S = θS(~xS)− θR(~xR)− 1

Is non-negative for each point in DRδS.

October 9, 2006 16

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Formal Definition [2/2]

→ We can express the legality condition as a set of affine
non-negative functions over DRδS

Lemma (Affine form of Farkas lemma)
Let D be a nonempty polyhedron defined by the inequalities
A~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative
everywhere in D iff it is a positive affine combination:

f (~x) = λ0 + ~λT (A~x + ~b), with λ0 ≥ 0 and ~λ ≥ ~0.

λ0 and ~λT are called the Farkas multipliers.

October 9, 2006 17

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Formal Definition [2/2]

→ We can express the legality condition as a set of affine
non-negative functions over DRδS

Lemma (Affine form of Farkas lemma)
Let D be a nonempty polyhedron defined by the inequalities
A~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative
everywhere in D iff it is a positive affine combination:

f (~x) = λ0 + ~λT (A~x + ~b), with λ0 ≥ 0 and ~λ ≥ ~0.

λ0 and ~λT are called the Farkas multipliers.

October 9, 2006 17

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Formal Definition [2/2]

→ We can express the legality condition as a set of affine
non-negative functions over DRδS

Lemma (Affine form of Farkas lemma)
Let D be a nonempty polyhedron defined by the inequalities
A~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative
everywhere in D iff it is a positive affine combination:

f (~x) = λ0 + ~λT (A~x + ~b), with λ0 ≥ 0 and ~λ ≥ ~0.

λ0 and ~λT are called the Farkas multipliers.

⇒ We can express the set of affine, non-negative functions
over DRδS

October 9, 2006 17

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Formal Definition [2/2]

Lemma (Affine form of Farkas lemma)
Let D be a nonempty polyhedron defined by the inequalities
A~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative
everywhere in D iff it is a positive affine combination:

f (~x) = λ0 + ~λT (A~x + ~b), with λ0 ≥ 0 and ~λ ≥ ~0.

λ0 and ~λT are called the Farkas multipliers.

⇒ We just need to equate the coefficients:

θS(~xS)− θR(~xR)− 1 = λ0 + ~λT
(
DRδS

(
~xR
~xS

)
+ ~dRδS

)
≥ 0

October 9, 2006 17

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

An example

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i,j) * x(j)

The two prototype affine schedules for R and S are:
θR (~xR) = t1R

.iR + t2R
.n + t3R

.1
θS(~xS) = t1S

.iS + t2S
.jS + t3S

.n + t4S
.1

We get the following system for RδS:
8>>>>>><>>>>>>:

DRδS iR : −t1R
= λD1,1

− λD1,2
+ λD1,7

iS : t1S
= λD1,3

− λD1,4
− λD1,7

jS : t2S
= λD1,5

− λD1,6
n : t3S

− t2R
= λD1,2

+ λD1,4
+ λD1,6

1 : t4S
− t3R

− 1 = λD1,0

→ We need to solve this system, to get DRδS
t .

October 9, 2006 19

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

An example

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i,j) * x(j)

The two prototype affine schedules for R and S are:
θR (~xR) = t1R

.iR + t2R
.n + t3R

.1
θS(~xS) = t1S

.iS + t2S
.jS + t3S

.n + t4S
.1

We get the following system for RδS:
8>>>>>><>>>>>>:

DRδS iR : −t1R
= λD1,1

− λD1,2
+ λD1,7

iS : t1S
= λD1,3

− λD1,4
− λD1,7

jS : t2S
= λD1,5

− λD1,6
n : t3S

− t2R
= λD1,2

+ λD1,4
+ λD1,6

1 : t4S
− t3R

− 1 = λD1,0

→ We need to solve this system, to get DRδS
t .

October 9, 2006 19

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Construction Algorithm

Need to build the intersection of all constraints obtained for
each dependence, so for k dependences:

Dt =
⋂
k

Dk
t

Need to bound the space, since the set of possible
transformations can be infinite

⇒ To each (integral) point in Dt corresponds a different version
of the original program where the semantic is preserved.

October 9, 2006 20

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Construction Algorithm

Need to build the intersection of all constraints obtained for
each dependence, so for k dependences:

Dt =
⋂
k

Dk
t

Need to bound the space, since the set of possible
transformations can be infinite

⇒ To each (integral) point in Dt corresponds a different version
of the original program where the semantic is preserved.

