When Iterative Optimization Meets the Polyhedral Model: One-Dimensional Date

Louis-Noël Pouchet

ALCHEMY, LRI - INRIA Futurs
Under the direction of A. Cohen \& C. Bastoul
October 9, 2006

Problematic

- Emerging microprocessors introduce more parallelism / deeper memory hierarchies
- Optimizing compilers are mandatory to take advantage of processor architecture
- Processor mechanism is too complex to be modeled entirely
- Cost models for optimization phases are too restrictive \Rightarrow How can we override these difficulties ?

Problematic

- Emerging microprocessors introduce more parallelism / deeper memory hierarchies
- Optimizing compilers are mandatory to take advantage of processor architecture

But:

- Processor mechanism is too complex to be modeled entirely
- Cost models for optimization phases are too restrictive
\Rightarrow How can we override these difficulties ?

Problematic

- Emerging microprocessors introduce more parallelism / deeper memory hierarchies
- Optimizing compilers are mandatory to take advantage of processor architecture

But:

- Processor mechanism is too complex to be modeled entirely
- Cost models for optimization phases are too restrictive
\Rightarrow How can we override these difficulties ?
(1) Introduction
- Iterative Optimization
- The Polyhedral Model
(2) Iterative Optimization in the Polyhedral Model
- Polyhedral Representation of Programs
- Legal Scheduling Space
- Experimental Results
(3) Internship Summary
- Internship Overview
- Personal Contribution

4. Conclusion

Iterative Optimization

- Program transformations can result in unpredictable performance degradation (Bodin et al., 98)
> \Rightarrow Instead of statically decide if a transformation is better, run it on the target architecture
- Much more accurate than static optimization
- Provide performance improvements
- Enable machine learning techniques to discover accurate transformation parameters (Stephenson et al., 03)
- Optimization space search can be feedback-directed

Iterative Optimization

- Program transformations can result in unpredictable performance degradation (Bodin et al., 98)
\Rightarrow Instead of statically decide if a transformation is better, run it on the target architecture
- Much more accurate than static optimization
- Provide performance improvements
- Enable machine learning techniques to discover accurate transformation parameters (Stephenson et al., 03)
- Optimization space search can be feedback-directed

Iterative Optimization

- Program transformations can result in unpredictable performance degradation (Bodin et al., 98)
\Rightarrow Instead of statically decide if a transformation is better, run it on the target architecture

Pros:

- Much more accurate than static optimization
- Provide performance improvements
- Enable machine learning techniques to discover accurate transformation parameters (Stephenson et al., 03)
- Optimization space search can be feedback-directed

Drawbacks

Limitations:

- The set of combination of transformations is extremely large
- Only a subset of them respects the program semantic

\rightarrow The search space is too restrictive or too large due to the bottleneck of the legality condition
\Rightarrow Can we improve the search space construction : model all sequences of transformations, and model only legal ones ?

Drawbacks

Limitations:

- The set of combination of transformations is extremely large
- Only a subset of them respects the program semantic
\rightarrow Only a (very small) subset of transformation sequences is actually tested
\rightarrow The search space is too restrictive or too large due to the bottleneck of the legality condition
\Rightarrow Can we improve the search space construction : model all sequences of transformations, and model only legal ones ?

Drawbacks

Limitations:

- The set of combination of transformations is extremely large
- Only a subset of them respects the program semantic
\rightarrow Only a (very small) subset of transformation sequences is actually tested
\rightarrow The search space is too restrictive or too large due to the bottleneck of the legality condition
\Rightarrow Can we improve the search space construction : model all sequences of transformations, and model only legal ones ?

Drawbacks

Limitations:

- The set of combination of transformations is extremely large
- Only a subset of them respects the program semantic
\rightarrow Only a (very small) subset of transformation sequences is actually tested
\rightarrow The search space is too restrictive or too large due to the bottleneck of the legality condition
\Rightarrow Can we improve the search space construction : model all sequences of transformations, and model only legal ones?

