When Iterative Optimization Meets the Polyhedral Model: One-Dimensional Date

Louis-Noël Pouchet

ALCHEMY, LRI - INRIA Futurs Under the direction of A. Cohen & C. Bastoul

October 9, 2006

EPITA final internship defense, CSI 2006

Problematic

- Emerging microprocessors introduce more parallelism / deeper memory hierarchies
- Optimizing compilers are mandatory to take advantage of processor architecture

But:

- Processor mechanism is too complex to be modeled entirely
- Cost models for optimization phases are too restrictive

 \Rightarrow How can we override these difficulties ?

Problematic

- Emerging microprocessors introduce more parallelism / deeper memory hierarchies
- Optimizing compilers are mandatory to take advantage of processor architecture

But:

- Processor mechanism is too complex to be modeled entirely
- Cost models for optimization phases are too restrictive

 \Rightarrow How can we override these difficulties ?

Problematic

- Emerging microprocessors introduce more parallelism / deeper memory hierarchies
- Optimizing compilers are mandatory to take advantage of processor architecture

But:

- Processor mechanism is too complex to be modeled entirely
- Cost models for optimization phases are too restrictive

 \Rightarrow How can we override these difficulties ?

- Iterative Optimization
- The Polyhedral Model
- 2 Iterative Optimization in the Polyhedral Model
 - Polyhedral Representation of Programs
 - Legal Scheduling Space
 - Experimental Results
- Internship Summary
 - Internship Overview
 - Personal Contribution

Iterative Optimization

• Program transformations can result in unpredictable performance degradation (Bodin et al., 98)

 \Rightarrow Instead of statically decide if a transformation is better, run it on the target architecture

Pros:

- Much more accurate than static optimization
- Provide performance improvements
- Enable machine learning techniques to discover accurate transformation parameters (Stephenson et al., 03)
- Optimization space search can be feedback-directed

Iterative Optimization

• Program transformations can result in unpredictable performance degradation (Bodin et al., 98)

 \Rightarrow Instead of statically decide if a transformation is better, run it on the target architecture

Pros:

- Much more accurate than static optimization
- Provide performance improvements
- Enable machine learning techniques to discover accurate transformation parameters (Stephenson et al., 03)
- Optimization space search can be feedback-directed

Iterative Optimization

• Program transformations can result in unpredictable performance degradation (Bodin et al., 98)

 \Rightarrow Instead of statically decide if a transformation is better, run it on the target architecture

Pros:

- Much more accurate than static optimization
- Provide performance improvements
- Enable machine learning techniques to discover accurate transformation parameters (Stephenson et al., 03)
- Optimization space search can be feedback-directed

Limitations:

- The set of combination of transformations is extremely large
- Only a subset of them respects the program semantic

 \rightarrow Only a (very small) subset of transformation sequences is actually tested

 \rightarrow The search space is too restrictive or too large due to the bottleneck of the legality condition

Limitations:

- The set of combination of transformations is extremely large
- Only a subset of them respects the program semantic

 \rightarrow Only a (very small) subset of transformation sequences is actually tested

 \rightarrow The search space is too restrictive or too large due to the bottleneck of the legality condition

Limitations:

- The set of combination of transformations is extremely large
- Only a subset of them respects the program semantic

 \rightarrow Only a (very small) subset of transformation sequences is actually tested

 \rightarrow The search space is too restrictive or too large due to the bottleneck of the legality condition

Limitations:

- The set of combination of transformations is extremely large
- Only a subset of them respects the program semantic

 \rightarrow Only a (very small) subset of transformation sequences is actually tested

 \rightarrow The search space is too restrictive or too large due to the bottleneck of the legality condition

- Focus on a subclass of programs: Static Control Parts
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed space
- \rightarrow In the polyhedral model (Feautrier, 92):
 - Composition of transformations are easily expressed
 - Transformation legality is easily checked
 - Natural expression of parallelism

- Focus on a subclass of programs: Static Control Parts
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed space
- \rightarrow In the polyhedral model (Feautrier, 92):
 - Composition of transformations are easily expressed
 - Transformation legality is easily checked
 - Natural expression of parallelism

- Focus on a subclass of programs: Static Control Parts
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed space
- \rightarrow In the polyhedral model (Feautrier, 92):
 - Composition of transformations are easily expressed
 - Transformation legality is easily checked
 - Natural expression of parallelism

- Focus on a subclass of programs: Static Control Parts
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed space
- \rightarrow In the polyhedral model (Feautrier, 92):
 - Composition of transformations are easily expressed
 - Transformation legality is easily checked
 - Natural expression of parallelism

A First Example

matvect

Iteration domain of R:

- iteration vector $\vec{x}_R = (i)$
- \mathcal{D}_R : { $i \mid 0 \leq i \leq n$ }