October 9, 2006 20

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Construction Algorithm

Need to build the intersection of all constraints obtained for
each dependence, so for k dependences:

Dt =
⋂
k

Dk
t

Need to bound the space, since the set of possible
transformations can be infinite

⇒ To each (integral) point in Dt corresponds a different version
of the original program where the semantic is preserved.

October 9, 2006 20

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Discussions

Expression of the set of all legal, arbitrarily long
sequences of transformation (reversal, skewing,
interchange, peeling, shifting, fusion, distribution)
Multiple orders of magnitude reduction in the size of the
search space compared to state-of-the-art techniques
On small kernels, the search space is small enough to be
exhaustively computed, yielding a method to find The best
transformation within the model

Benchmark #Dep #St Bounds #Sched #Legal Time

matvect 5 2 −1, 1 37 129 0.024
locality 2 2 −1, 1 310 6561 0.022
matmul 7 2 −1, 1 39 912 0.029
gauss 18 2 −1, 1 310 506 0.047
crout 26 4 −3, 3 717 798 0.046

October 9, 2006 21

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Discussions

Expression of the set of all legal, arbitrarily long
sequences of transformation (reversal, skewing,
interchange, peeling, shifting, fusion, distribution)
Multiple orders of magnitude reduction in the size of the
search space compared to state-of-the-art techniques
On small kernels, the search space is small enough to be
exhaustively computed, yielding a method to find The best
transformation within the model

Benchmark #Dep #St Bounds #Sched #Legal Time

matvect 5 2 −1, 1 37 129 0.024
locality 2 2 −1, 1 310 6561 0.022
matmul 7 2 −1, 1 39 912 0.029
gauss 18 2 −1, 1 310 506 0.047
crout 26 4 −3, 3 717 798 0.046

October 9, 2006 21

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space

Discussions

Expression of the set of all legal, arbitrarily long
sequences of transformation (reversal, skewing,
interchange, peeling, shifting, fusion, distribution)
Multiple orders of magnitude reduction in the size of the
search space compared to state-of-the-art techniques
On small kernels, the search space is small enough to be
exhaustively computed, yielding a method to find The best
transformation within the model

Benchmark #Dep #St Bounds #Sched #Legal Time

matvect 5 2 −1, 1 37 129 0.024
locality 2 2 −1, 1 310 6561 0.022
matmul 7 2 −1, 1 39 912 0.029
gauss 18 2 −1, 1 310 506 0.047
crout 26 4 −3, 3 717 798 0.046

October 9, 2006 21

Iterative Optimization in the Polyhedral Model: Experimental Results

Performance Distribution [1/2]

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 2.2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

(M
)

Transfo. ID

matxmat

Original

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

(M
)

Transfo. ID

locality

Original

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 1.2e+09

 1.3e+09

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
yc

le
s

(M
)

Transfo. ID

matvecttransp

Original

 1.26e+09

 1.28e+09

 1.3e+09

 1.32e+09

 1.34e+09

 1.36e+09

 1.38e+09

 1.4e+09

 1.42e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

(M
)

Transfo. ID

crout

Original

Figure: Performance distribution for matmul, locality, mvt and
crout

October 9, 2006 22

Iterative Optimization in the Polyhedral Model: Experimental Results

Performance Distribution [2/2]
Regularities are observable
Exhaustive scan may achievable on (very) small kernels
High peak performance discovered thanks to optimization
enabling
The best transformation depends on the compiler, the
target architecture, and even the compiler options

Benchmark Compiler Options Parameters #Improved ID best Speedup

h264 PathCC -Ofast none 11 352 36.1%
h264 GCC -O2 none 19 234 13.3%
h264 GCC -O3 none 26 250 25.0%
h264 ICC -O2 none 27 290 12.9%
h264 ICC -fast none 0 N/A 0%

MVT PathCC -Ofast N=2000 5652 4934 27.4%
MVT GCC -O2 N=2000 3526 13301 18.0%
MVT GCC -O3 N=2000 3601 13320 21.2%
MVT ICC -O2 N=2000 5826 14093 24.0%
MVT ICC -fast N=2000 5966 4879 29.1%

matmul PathCC -Ofast N=250 402 283 308.1%
matmul GCC -O2 N=250 318 284 38.6%
matmul GCC -O3 N=250 345 270 49.0%
matmul ICC -O2 N=250 390 311 56.6%
matmul ICC -fast N=250 318 641 645.4%

October 9, 2006 23

Iterative Optimization in the Polyhedral Model: Experimental Results

Exhaustive vs Heuristic Scan
Propose a decoupling heuristic:

The general “form” of the schedule is embedded in the
iterator coefficients
Parameters and constant coefficients can be seen as a
refinement

→ On some distributions a random heuristic may converge
faster

Figure: Heuristic convergence

Benchmark #Schedules Heuristic. #Runs %Speedup

locality 6561 Rand 125 96.1%
DH 123 98.3%

matmul 912 Rand 170 99.9%
DH 170 99.8%

mvt 16641 Rand 30 93.3%
DH 31 99.0%

October 9, 2006 24

Internship Summary: Internship Overview

What, When, with Who ?