Iterative Optimization in the Polyhedral Model

- Focus on a subclass of programs: Static Control Parts
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed space
\rightarrow In the polyhedral model (Feautrier, 92):
- Composition of transformations are easily expressed
- Transformation legality is easily checked
- Natural expression of parallelism

Iterative Optimization in the Polyhedral Model

- Focus on a subclass of programs: Static Control Parts
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed space
\rightarrow In the polyhedral model (Feautrier, 92):
- Composition of transformations are easily expressed
- Transformation legality is easily checked
- Natural expression of parallelism

Iterative Optimization in the Polyhedral Model

- Focus on a subclass of programs: Static Control Parts
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed space

Iterative Optimization in the Polyhedral Model

- Focus on a subclass of programs: Static Control Parts
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed space
\rightarrow In the polyhedral model (Feautrier, 92):
- Composition of transformations are easily expressed
- Transformation legality is easily checked
- Natural expression of parallelism

The Polyhedral Model

2 Transformation in the model Here : $\left.A^{(}\right)=t=i+i$

3 Code generation
from model to code

The Polyhedral Model

1 Analysis: from code to model

2 Transformation in the model Here : $\theta\binom{i}{j}=t=i+j$

3 Code generation

 from model to code
The Polyhedral Model

1 Analysis: from code to model
2 Transformation in the model Here : $A\binom{l}{i}=t=i+i$
3 Code generation : from model to code
do t = 2, 6
do t = 2, 6
| do i = max(1,t-3), min(t-1,3)
| do i = max(1,t-3), min(t-1,3)
| | A(t) = ...
| | A(t) = ...

The Polyhedral Model


```
do t = 2, 6
| do i = max (1,t-3), min(t-1,3)
```


A First Example

matvect

Iteration domain of R :

A First Example

matvect

```
do \(i=0, n\)
\(R \quad s(i)=0\)
\(S \quad \left\lvert\, \quad \begin{aligned} & \text { do } j=0, n \\ & s(i)=s(i)+a(i, j) * x(j)\end{aligned}\right.\)
        end do
    end do
```

Iteration domain of R :

- iteration vector $\vec{x}_{R}=(i)$
- $\mathcal{D}_{R}:\{i \mid 0 \leq i \leq n\}$
- $\mathcal{D}_{R}:\left[\begin{array}{r}1 \\ -1\end{array}\right] \cdot(i)+\binom{0}{n}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0\end{array}\right] \cdot\left(\begin{array}{l}i \\ n \\ 1\end{array}\right) \geq \overrightarrow{0}$

A First Example

matvect

```
    do \(i=0, n\)
\(R \quad s(i)=0\)
        do j \(=0\), \(n\)
    \(s(i)=s(i)+a(i, j) * x(j)\)
        end do
    end do
```

Iteration domain of S :

- iteration vector $\vec{x}_{S}=\binom{i}{j}$
- $\mathcal{D}_{S}:\{i, j \mid 0 \leq i \leq n, 0 \leq j \leq n$,
- $\mathcal{D}_{S}:\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0\end{array}\right] \cdot\left(\begin{array}{l}i \\ j \\ n \\ 1\end{array}\right) \geq \overrightarrow{0}$

Expressing Transformations


```
do i = 1, 2,
3
```

```
do j = 1, 3
    do i = 1, 2
```


Expressing Transformations


```
do i = 1, 2
    do j = 1, 3
```

$$
\begin{aligned}
& \text { do } j=1,3 \\
& \text { do } i=1,2
\end{aligned}
$$

Expressing Transformations


```
do i = 1, 2,
3
```

```
do i = -1, -2, -1
    do j = 1, }
```


Expressing Transformations


```
do i = 1, 2
3
```

```
do j = -1, -3, -1
    do i = 1, 2
```


Expressing Transformations

Compound Transformation	
The transformation matrix is the composition of an interchange and reversal	
J_{4}	$\wedge^{\text {j }}$
3 (3) (6)	-3
2 (2) (5)	(6) (5) (4) 2
1 (1) (4)	(3) (2) (1) 1
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & \mathbf{i}\end{array}$	$\begin{array}{cccccc}-3-2-1 & 0 & 1 & 2 & i\end{array}$
$\left[\begin{array}{rr}1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\binom{i}{j}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0} \quad\binom{i^{\prime}}{i^{\prime}}=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\binom{i}{j}$	$\left[\begin{array}{rr}0 & -1 \\ 0 & 1 \\ 1 & 0 \\ -1 & 0\end{array}\right]\binom{i^{\prime}}{i^{\prime}}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0}$
(a) original polyhedron (b) transformation function $A \vec{x}+\vec{a} \geq \overrightarrow{0}$ $\vec{y}=T \vec{x}=T_{1} T_{2} \vec{x}$	(c) target polyhedron $\left(A T^{-1}\right) \vec{y}+\vec{a} \geq \overrightarrow{0}$

```
do i = 1, 2
    do j = 1, 3
```

```
do j = -1, -3, -1
    do i = 1, 2
```