•
$$\mathcal{D}_R : \begin{bmatrix} 1 \\ -1 \end{bmatrix} . (i) + \begin{pmatrix} 0 \\ n \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix} . \begin{pmatrix} i \\ n \\ 1 \end{pmatrix} \ge \vec{0}$$

A First Example

Iteration domain of R:

• iteration vector $\vec{x}_R = (i)$

•
$$\mathcal{D}_R : \{i \mid 0 \le i \le n\}$$

• $\mathcal{D}_R : \begin{bmatrix} 1 \\ -1 \end{bmatrix} \cdot (i) + \begin{pmatrix} 0 \\ n \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix} \cdot \begin{pmatrix} i \\ n \\ 1 \end{pmatrix} \ge \vec{0}$

A First Example

Iteration domain of S:

• iteration vector
$$\vec{x}_{S} = {i \choose j}$$

• $\mathcal{D}_{S} : \{i, j \mid 0 \le i \le n, \ 0 \le j \le n, \}$
• $\mathcal{D}_{S} : \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \cdot {i \choose j}_{n} \ge \vec{0}$

Scheduling a Program

Definition (Schedule)

A schedule of a program is a function which associates a timestamp to each instance of each instruction. It can be written, for a statement S (T is a constant matrix):

$$heta_{\mathcal{S}}(\vec{x_{\mathcal{S}}}) = T\left(\begin{smallmatrix} \vec{x_{\mathcal{S}}} \\ \vec{n} \\ 1 \end{smallmatrix}
ight)$$

Example: $\theta_R(\vec{x}_R) = \begin{bmatrix} 1 \end{bmatrix} . (i)$ $\theta_S(\vec{x}_S) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} . \binom{i}{j}$ Is the original lexicographic order for *R* and *S*.

Objectives

- Focus on one-dimensional schedules (*T* is a constant row matrix)
- Build the set of all *legal* program versions (i.e. which respects all the data dependence of the program)
- \rightarrow Perform an exact dependence analysis \rightarrow Build the set of all possible values of T

 \Rightarrow The resulting space represents all the distinct possible ways to **legally reschedule** the program, using arbitrarily complex sequence of transformations.

Objectives

- Focus on one-dimensional schedules (T is a constant row matrix)
- Build the set of all *legal* program versions (i.e. which respects all the data dependence of the program)
- \rightarrow Perform an exact dependence analysis \rightarrow Build the set of all possible values of T

Objectives

- Focus on one-dimensional schedules (T is a constant row matrix)
- Build the set of all *legal* program versions (i.e. which respects all the data dependence of the program)
- \rightarrow Perform an exact dependence analysis
- \rightarrow Build the set of all possible values of T

 \Rightarrow The resulting space represents all the distinct possible ways to **legally reschedule** the program, using arbitrarily complex sequence of transformations.

Dependence Expression

- Need to represent the *exact* set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Bastoul, 04)
- Use a subset of the Cartesian product of iteration domains:

Assuming $R\delta S$, $\mathcal{D}_{R\delta S}$ is the exact set of instances of R and S where the dependence exists.

A schedule is **legal** iff, $\forall \vec{x_R} \times \vec{x_S} \in \mathcal{D}_{R\delta S}, \theta_R(\vec{x_R}) < \theta_S(\vec{x_S}).$

Legal Schedule

 \Rightarrow Assuming $R\delta S$, $\theta_R(\vec{x_R})$ and $\theta_S(\vec{x_S})$ are legal iff:

$$\Delta_{R,S} = \theta_S(\vec{x_S}) - \theta_R(\vec{x_R}) - 1$$

Is non-negative for each point in $\mathcal{D}_{R\delta S}$.

 \to We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R\delta S}$

_emma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A\vec{x} + \vec{b} \ge \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

 $f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$

 λ_0 and $\vec{\lambda^T}$ are called the Farkas multipliers.

 \to We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R\delta S}$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A\vec{x} + \vec{b} \ge \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$$

 λ_0 and $\vec{\lambda^T}$ are called the Farkas multipliers.

 \to We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R\delta S}$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A\vec{x} + \vec{b} \ge \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$$

 λ_0 and λ^{T} are called the Farkas multipliers.

 \Rightarrow We can express the set of affine, non-negative functions over $\mathcal{D}_{R\delta S}$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A\vec{x} + \vec{b} \ge \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$$

 λ_0 and λ^{T} are called the Farkas multipliers.

