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Overview: POPL’11

Compiler Optimizations for Performance

I High-level loop transformations are critical for performance...
I Coarse-grain parallelism (OpenMP)
I Fine-grain parallelism (SIMD)
I Data locality (reduce cache misses)

I ... But deciding the best sequence of transformations is hard!
I Conflicting objectives: more SIMD implies less locality, etc.
I It is machine-dependent and of course program-dependent
I Expressive search spaces are required, but challenge the search!

I Our approach:
I Convexity: model optimization spaces as convex set (ILP, scan, project,

etc.)
I Pruning: make our spaces contain all and only semantically equivalent

programs in our framework
I Optimization: decompose in two more tractable sub-problems without any

loss of expressiveness, empirical search + ILP models
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Overview: POPL’11

Spaces of Affine Loop transformations

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

Bounded: 10200 Legal: 1050 Empirical search: 10
1 point ↔ 1 unique transformed program
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Polyhedral Model: Program Representation POPL’11

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
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Polyhedral Model: Program Representation POPL’11

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =


1 0 0 −1

−1 0 1 0
0 1 0 −1

−1 0 1 0
−1 −1 1 2

 .


i
j
n
1

≥~0
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Polyhedral Model: Program Representation POPL’11

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

fs( ~xS2) =
[

1 0 0 0
]
.

 ~xS2
n
1



fa( ~xS2) =
[

1 0 0 0
0 1 0 0

]
.

 ~xS2
n
1



fx( ~xS2) =
[

0 1 0 0
]
.

 ~xS2
n
1
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Polyhedral Model: Program Representation POPL’11

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :



1 −1 0 0
1 0 0 −1

−1 0 0 3
0 1 0 −1
0 −1 0 3
0 0 1 −1
0 0 −1 3


.


iS1
iS2
jS2
1

 = 0

≥~0

i

S1 iterations

S2 iterations
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Polyhedral Model: Transformations in the Polyhedral Model POPL’11

Affine Transformations for Iteration Reordering

Interchange Transformation
The transformation matrix is the identity with a permutation of two rows.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’0
1
2
3

j’

=⇒

 1 0
−1 0

0 1
0 −1

(
i
j

)
+

−1
2

−1
3

≥~0

(
i′

j′

)
=

[ 0 1
1 0

](
i
j

)  0 1
0 −1
1 0

−1 0

(
i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = 1, 3
do j’ = 1, 2

S(i=j’,j=i’)

OSU / IBM / INRIA / LSU / Reservoir 6



Polyhedral Model: Transformations in the Polyhedral Model POPL’11

Affine Transformations for Iteration Reordering

Reversal Transformation
The transformation matrix is the identity with one diagonal element replaced by −1.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

5

4

6 1

2

3

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(
i
j

)
+

−1
2

−1
3

≥~0

(
i′

j′

)
=

[−1 0
0 1

](
i
j

) −1 0
1 0
0 1
0 −1

(
i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = -1, -2, -1
do j’ = 1, 3

S(i=3-i’,j=j’)
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Polyhedral Model: Transformations in the Polyhedral Model POPL’11

Affine Transformations for Iteration Reordering

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal
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Polyhedral Model: Transformations in the Polyhedral Model POPL’11

Affine Schedule

Definition (Affine multidimensional schedule)

Given a statement S, an affine schedule ΘS of dimension m is an affine form
on the d outer loop iterators~xS and the p global parameters~n.
ΘS ∈ Zm×(d+p+1) can be written as:

Θ
S(~xS) =

θ1,1 . . . θ1,d+p+1
...

...
θm,1 . . . θm,d+p+1

 .

~xS
~n
1


ΘS

k denotes the kth row of ΘS.

