
Loop Transformations:
Convexity, Pruning and Optimization

Louis-Noël Pouchet1 Uday Bondhugula2 Cédric Bastoul3 Albert Cohen3

J. Ramanujam4 P. Sadayappan1 Nicolas Vasilache5

1 The Ohio State University
2 IBM T.J. Watson Research Center

3 ALCHEMY group, INRIA Saclay / University of Paris-Sud 11
4 Louisiana State University

5 Reservoir Labs, Inc.

January 28, 2011
ACM 2011 Symposium on

Principles of Programming Languages
Austin, TX

Overview: POPL’11

Compiler Optimizations for Performance

I High-level loop transformations are critical for performance...
I Coarse-grain parallelism (OpenMP)
I Fine-grain parallelism (SIMD)
I Data locality (reduce cache misses)

I ... But deciding the best sequence of transformations is hard!
I Conflicting objectives: more SIMD implies less locality, etc.
I It is machine-dependent and of course program-dependent
I Expressive search spaces are required, but challenge the search!

I Our approach:
I Convexity: model optimization spaces as convex set (ILP, scan, project,

etc.)
I Pruning: make our spaces contain all and only semantically equivalent

programs in our framework
I Optimization: decompose in two more tractable sub-problems without any

loss of expressiveness, empirical search + ILP models

OSU / IBM / INRIA / LSU / Reservoir 2

Overview: POPL’11

Compiler Optimizations for Performance

I High-level loop transformations are critical for performance...
I Coarse-grain parallelism (OpenMP)
I Fine-grain parallelism (SIMD)
I Data locality (reduce cache misses)

I ... But deciding the best sequence of transformations is hard!
I Conflicting objectives: more SIMD implies less locality, etc.
I It is machine-dependent and of course program-dependent
I Expressive search spaces are required, but challenge the search!

I Our approach:
I Convexity: model optimization spaces as convex set (ILP, scan, project,

etc.)
I Pruning: make our spaces contain all and only semantically equivalent

programs in our framework
I Optimization: decompose in two more tractable sub-problems without any

loss of expressiveness, empirical search + ILP models

OSU / IBM / INRIA / LSU / Reservoir 2

Overview: POPL’11

Compiler Optimizations for Performance

I High-level loop transformations are critical for performance...
I Coarse-grain parallelism (OpenMP)
I Fine-grain parallelism (SIMD)
I Data locality (reduce cache misses)

I ... But deciding the best sequence of transformations is hard!
I Conflicting objectives: more SIMD implies less locality, etc.
I It is machine-dependent and of course program-dependent
I Expressive search spaces are required, but challenge the search!

I Our approach:
I Convexity: model optimization spaces as convex set (ILP, scan, project,

etc.)
I Pruning: make our spaces contain all and only semantically equivalent

programs in our framework
I Optimization: decompose in two more tractable sub-problems without any

loss of expressiveness, empirical search + ILP models

OSU / IBM / INRIA / LSU / Reservoir 2

Overview: POPL’11

Spaces of Affine Loop transformations

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

Bounded: 10200 Legal: 1050 Empirical search: 10
1 point ↔ 1 unique transformed program

OSU / IBM / INRIA / LSU / Reservoir 3

Overview: POPL’11

Spaces of Affine Loop transformations

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

Bounded: 10200 Legal: 1050 Empirical search: 10

1 point ↔ 1 unique transformed program

OSU / IBM / INRIA / LSU / Reservoir 3

Overview: POPL’11

Spaces of Affine Loop transformations

All unique bounded

affine multidimensional schedules

Bounded: 10200 Legal: 1050 Empirical search: 10

1 point ↔ 1 unique transformed program

OSU / IBM / INRIA / LSU / Reservoir 3

Polyhedral Model: Program Representation POPL’11

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)

OSU / IBM / INRIA / LSU / Reservoir 4

Polyhedral Model: Program Representation POPL’11

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =

1 0 0 −1

−1 0 1 0
0 1 0 −1

−1 0 1 0
−1 −1 1 2

 .

i
j
n
1

≥~0

OSU / IBM / INRIA / LSU / Reservoir 4

Polyhedral Model: Program Representation POPL’11

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

fs(~xS2) =
[

1 0 0 0
]
.

 ~xS2
n
1

fa(~xS2) =
[

1 0 0 0
0 1 0 0

]
.

 ~xS2
n
1

fx(~xS2) =
[

0 1 0 0
]
.