Scheduling a Program

Definition (Schedule)

A schedule of a program is a function which associates a timestamp to each instance of each instruction. It can be written, for a statement S (T is a constant matrix):

$$
\theta_{S}\left(\overrightarrow{x_{S}}\right)=T\left(\begin{array}{c}
\overrightarrow{x_{S}} \\
\vdots \\
1
\end{array}\right)
$$

Example:

$$
\begin{aligned}
& \theta_{R}\left(\vec{x}_{R}\right)=\left[\begin{array}{ll}
1 &]
\end{array}\right](i) \\
& \theta_{S}\left(\vec{x}_{S}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot\binom{i}{j}
\end{aligned}
$$

Is the original lexicographic order for R and S.

Objectives

- Focus on one-dimensional schedules (T is a constant row matrix)
- Build the set of all legal program versions (i.e. which respects all the data dependence of the program)

\rightarrow Perform an exact dependence analysis \rightarrow Build the set of all possible values of T

\Rightarrow The resulting space represents all the distinct possible ways to legally reschedule the program, using arbitrarily complex sequence of transformations.

Objectives

- Focus on one-dimensional schedules (T is a constant row matrix)
- Build the set of all legal program versions (i.e. which respects all the data dependence of the program)
\rightarrow Perform an exact dependence analysis
\rightarrow Build the set of all possible values of T
\Rightarrow The resulting space represents all the distinct possible ways
to legally reschedule the program, using arbitrarily complex
sequence of transformations.

Objectives

- Focus on one-dimensional schedules (T is a constant row matrix)
- Build the set of all legal program versions (i.e. which respects all the data dependence of the program)
\rightarrow Perform an exact dependence analysis
\rightarrow Build the set of all possible values of T
\Rightarrow The resulting space represents all the distinct possible ways to legally reschedule the program, using arbitrarily complex sequence of transformations.

Dependence Expression

- Need to represent the exact set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Bastoul, 04)
- Use a subset of the Cartesian product of iteration domains:

```
R do i=1, l l 
```

Iterations of R

Formal Definition [1/2]

Assuming $R \delta S, \mathcal{D}_{R \delta S}$ is the exact set of instances of R and S where the dependence exists.

A schedule is legal iff, $\forall \overrightarrow{x_{R}} \times \overrightarrow{x_{S}} \in \mathcal{D}_{R \delta S}, \theta_{R}\left(\overrightarrow{x_{R}}\right)<\theta_{S}\left(\overrightarrow{x_{S}}\right)$.

Legal Schedule

\Rightarrow Assuming $R \delta S, \theta_{R}\left(\overrightarrow{x_{R}}\right)$ and $\theta_{S}\left(\overrightarrow{x_{S}}\right)$ are legal iff:

$$
\Delta_{R, S}=\theta_{S}\left(\overrightarrow{x_{S}}\right)-\theta_{R}\left(\overrightarrow{x_{R}}\right)-1
$$

Is non-negative for each point in $\mathcal{D}_{R \delta S}$.

Formal Definition [2/2]

\rightarrow We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R \delta S}$

Formal Definition [2/2]

\rightarrow We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R \delta S}$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A \vec{x}+\vec{b} \geq \overrightarrow{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$
f(\vec{x})=\lambda_{0}+\vec{\lambda}^{T}(A \vec{x}+\vec{b}), \text { with } \lambda_{0} \geq 0 \text { and } \vec{\lambda} \geq \overrightarrow{0}
$$

λ_{0} and $\overrightarrow{\lambda^{T}}$ are called the Farkas multipliers.