 \Rightarrow We just need to equate the coefficients:

$$heta_{\mathcal{S}}(ec{x_{\mathcal{S}}}) - heta_{\mathcal{R}}(ec{x_{\mathcal{R}}}) - 1 = \lambda_0 + ec{\lambda}^{\mathcal{T}} \left(\mathcal{D}_{\mathcal{R}\delta \mathcal{S}} inom{ec{x_{\mathcal{R}}}}{ec{x_{\mathcal{S}}}} + ec{d}_{\mathcal{R}\delta \mathcal{S}}
ight) \geq 0$$

An example

The two prototype affine schedules for *R* and *S* are:

We get the following system for $R\delta S$:

$$\left\{ \begin{array}{cccccc} D_{R\delta S} & i_R & : & -t_{1_R} & = & \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,7}} \\ i_S & : & t_{1_S} & = & \lambda_{D_{1,3}} - \lambda_{D_{1,4}} - \lambda_{D_{1,7}} \\ j_S & : & t_{2_S} & = & \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\ n & : & t_{3_S} - t_{2_R} & = & \lambda_{D_{1,2}} + \lambda_{D_{1,4}} + \lambda_{D_{1,6}} \\ 1 & : & t_{4_S} - t_{3_R} - 1 & = & \lambda_{D_{1,0}} \end{array} \right.$$

ightarrow We need to solve this system, to get $\mathcal{D}_t^{R\delta S}$.

October 9, 2006

An example

The two prototype affine schedules for *R* and *S* are:

We get the following system for $R\delta S$:

$$\left\{ \begin{array}{cccccc} D_{R\delta S} & i_R & : & -t_{1_R} & = & \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,7}} \\ i_S & : & t_{1_S} & = & \lambda_{D_{1,3}} - \lambda_{D_{1,4}} - \lambda_{D_{1,7}} \\ j_S & : & t_{2_S} & = & \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\ n & : & t_{3_S} - t_{2_R} & = & \lambda_{D_{1,2}} + \lambda_{D_{1,4}} + \lambda_{D_{1,6}} \\ 1 & : & t_{4_S} - t_{3_R} - 1 & = & \lambda_{D_{1,0}} \end{array} \right.$$

 \rightarrow We need to solve this system, to get $\mathcal{D}_t^{R\delta S}$.

October 9, 2006

Construction Algorithm

• Need to build the intersection of all constraints obtained for each dependence, so for *k* dependences:

$$\mathcal{D}_t = \bigcap_k \mathcal{D}_t^k$$

• Need to bound the space, since the set of possible transformations can be infinite

 \Rightarrow To each (integral) point in \mathcal{D}_t corresponds a different version of the original program where the semantic is preserved.

Construction Algorithm

• Need to build the intersection of all constraints obtained for each dependence, so for *k* dependences:

$$\mathcal{D}_t = \bigcap_k \mathcal{D}_t^k$$

• Need to bound the space, since the set of possible transformations can be infinite

 \Rightarrow To each (integral) point in \mathcal{D}_t corresponds a different version of the original program where the semantic is preserved.

Construction Algorithm

• Need to build the intersection of all constraints obtained for each dependence, so for *k* dependences:

$$\mathcal{D}_t = \bigcap_k \mathcal{D}_t^k$$

• Need to bound the space, since the set of possible transformations can be infinite

 \Rightarrow To each (integral) point in \mathcal{D}_t corresponds a different version of the original program where the semantic is preserved.

Discussions

- Expression of the set of all legal, arbitrarily long sequences of transformation (reversal, skewing, interchange, peeling, shifting, fusion, distribution)
- Multiple orders of magnitude reduction in the size of the search space compared to state-of-the-art techniques
- On small kernels, the search space is small enough to be exhaustively computed, yielding a method to find The best transformation within the model

			0.024
	4		

Discussions

- Expression of the set of **all legal, arbitrarily long sequences of transformation** (reversal, skewing, interchange, peeling, shifting, fusion, distribution)
- Multiple orders of magnitude reduction in the size of the search space compared to state-of-the-art techniques
- On small kernels, the search space is small enough to be exhaustively computed, yielding a method to find The best transformation within the model

Benchmark	#Dep	#St	Bounds	#Sched	#Legal	Time
matvect	5	2	-1,1	37	129	0.024
locality	2	2	-1,1	3 ¹⁰	6561	0.022
matmul	7	2	-1,1	3 ⁹	912	0.029
gauss	18	2	-1,1	3 ¹⁰	506	0.047
crout	26	4	-3,3	7 ¹⁷	798	0.046

Discussions

- Expression of the set of **all legal, arbitrarily long sequences of transformation** (reversal, skewing, interchange, peeling, shifting, fusion, distribution)
- Multiple orders of magnitude reduction in the size of the search space compared to state-of-the-art techniques
- On small kernels, the search space is small enough to be exhaustively computed, yielding a method to find The best transformation within the model

Benchmark	#Dep	#St	Bounds	#Sched	#Legal	Time
matvect	5	2	-1,1	37	129	0.024
locality	2	2	-1,1	3 ¹⁰	6561	0.022
matmul	7	2	-1,1	3 ⁹	912	0.029
gauss	18	2	-1,1	3 ¹⁰	506	0.047
crout	26	4	-3,3	7 ¹⁷	798	0.046