 ~xS2
n
1

OSU / IBM / INRIA / LSU / Reservoir 4

Polyhedral Model: Program Representation POPL’11

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :

1 −1 0 0
1 0 0 −1

−1 0 0 3
0 1 0 −1
0 −1 0 3
0 0 1 −1
0 0 −1 3

.

iS1
iS2
jS2
1

 = 0

≥~0

i

S1 iterations

S2 iterations

OSU / IBM / INRIA / LSU / Reservoir 4

Polyhedral Model: Transformations in the Polyhedral Model POPL’11

Affine Transformations for Iteration Reordering

Interchange Transformation
The transformation matrix is the identity with a permutation of two rows.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’0
1
2
3

j’

=⇒

 1 0
−1 0

0 1
0 −1

(
i
j

)
+

−1
2

−1
3

≥~0

(
i′

j′

)
=

[0 1
1 0

](
i
j

) 0 1
0 −1
1 0

−1 0

(
i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = 1, 3
do j’ = 1, 2

S(i=j’,j=i’)

OSU / IBM / INRIA / LSU / Reservoir 6

Polyhedral Model: Transformations in the Polyhedral Model POPL’11

Affine Transformations for Iteration Reordering

Reversal Transformation
The transformation matrix is the identity with one diagonal element replaced by −1.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

5

4

6 1

2

3

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(
i
j

)
+

−1
2

−1
3

≥~0

(
i′

j′

)
=

[−1 0
0 1

](
i
j

) −1 0
1 0
0 1
0 −1

(
i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = -1, -2, -1
do j’ = 1, 3

S(i=3-i’,j=j’)

OSU / IBM / INRIA / LSU / Reservoir 6

Polyhedral Model: Transformations in the Polyhedral Model POPL’11

Affine Transformations for Iteration Reordering

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(
i
j

)
+

−1
2

−1
3

≥~0

(
i′

j′

)
=

[0 −1
1 0

](
i
j

) 0 −1
0 1
1 0

−1 0

(
i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

do i = 1, 2
do j = 1, 3

S(i,j)

do j’ = -1, -3, -1
do i’ = 1, 2

S(i=4-j’,j=i’)

OSU / IBM / INRIA / LSU / Reservoir 6

Polyhedral Model: Transformations in the Polyhedral Model POPL’11

Affine Transformations for Iteration Reordering

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(
i
j

)
+

−1
2

−1
3

≥~0

(
i′

j′

)
=

[0 −1
1 0

](
i
j

) 0 −1
0 1
1 0

−1 0

(
i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

do i = 1, 2
do j = 1, 3

S(i,j)

do j’ = -1, -3, -1
do i’ = 1, 2

S(i=4-j’,j=i’)

OSU / IBM / INRIA / LSU / Reservoir 6

Polyhedral Model: Transformations in the Polyhedral Model POPL’11

Affine Schedule

Definition (Affine multidimensional schedule)

Given a statement S, an affine schedule ΘS of dimension m is an affine form
on the d outer loop iterators~xS and the p global parameters~n.
ΘS ∈ Zm×(d+p+1) can be written as:

Θ
S(~xS) =

θ1,1 . . . θ1,d+p+1
...

...
θm,1 . . . θm,d+p+1

 .

~xS
~n
1

ΘS

k denotes the kth row of ΘS.

Definition (Bounded affine multidimensional schedule)

ΘS is a bounded schedule if θS
i,j ∈ [x,y] with x,y ∈ Z

OSU / IBM / INRIA / LSU / Reservoir 7

Space of Semantics-Preserving Affine Schedules: POPL’11

Space of Semantics-Preserving Affine Schedules

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

1 point ↔ 1 unique semantically equivalent program
(up to affine iteration reordering)

OSU / IBM / INRIA / LSU / Reservoir 8

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction POPL’11

Semantics Preservation

Definition (Causality condition)

Given ΘR a schedule for the instances of R, ΘS a schedule for the instances
of S. ΘR and ΘS preserve the dependence DR,S if ∀〈~xR,~xS〉 ∈DR,S:

Θ
R(~xR)≺Θ

S(~xS)

≺ denotes the lexicographic ordering.