Formal Definition [2/2]

\rightarrow We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R \delta S}$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A \vec{x}+\vec{b} \geq \overrightarrow{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$
f(\vec{x})=\lambda_{0}+\vec{\lambda}^{T}(A \vec{x}+\vec{b}), \text { with } \lambda_{0} \geq 0 \text { and } \vec{\lambda} \geq \overrightarrow{0}
$$

λ_{0} and $\overrightarrow{\lambda^{T}}$ are called the Farkas multipliers.
\Rightarrow We can express the set of affine, non-negative functions over $\mathcal{D}_{\text {R } \delta S}$

Formal Definition [2/2]

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A \vec{x}+\vec{b} \geq \overrightarrow{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$
f(\vec{x})=\lambda_{0}+\vec{\lambda}^{T}(A \vec{x}+\vec{b}), \text { with } \lambda_{0} \geq 0 \text { and } \vec{\lambda} \geq \overrightarrow{0}
$$

λ_{0} and $\overrightarrow{\lambda^{T}}$ are called the Farkas multipliers.
\Rightarrow We just need to equate the coefficients:

$$
\theta_{S}\left(\overrightarrow{x_{S}}\right)-\theta_{R}\left(\overrightarrow{x_{R}}\right)-1=\lambda_{0}+\vec{\lambda}^{T}\left(\mathcal{D}_{R \delta S}\binom{\overrightarrow{x_{R}}}{\overrightarrow{x_{S}}}+\vec{d}_{R \delta S}\right) \geq 0
$$

An example

The two prototype affine schedules for R and S are:

$$
\begin{aligned}
\theta_{R}\left(\vec{x}_{R}\right) & =t_{1} R \cdot i_{R}+t_{2_{R}} \cdot n+t_{3_{R}} \cdot 1 \\
\theta_{S}\left(\vec{x}_{S}\right) & =t_{1} \cdot i_{S}+t_{2_{S}} \cdot j_{S}+t_{3_{S}} \cdot n+t_{4} \cdot 1
\end{aligned}
$$

We get the following system for $R \delta S$:

$$
\left\{\begin{array}{rcrrll}
D_{R \delta S} & i_{R} & : & -t_{1} R & =\lambda_{D_{1,1}}-\lambda_{D_{1,2}}+\lambda_{D_{1,7}} \\
& i_{S} & : & t_{1} S & =\lambda_{D_{1,3}}-\lambda_{D_{1,4}}-\lambda_{D_{1,7}} \\
& j_{S} & : & t_{2} S & =\lambda_{D_{1,5}}-\lambda_{D_{1,6}} \\
n & : & t_{3 S}-t_{2_{R}} & =\lambda_{D_{1,2}}+\lambda_{D_{1,4}}+\lambda_{D_{1,6}} \\
& 1 & : & t_{4} S-t_{3_{R}}-1 & =\lambda_{D_{1,0}}
\end{array}\right.
$$

An example

The two prototype affine schedules for R and S are:

$$
\begin{aligned}
& \theta_{R}\left(\vec{x}_{R}\right)=t_{1_{R}} \cdot i_{R}+t_{2_{R}} \cdot n+t_{3_{R}} \cdot 1 \\
& \theta_{S}\left(\vec{x}_{S}\right)=t_{1} \cdot i_{S}+t_{2_{S}} \cdot j_{S}+t_{3_{S}} \cdot n+t_{4 S} \cdot 1
\end{aligned}
$$

We get the following system for $R \delta S$:

$$
\left\{\begin{array}{rccrl}
D_{R \delta S} & i_{R} & : & -t_{1} R & =\lambda_{D_{1,1}}-\lambda_{D_{1,2}}+\lambda_{D_{1,7}} \\
& i_{S} & : & t_{1} S & =\lambda_{D_{1,3}}-\lambda_{D_{1,4}}-\lambda_{D_{1,7}} \\
& j_{S} & : & t_{2} S & =\lambda_{D_{1,5}}-\lambda_{D_{1,6}} \\
n & : & t_{3 S}-t_{2_{R}} & =\lambda_{D_{1,2}}+\lambda_{D_{1,4}}+\lambda_{D_{1,6}} \\
& 1 & : & t_{4 S}-t_{3_{R}}-1 & =\lambda_{D_{1,0}}
\end{array}\right.
$$

\rightarrow We need to solve this system, to get $\mathcal{D}_{t}^{R \delta S}$.

Construction Algorithm

- Need to build the intersection of all constraints obtained for each dependence, so for k dependences:

$$
\mathcal{D}_{t}=\bigcap_{k} \mathcal{D}_{t}^{k}
$$

- Need to bound the space, since the set of possible transformations can be infinite
> \Rightarrow To each (integral) point in \mathcal{D}_{t} corresponds a different version of the original program where the semantic is preserved.