Performance Distribution [1/2]

Figure: Performance distribution for matmul, locality, mvt and crout

Performance Distribution [2/2]

- Regularities are observable
- Exhaustive scan may achievable on (very) small kernels
- High peak performance discovered thanks to optimization enabling
- The best transformation depends on the compiler, the target architecture, and even the compiler options

Benchmark	Compiler	Options	Parameters	#Improved	ID best	Speedup
h264	PathCC	-Ofast	none	11	352	36.1%
h264	GCC	-02	none	19	234	13.3%
h264	GCC	-O3	none	26	250	25.0%
h264	ICC	-02	none	27	290	12.9%
h264	ICC	-fast	none	0	N/A	0%
MVT	PathCC	-Ofast	N=2000	5652	4934	27.4%
MVT	GCC	-02	N=2000	3526	13301	18.0%
MVT	GCC	-O3	N=2000	3601	13320	21.2%
MVT	ICC	-02	N=2000	5826	14093	24.0%
MVT	ICC	-fast	N=2000	5966	4879	29.1%
matmul	PathCC	-Ofast	N=250	402	283	308.1%
matmul	GCC	-02	N=250	318	284	38.6%
matmul	GCC	-O3	N=250	345	270	49.0%
matmul	ICC	-02	N=250	390	311	56.6%
matmul	ICC	-fast	N=250	318	641	645.4%

Exhaustive vs Heuristic Scan

Propose a decoupling heuristic:

- The general "form" of the schedule is embedded in the iterator coefficients
- Parameters and constant coefficients can be seen as a refinement
- \rightarrow On some distributions a random heuristic may converge faster

Benchmark	#Schedules	Heuristic.	#Runs	%Speedup	
locality	6561	Rand DH	125 123	96.1% 98.3%	
matmul	912	Rand DH	170 170	99.9% 99.8%	
mvt	16641	Rand DH	30 31	93.3% 99.0%	

Figure: Heuristic convergence

What, When, with Who?

- Constant talks with Nicolas Vasilache (PhD student)
- Advised and oriented by Cedric Bastoul
- Theoretical fruitful discussions with Albert Cohen

Scientific Contribution

- New approach of the search space for iterative optimization
- Mathematically well founded algorithm for the construction of the *legal* transformation space in the polyhedral model
- Better formulation of the Fourier-Motzkin algorithm

- First exhaustive exploration of the performance space in the polyhedral model, for one-dimensional schedules
- Usual mathematical models sub-optimality brought to light
- Many observations on the performance space distribution

Scientific Contribution

- New approach of the search space for iterative optimization
- Mathematically well founded algorithm for the construction of the *legal* transformation space in the polyhedral model
- Better formulation of the Fourier-Motzkin algorithm

- First exhaustive exploration of the performance space in the polyhedral model, for one-dimensional schedules
- Usual mathematical models sub-optimality brought to light
- Many observations on the performance space distribution

Ongoing and Future Work

Ongoing research:

- Expression of equivalence between parts of the search space
- Simulation of multidimensional schedules with correction / completion
- New exploration heuristics
- Feedback directed exploration

PhD objectives:

- Extend the method to multidimensional schedules
- Develop exploration methods for the search space (statistic, machine learning, ...)

Very exciting and fruitful internship

- Many applications and collaborative works will be issued
- Novel iterative compilation method

- Very exciting and fruitful internship
- Many applications and collaborative works will be issued
- Novel iterative compilation method

- Very exciting and fruitful internship
- Many applications and collaborative works will be issued
- Novel iterative compilation method

- Very exciting and fruitful internship
- Many applications and collaborative works will be issued
- Novel iterative compilation method

Questions:

A Transformation Example

Optimal Transformation for mvt, GCC 4 -O2

```
S1: x1[i] = 0
                                 for (i = 0; i <= M; i++)
S2: x2[i] = 0
                                  S2(i);
S3: x1[i] += a[i][j] * y1[j]
S4: x2[i] += a[j][i] * y2[j]
                                 for (c1 = 1; c1 \le M-1; c1++)
                                   for (i = 0; i \le M; i++) {
                                 for (i = 0; i <= M; i++) {
                                  S1(i);
for (i = 0; i \le M; i++) {
                                  S4(i,M-1);
 S1(i);
 S2(i);
 for (j = 0; j \le M; j++) {
                                S3(0,0);
   S3(i,j);
                                S4(0,M);
   S4(i,j);
                                 for (i = 1 ; i <= M; i++)
                                  S4(i,M);
                                 for (c1 = M+2; c1 <= 3 \times M+1; c1++)
                                   for (i = \max(c1-2*M-1, 0); i \le \min(M, c1-M-1); i++) 
                                     S3(i,c1-i-M-1);
```