(a1, . . . ,an)≺ (b1, . . . ,bm) iff ∃i, 1≤ i≤ min(n,m) s.t. (a1, . . . ,ai−1) = (b1, . . . ,bi−1)
and ai < bi

OSU / IBM / INRIA / LSU / Reservoir 9

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction POPL’11

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0

I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

Θ
S
k(~xS)−Θ

R
k (~xR) >−K.~n−K

OSU / IBM / INRIA / LSU / Reservoir 10

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction POPL’11

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0
I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

Θ
S
k(~xS)−Θ

R
k (~xR) >−K.~n−K

OSU / IBM / INRIA / LSU / Reservoir 10

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction POPL’11

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0
I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

Θ
S
k(~xS)−Θ

R
k (~xR) >−K.~n−K

OSU / IBM / INRIA / LSU / Reservoir 10

Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction POPL’11

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0
I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

Θ
S
k(~xS)−Θ

R
k (~xR) >−K.~n−K

OSU / IBM / INRIA / LSU / Reservoir 10

Space of Semantics-Preserving Affine Schedules: Convex Modeling POPL’11

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

OSU / IBM / INRIA / LSU / Reservoir 11

Space of Semantics-Preserving Affine Schedules: Convex Modeling POPL’11

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

OSU / IBM / INRIA / LSU / Reservoir 11

Space of Semantics-Preserving Affine Schedules: Convex Modeling POPL’11

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

OSU / IBM / INRIA / LSU / Reservoir 11

Space of Semantics-Preserving Affine Schedules: Convex Modeling POPL’11

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p −

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

OSU / IBM / INRIA / LSU / Reservoir 11

Space of Semantics-Preserving Affine Schedules: Convex Modeling POPL’11

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)−δ

DR,S
p +

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)≥ 0

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

OSU / IBM / INRIA / LSU / Reservoir 11

Space of Semantics-Preserving Affine Schedules: Convex Modeling POPL’11

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)−δ

DR,S
p +

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)≥ 0

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]
OSU / IBM / INRIA / LSU / Reservoir 11

Space of Semantics-Preserving Fusion Choices: POPL’11

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program
(up to "partial" statement reordering)

OSU / IBM / INRIA / LSU / Reservoir 12

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Fusion in the Polyhedral Model

0 N

for (N
Blue

for (i = 0; i <= N; ++i) {
Blue(i);
Red(i);

}

for (N
Red

Perfectly aligned fusion

OSU / IBM / INRIA / LSU / Reservoir 13

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Fusion in the Polyhedral Model

0 N N+11

for

Blue(0);
for (i = 1; i <= N; ++i) {
Blue(i);
Red(i-1);

}
Red(N);

for (N

Fusion with shift of 1
Not all instances are fused

OSU / IBM / INRIA / LSU / Reservoir 13

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Fusion in the Polyhedral Model

P0 N N+P

for (i = 0; i < P; ++i)
Blue(i);

for (i = P; i <= N; ++i) {
Blue(i);
Red(i-P);

}
for (i = N+1; i <= N+P; ++i)

Red(i-P);

Fusion with parametric shift of P
Automatic generation of prolog/epilog code

OSU / IBM / INRIA / LSU / Reservoir 13

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Fusion in the Polyhedral Model

P0 N N+P

for (i = 0; i < P; ++i)
Blue(i);

for (i = P; i <= N; ++i) {
Blue(i);
Red(i-P);

}
for (i = N+1; i <= N+P; ++i)

Red(i-P);

Many other transformations may be required to enable
fusion: interchange, skewing, etc.

OSU / IBM / INRIA / LSU / Reservoir 13

Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Affine Constraints for Fusibility

I Two statements can be fused if their timestamp can overlap

Definition (Generalized fusibility check)

Given vR (resp. vS) the set of vertices of DR (resp. DS). R and S are fusible at
level p if, ∀k ∈ {1 . . .p}, there exist two semantics-preserving schedules ΘR

k
and ΘS

k such that

∃(~x1,~x2,~x3) ∈ vR× vS× vR, Θ
R
k (~x1)≤Θ

S
k(~x2)≤Θ

R
k (~x3)

I Intersect L with fusibility and distribution constraints
I Completeness: if the test fails, then there is no sequence of affine

transformations that can implement this fusion structure

OSU / IBM / INRIA / LSU / Reservoir 14

Space of Semantics-Preserving Fusion Choices: Abstraction POPL’11

Fusion / Distribution / Code Motion

Our strategy:
1 Build a set containing all unique fusion / distribution / code motion

combinations
2 Prune all combinations that do not preserve the semantics

Given two statements R and S, three choices:
1 R is fully before S → distribution + code motion
2 R is fully after S → distribution + code motion
3 otherwise → fusion