Construction Algorithm

- Need to build the intersection of all constraints obtained for each dependence, so for k dependences:

$$
\mathcal{D}_{t}=\bigcap_{k} \mathcal{D}_{t}^{k}
$$

- Need to bound the space, since the set of possible transformations can be infinite

Construction Algorithm

- Need to build the intersection of all constraints obtained for each dependence, so for k dependences:

$$
\mathcal{D}_{t}=\bigcap_{k} \mathcal{D}_{t}^{k}
$$

- Need to bound the space, since the set of possible transformations can be infinite
\Rightarrow To each (integral) point in \mathcal{D}_{t} corresponds a different version of the original program where the semantic is preserved.

Discussions

- Expression of the set of all legal, arbitrarily long sequences of transformation (reversal, skewing, interchange, peeling, shifting, fusion, distribution)
- Multiple orders of magnitude reduction in the size of the search space compared to state-of-the-art techniques - On small kernels, the search space is small enough to be exhaustively computed, yielding a method to find The best transformation within the model

Benchmark	\#Dep	\#St	Bounds	\#Sched	\#Legal	Time
matvect	5	2	$-1,1$	3^{7}	129	0.024
locality	2	2	$-1,1$	3^{10}	6561	0.022
matmul	7	2	$-1,1$	3^{9}	912	0.029
gauss	18	2	$-1,1$	3^{10}	506	0.047
crout	26	4	$-3,3$	7^{17}	798	0.046

Discussions

- Expression of the set of all legal, arbitrarily long sequences of transformation (reversal, skewing, interchange, peeling, shifting, fusion, distribution)
- Multiple orders of magnitude reduction in the size of the search space compared to state-of-the-art techniques

Benchmark	\#Dep	\#St	Bounds	\#Sched	\#Legal	Time
matvect	5	2	$-1,1$	3^{7}	129	0.024
locality	2	2	$-1,1$	3^{10}	6561	0.022
matmul	7	2	$-1,1$	3^{9}	912	0.029
gauss	18	2	$-1,1$	3^{10}	506	0.047
crout	26	4	$-3,3$	7^{17}	798	0.046

Discussions

- Expression of the set of all legal, arbitrarily long sequences of transformation (reversal, skewing, interchange, peeling, shifting, fusion, distribution)
- Multiple orders of magnitude reduction in the size of the search space compared to state-of-the-art techniques
- On small kernels, the search space is small enough to be exhaustively computed, yielding a method to find The best transformation within the model

Benchmark	\#Dep	\#St	Bounds	\#Sched	\#Legal	Time
matvect	5	2	$-1,1$	3^{7}	129	0.024
locality	2	2	$-1,1$	3^{10}	6561	0.022
matmul	7	2	$-1,1$	3^{9}	912	0.029
gauss	18	2	$-1,1$	3^{10}	506	0.047
crout	26	4	$-3,3$	7^{17}	798	0.046

Performance Distribution [1/2]

Figure: Performance distribution for matmul, locality, mvt and crout

Performance Distribution [2/2]

- Regularities are observable
- Exhaustive scan may achievable on (very) small kernels
- High peak performance discovered thanks to optimization enabling
- The best transformation depends on the compiler, the target architecture, and even the compiler options

Benchmark	Compiler	Options	Parameters	\#lmproved	ID best	Speedup
h264	PathCC	-Ofast	none	11	352	36.1%
h264	GCC	-O2	none	19	234	13.3%
h264	GCC	-O3	none	26	250	25.0%
h264	ICC	-O2	none	27	290	12.9%
h264	ICC	-fast	none	0	$\mathrm{~N} / \mathrm{A}$	0%
MVT	PathCC	-Ofast	$\mathrm{N}=2000$	5652	4934	27.4%
MVT	GCC	- O2	$\mathrm{N}=2000$	3526	13301	18.0%
MVT	GCC	- O3	$\mathrm{N}=2000$	3601	13320	21.2%
MVT	ICC	- O2	$\mathrm{N}=2000$	5826	14093	24.0%
MVT	ICC	-fast	$\mathrm{N}=2000$	5966	4879	29.1%
matmul	PathCC	-Ofast	$\mathrm{N}=250$	402	283	308.1%
matmul	GCC	- O2	$\mathrm{N}=250$	318	284	38.6%
matmul	GCC	-O3	$\mathrm{N}=250$	345	270	49.0%
matmul	ICC	-O2	$\mathrm{N}=250$	390	311	56.6%
matmul	ICC	-fast	$\mathrm{N}=250$	318	641	645.4%