Definition (Bounded affine multidimensional schedule)

ΘS is a bounded schedule if θS
i,j ∈ [x,y] with x,y ∈ Z

OSU / IBM / INRIA / LSU / Reservoir 7



Space of Semantics-Preserving Affine Schedules: POPL’11

Space of Semantics-Preserving Affine Schedules

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

1 point ↔ 1 unique semantically equivalent program
(up to affine iteration reordering)

OSU / IBM / INRIA / LSU / Reservoir 8



Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction POPL’11

Semantics Preservation

Definition (Causality condition)

Given ΘR a schedule for the instances of R, ΘS a schedule for the instances
of S. ΘR and ΘS preserve the dependence DR,S if ∀〈~xR,~xS〉 ∈DR,S:

Θ
R(~xR)≺Θ

S(~xS)

≺ denotes the lexicographic ordering.

(a1, . . . ,an)≺ (b1, . . . ,bm) iff ∃i, 1≤ i≤ min(n,m) s.t. (a1, . . . ,ai−1) = (b1, . . . ,bi−1)
and ai < bi

OSU / IBM / INRIA / LSU / Reservoir 9



Space of Semantics-Preserving Affine Schedules: Dependence Satisfaction POPL’11

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0

I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

Θ
S
k(~xS)−Θ

R
k (~xR) >−K.~n−K

OSU / IBM / INRIA / LSU / Reservoir 10
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Space of Semantics-Preserving Affine Schedules: Convex Modeling POPL’11

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

OSU / IBM / INRIA / LSU / Reservoir 11
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Space of Semantics-Preserving Fusion Choices: POPL’11

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program
(up to "partial" statement reordering)

OSU / IBM / INRIA / LSU / Reservoir 12



Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Fusion in the Polyhedral Model

0 N

for (N
Blue

for (i = 0; i <= N; ++i) {
Blue(i);
Red(i);

}

for (N
Red

Perfectly aligned fusion

OSU / IBM / INRIA / LSU / Reservoir 13



Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Fusion in the Polyhedral Model

0 N N+11

for

Blue(0);
for (i = 1; i <= N; ++i) {
Blue(i);
Red(i-1);

}
Red(N);

for (N

Fusion with shift of 1
Not all instances are fused

OSU / IBM / INRIA / LSU / Reservoir 13



Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Fusion in the Polyhedral Model

P0 N N+P

for (i = 0; i < P; ++i)
Blue(i);

for (i = P; i <= N; ++i) {
Blue(i);
Red(i-P);

}
for (i = N+1; i <= N+P; ++i)

Red(i-P);

Fusion with parametric shift of P
Automatic generation of prolog/epilog code

OSU / IBM / INRIA / LSU / Reservoir 13



Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Fusion in the Polyhedral Model

P0 N N+P

for (i = 0; i < P; ++i)
Blue(i);

for (i = P; i <= N; ++i) {
Blue(i);
Red(i-P);

}
for (i = N+1; i <= N+P; ++i)

Red(i-P);

Many other transformations may be required to enable
fusion: interchange, skewing, etc.

OSU / IBM / INRIA / LSU / Reservoir 13



Space of Semantics-Preserving Fusion Choices: Fusion in the Polyhedral Model POPL’11

Affine Constraints for Fusibility

I Two statements can be fused if their timestamp can overlap

Definition (Generalized fusibility check)

Given vR (resp. vS) the set of vertices of DR (resp. DS). R and S are fusible at
level p if, ∀k ∈ {1 . . .p}, there exist two semantics-preserving schedules ΘR

k
and ΘS

k such that

∃(~x1,~x2,~x3) ∈ vR× vS× vR, Θ
R
k (~x1)≤Θ

S
k(~x2)≤Θ

R
k (~x3)

I Intersect L with fusibility and distribution constraints
I Completeness: if the test fails, then there is no sequence of affine

transformations that can implement this fusion structure

OSU / IBM / INRIA / LSU / Reservoir 14



Space of Semantics-Preserving Fusion Choices: Abstraction POPL’11

Fusion / Distribution / Code Motion

Our strategy:
1 Build a set containing all unique fusion / distribution / code motion

combinations
2 Prune all combinations that do not preserve the semantics

Given two statements R and S, three choices:
1 R is fully before S → distribution + code motion
2 R is fully after S → distribution + code motion
3 otherwise → fusion