Constant talks with Nicolas Vasilache (PhD student)
Advised and oriented by Cedric Bastoul
Theoretical fruitful discussions with Albert Cohen

October 9, 2006 25

Internship Summary: Personal Contribution

Scientific Contribution

New approach of the search space for iterative optimization
Mathematically well founded algorithm for the construction
of the legal transformation space in the polyhedral model
Better formulation of the Fourier-Motzkin algorithm

First exhaustive exploration of the performance space in
the polyhedral model, for one-dimensional schedules
Usual mathematical models sub-optimality brought to light
Many observations on the performance space distribution

October 9, 2006 26

Internship Summary: Personal Contribution

Scientific Contribution

New approach of the search space for iterative optimization
Mathematically well founded algorithm for the construction
of the legal transformation space in the polyhedral model
Better formulation of the Fourier-Motzkin algorithm

First exhaustive exploration of the performance space in
the polyhedral model, for one-dimensional schedules
Usual mathematical models sub-optimality brought to light
Many observations on the performance space distribution

October 9, 2006 26

Conclusion:

Ongoing and Future Work

Ongoing research:
Expression of equivalence between parts of the search
space
Simulation of multidimensional schedules with correction /
completion
New exploration heuristics
Feedback directed exploration

PhD objectives:
Extend the method to multidimensional schedules
Develop exploration methods for the search space
(statistic, machine learning, . . .)

October 9, 2006 27

Conclusion:

Conclusion

Very exciting and fruitful internship
Many applications and collaborative works will be issued
Novel iterative compilation method

⇒ The polyhedral model contributes to accelerate the
convergence of iterative methods and to discover significant
opportunities for performance improvements.

October 9, 2006 28

Conclusion:

Conclusion

Very exciting and fruitful internship
Many applications and collaborative works will be issued
Novel iterative compilation method

⇒ The polyhedral model contributes to accelerate the
convergence of iterative methods and to discover significant
opportunities for performance improvements.

October 9, 2006 28

Conclusion:

Conclusion

Very exciting and fruitful internship
Many applications and collaborative works will be issued
Novel iterative compilation method

⇒ The polyhedral model contributes to accelerate the
convergence of iterative methods and to discover significant
opportunities for performance improvements.

October 9, 2006 28

Conclusion:

Conclusion

Very exciting and fruitful internship
Many applications and collaborative works will be issued
Novel iterative compilation method

⇒ The polyhedral model contributes to accelerate the
convergence of iterative methods and to discover significant
opportunities for performance improvements.

October 9, 2006 28

Questions:

October 9, 2006 29

Questions:

A Transformation Example

Optimal Transformation for mvt, GCC 4 -O2
S1: x1[i] = 0
S2: x2[i] = 0
S3: x1[i] += a[i][j] * y1[j]
S4: x2[i] += a[j][i] * y2[j]

for (i = 0; i <= M; i++) {
S1(i);
S2(i);
for (j = 0; j <= M; j++) {

S3(i,j);
S4(i,j);

}
}

for (i = 0; i <= M; i++)
S2(i);

for (c1 = 1; c1 <= M-1; c1++)
for (i = 0; i <= M; i++) {

S4(i,c1-1);
}

for (i = 0; i <= M; i++) {
S1(i);
S4(i,M-1);

}

S3(0,0);
S4(0,M);
for (i = 1 ; i <= M; i++)

S4(i,M);

for (c1 = M+2; c1 <= 3*M+1; c1++)
for (i = max(c1-2*M-1,0); i <= min(M,c1-M-1); i++) {

S3(i,c1-i-M-1);
}

October 9, 2006 31

	Situation
	Outline
	Introduction
	Iterative Optimization
	The Polyhedral Model

	Iterative Optimization in the Polyhedral Model
	Polyhedral Representation of Programs
	Legal Scheduling Space
	Experimental Results

	Internship Summary
	Internship Overview
	Personal Contribution

	Conclusion
	Questions