Exhaustive vs Heuristic Scan

Propose a decoupling heuristic:

- The general "form" of the schedule is embedded in the iterator coefficients
- Parameters and constant coefficients can be seen as a refinement
\rightarrow On some distributions a random heuristic may converge faster

Figure: Heuristic convergence

Benchmark	\#Schedules	Heuristic.	\#Runs	\%Speedup
locality	6561	Rand	125	96.1%
		DH	123	98.3%
matmul	12	Rand	170	99.9%
		DH	170	99.8%
mvt	16641	Rand	30	93.3%
		DH	31	99.0%

What, When, with Who ?

- Constant talks with Nicolas Vasilache (PhD student)
- Advised and oriented by Cedric Bastoul
- Theoretical fruitful discussions with Albert Cohen

Scientific Contribution

- New approach of the search space for iterative optimization
- Mathematically well founded algorithm for the construction of the legal transformation space in the polyhedral model
- Better formulation of the Fourier-Motzkin algorithm
- First exhaustive exploration of the performance space in the polyhedral model, for one-dimensional schedules
- Usual mathematical models sub-optimality brought to light
- Many observations on the performance space distribution

Scientific Contribution

- New approach of the search space for iterative optimization
- Mathematically well founded algorithm for the construction of the legal transformation space in the polyhedral model
- Better formulation of the Fourier-Motzkin algorithm
- First exhaustive exploration of the performance space in the polyhedral model, for one-dimensional schedules
- Usual mathematical models sub-optimality brought to light
- Many observations on the performance space distribution

Ongoing and Future Work

Ongoing research:

- Expression of equivalence between parts of the search space
- Simulation of multidimensional schedules with correction / completion
- New exploration heuristics
- Feedback directed exploration

PhD objectives:

- Extend the method to multidimensional schedules
- Develop exploration methods for the search space (statistic, machine learning, ...)

Conclusion
 Conclusion

- Very exciting and fruitful internship
- Many applications and collaborative works will be issued - Novel iterative compilation method
\Rightarrow The polyhedral model contributes to accelerate the
convergence of iterative methods and to discover significant
opportunities for performance improvements.
\Rightarrow The polyhedral model contributes to accelerate the
convergence of iterative methods and to discover significant
opportunities for performance improvements.
\Rightarrow The polyhedral model contributes to accelerate the
convergence of iterative methods and to discover significant
opportunities for performance improvements.

Conclusion

- Very exciting and fruitful internship
- Many applications and collaborative works will be issued
- Novel iterative compilation method

\Rightarrow The polyhedral model contributes to accelerate the convergence of iterative methods and to discover significant opportunities for performance improvements.

Conclusion

- Very exciting and fruitful internship
- Many applications and collaborative works will be issued
- Novel iterative compilation method

\Rightarrow The polyhedral model contributes to accelerate the convergence of iterative methods and to discover significant opportunities for performance improvements.

Conclusion

- Very exciting and fruitful internship
- Many applications and collaborative works will be issued
- Novel iterative compilation method
\Rightarrow The polyhedral model contributes to accelerate the convergence of iterative methods and to discover significant opportunities for performance improvements.
\square 06

\square
教

A Transformation Example

Optimal Transformation for mvt, GCC 4 -O2

```
S1: x1[i] = 0
S2: x2[i] = 0
S3: x1[i] += a[i][j] * y1[j]
S4: x2[i] += a[j][i] * y2[j]
for (i = 0; i <= M; i++) {
    S1(i);
    S2(i);
    for (j = 0; j <= M; j++) {
        S3(i,j);
        S4(i,j);
    }
}
```

```
for (i = 0; i <= M; i++)
    S2(i);
for (c1 = 1; c1 <= M-1; c1++)
    for (i = 0; i <= M; i++) {
        S4(i,c1-1);
    }
for (i = 0; i <= M; i++) {
    S1(i);
    S4(i,M-1);
}
S3(0,0);
S4 (0,M);
for (i = 1 ; i <= M; i++)
    S4(i,M);
for (c1 = M+2; c1 <= 3*M+1; c1++)
    for (i = max(c1-2*M-1,0); i <= min(M,c1-M-1); i++) {
        S3(i,c1-i-M-1);
    }
```