⇒ It corresponds to all total preorders of R and S

OSU / IBM / INRIA / LSU / Reservoir 15

Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders POPL’11

Affine Encoding of Total Preorders

Principle:
I Model a total preorder with 3 binary variables

pi,j : i < j si,j : i > j ei,j : i = j
I Enforce totality and mutual exclusion
I Enforce all cases of transitivity through affine inequalities connecting

some variables. Ex: ei,j = 1∧ ej,k = 1⇒ ei,k = 1

I This set contains one and only one point per distinct total preorder
of n elements

I Easy pruning: just bound the sum of some variables
e.g., e1,2 + e4,5 + e8,12 < 3

I Automatic removal of supersets of unfusible sets

OSU / IBM / INRIA / LSU / Reservoir 16

Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders POPL’11

Affine Encoding of Total Preorders

Principle:
I Model a total preorder with 3 binary variables

pi,j : i < j si,j : i > j ei,j : i = j
I Enforce totality and mutual exclusion
I Enforce all cases of transitivity through affine inequalities connecting

some variables. Ex: ei,j = 1∧ ej,k = 1⇒ ei,k = 1

I This set contains one and only one point per distinct total preorder
of n elements

I Easy pruning: just bound the sum of some variables
e.g., e1,2 + e4,5 + e8,12 < 3

I Automatic removal of supersets of unfusible sets

OSU / IBM / INRIA / LSU / Reservoir 16

Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders POPL’11

Affine Encoding of Total Preorders

Principle:
I Model a total preorder with 3 binary variables

pi,j : i < j si,j : i > j ei,j : i = j
I Enforce totality and mutual exclusion
I Enforce all cases of transitivity through affine inequalities connecting

some variables. Ex: ei,j = 1∧ ej,k = 1⇒ ei,k = 1

I This set contains one and only one point per distinct total preorder
of n elements

I Easy pruning: just bound the sum of some variables
e.g., e1,2 + e4,5 + e8,12 < 3

I Automatic removal of supersets of unfusible sets

OSU / IBM / INRIA / LSU / Reservoir 16

Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders POPL’11

Convex set of All Unique Total Preorders

O =

 0≤ pi,j ≤ 1
0≤ ei,j ≤ 1
0≤ si,j ≤ 1

 constrained to: O =

0≤ pi,j ≤ 1
}

Variables are
binary0≤ ei,j ≤ 1

pi,j + ei,j ≤ 1
}

Relaxed mutual
exclusion

∀k ∈]j,n] ei,j + ei,k ≤ 1+ ej,k
}

Basic transitivity
on eei,j + ej,k ≤ 1+ ei,k

∀k ∈]i, j[pi,k +pk,j ≤ 1+pi,j

}
Basic transitivity
on p

∀k ∈]j,n] ei,j +pi,k ≤ 1+pj,k
 Complex

transitivity
on p and e

ei,j +pj,k ≤ 1+pi,k
∀k ∈]i, j[ek,j +pi,k ≤ 1+pi,j

∀k ∈]j,n] ei,j +pi,j +pj,k ≤ 1+pi,k + ei,k

 Complex
transitivity
on s and p

I Systematic construction for a given n, needs n2 Boolean variables
I Enable ILP modeling, enumeration, etc.
I Extension to multidimensional total preorders (i.e., multi-level fusion)

OSU / IBM / INRIA / LSU / Reservoir 17

Space of Semantics-Preserving Fusion Choices: Pruning for Semantics Preservation POPL’11

Pruning for Semantics Preservation

Intuition: enumerate the smallest sets of unfusible statements

I Use an intermediate structure to represent sets of statements
I Graph representation of maybe-unfusible sets (1 node per statement)
I Enumerate sets from the smallest to the largest

I Leverage dependence graph + properties of fusion / distribution

I Compute properties by intersecting L with additional fusion / distribution
/ code motion affine constraints

I Any individual point can be removed from O

OSU / IBM / INRIA / LSU / Reservoir 18

Space of Semantics-Preserving Fusion Choices: Scheduling Considerations POPL’11

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program
(up to statement reordering)

OSU / IBM / INRIA / LSU / Reservoir 19

Space of Semantics-Preserving Fusion Choices: Scheduling Considerations POPL’11

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ many unique semantically equivalent programs
(up to iteration reordering)

OSU / IBM / INRIA / LSU / Reservoir 19

Space of Semantics-Preserving Fusion Choices: Scheduling Considerations POPL’11

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program
(up to limited iteration reordering)

OSU / IBM / INRIA / LSU / Reservoir 19

Space of Semantics-Preserving Fusion Choices: Effective Optimization POPL’11

Objectives for Effective Optimization

Objectives:
I Achieve efficient coarse-grain parallelization
I Combine iterative search of profitable transformations for tiling

→ loop fusion and loop distribution

Tiling Hyperplane method [Bondhugula,08]

I Model-driven approach for automatic parallelization + locality
improvement

I Tiling-oriented

I Poor model-driven heuristic for the selection of loop fusion (not portable)

I Overly relaxed definition of fused statements

OSU / IBM / INRIA / LSU / Reservoir 20

Space of Semantics-Preserving Fusion Choices: Refinement of Fusibility POPL’11

Fusibility Restricted to Non-negative Schedules

I Fusibility is not a transitive relation!
I Example: sequence of matrix-by-vector products x = Ab, y = Bx, z = Cy
I x = Ab, y = Bx can be fused, also y = Bx, z = Cy
I They cannot be fused all together

I Determining the Fusibility of a group of statements is reducible to
exhibiting compatible pairwise loop permutations

I Extremely easy to compute all possible loop permutations that lead to fuse
a pair of statements

I Never check L on more than two statements!

I Stronger definition of fusion
I Guarantee at most c instances are not fused

−c < Θ
R
k (~0)−Θ

S
k(~0) < c

I No combinatorial choice

OSU / IBM / INRIA / LSU / Reservoir 21

Space of Semantics-Preserving Fusion Choices: Full Optimization Algorithm POPL’11

The Optimization Algorithm in a Nutshell

Proceeds from the outer-most loop level to the inner-most:
1 Compute the space of valid fusion/distribution/code motion choices

2 Select a fusion/distribution/code motion scheme in this space

3 Compute an affine schedule that implements this scheme
I Static cost model to select the schedule
I Compound of skewing, shifting, fusion, distribution, interchange, tiling and

parallelization (OpenMP)
I Maximize locality for each set of statements to be fused

OSU / IBM / INRIA / LSU / Reservoir 22

Experimental Results: POPL’11

Experimental Results

O F 1

Benchmark #loops #stmts #refs #dim #cst #points #dim #cst #points Time perf-Intel perf-AMD

advect3d 12 4 32 12 58 75 9 43 26 0.82s 1.47× 5.19×
atax 4 4 10 12 58 75 6 25 16 0.06s 3.66× 1.88×
bicg 3 4 10 12 58 75 10 52 26 0.05s 1.75× 1.40×
gemver 7 4 19 12 58 75 6 28 8 0.06s 1.34× 1.33×
ludcmp 9 14 35 182 3003 ≈ 1012 40 443 8 0.54s 1.98× 1.45×
doitgen 5 3 7 6 22 13 3 10 4 0.08s 15.35× 14.27×
varcovar 7 7 26 42 350 47293 22 193 96 0.09s 7.24× 14.83×
correl 5 6 12 30 215 4683 21 162 176 0.09s 3.00× 3.44×

Table: Search space statistics and performance improvement

I Performance portability: empirical search on the target machine of the
optimal fusion structure

I Outperforms state-of-the-art cost models
I Full implementation in the source-to-source polyhedral compiler PoCC

OSU / IBM / INRIA / LSU / Reservoir 23

Conclusion: POPL’11

Conclusion

Take-home message:

⇒ Clear formalization of loop fusion in the polyhedral model

⇒ Formal definition of all semantically equivalent programs up to:
I statement reordering
I limited affine iteration reordering
I arbitrary affine iteration reordering

⇒ Effective and portable hybrid empirical optimization algorithm
(parallelization + data locality)

Future work:
I Develop static cost models for fusion / distribution / code motion
I Use statistical techniques to learn optimization algorithms

OSU / IBM / INRIA / LSU / Reservoir 24

	Overview
	Polyhedral Model
	Program Representation
	Transformations in the Polyhedral Model

	Space of Semantics-Preserving Affine Schedules
	Dependence Satisfaction
	Convex Modeling

	Space of Semantics-Preserving Fusion Choices
	Fusion in the Polyhedral Model
	Abstraction
	Convex Set of All Unique Total Preorders
	Pruning for Semantics Preservation
	Scheduling Considerations
	Effective Optimization
	Refinement of Fusibility
	Full Optimization Algorithm

	Experimental Results
	Conclusion