⇒ It corresponds to all total preorders of R and S

OSU / IBM / INRIA / LSU / Reservoir 15



Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders POPL’11

Affine Encoding of Total Preorders

Principle:
I Model a total preorder with 3 binary variables

pi,j : i < j si,j : i > j ei,j : i = j
I Enforce totality and mutual exclusion
I Enforce all cases of transitivity through affine inequalities connecting

some variables. Ex: ei,j = 1∧ ej,k = 1⇒ ei,k = 1

I This set contains one and only one point per distinct total preorder
of n elements

I Easy pruning: just bound the sum of some variables
e.g., e1,2 + e4,5 + e8,12 < 3

I Automatic removal of supersets of unfusible sets

OSU / IBM / INRIA / LSU / Reservoir 16
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Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders POPL’11

Convex set of All Unique Total Preorders

O =

 0≤ pi,j ≤ 1
0≤ ei,j ≤ 1
0≤ si,j ≤ 1

 constrained to: O =



0≤ pi,j ≤ 1
}

Variables are
binary0≤ ei,j ≤ 1

pi,j + ei,j ≤ 1
}

Relaxed mutual
exclusion

∀k ∈]j,n] ei,j + ei,k ≤ 1+ ej,k
}

Basic transitivity
on eei,j + ej,k ≤ 1+ ei,k

∀k ∈]i, j[ pi,k +pk,j ≤ 1+pi,j

}
Basic transitivity
on p

∀k ∈]j,n] ei,j +pi,k ≤ 1+pj,k
 Complex

transitivity
on p and e

ei,j +pj,k ≤ 1+pi,k
∀k ∈]i, j[ ek,j +pi,k ≤ 1+pi,j

∀k ∈]j,n] ei,j +pi,j +pj,k ≤ 1+pi,k + ei,k

 Complex
transitivity
on s and p

I Systematic construction for a given n, needs n2 Boolean variables
I Enable ILP modeling, enumeration, etc.
I Extension to multidimensional total preorders (i.e., multi-level fusion)
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Space of Semantics-Preserving Fusion Choices: Pruning for Semantics Preservation POPL’11

Pruning for Semantics Preservation

Intuition: enumerate the smallest sets of unfusible statements

I Use an intermediate structure to represent sets of statements
I Graph representation of maybe-unfusible sets (1 node per statement)
I Enumerate sets from the smallest to the largest

I Leverage dependence graph + properties of fusion / distribution

I Compute properties by intersecting L with additional fusion / distribution
/ code motion affine constraints

I Any individual point can be removed from O
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Space of Semantics-Preserving Fusion Choices: Scheduling Considerations POPL’11

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program
(up to statement reordering)
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Space of Semantics-Preserving Fusion Choices: Scheduling Considerations POPL’11

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ many unique semantically equivalent programs
(up to iteration reordering)
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Space of Semantics-Preserving Fusion Choices: Scheduling Considerations POPL’11

Space of Semantics-Preserving Fusion Choices

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

All unique semantics-preserving

fusion / distribution / code motion choices

1 point ↔ 1 unique semantically equivalent program
(up to limited iteration reordering)
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Space of Semantics-Preserving Fusion Choices: Effective Optimization POPL’11

Objectives for Effective Optimization

Objectives:
I Achieve efficient coarse-grain parallelization
I Combine iterative search of profitable transformations for tiling

→ loop fusion and loop distribution

Tiling Hyperplane method [Bondhugula,08]

I Model-driven approach for automatic parallelization + locality
improvement

I Tiling-oriented

I Poor model-driven heuristic for the selection of loop fusion (not portable)

I Overly relaxed definition of fused statements
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Space of Semantics-Preserving Fusion Choices: Refinement of Fusibility POPL’11

Fusibility Restricted to Non-negative Schedules

I Fusibility is not a transitive relation!
I Example: sequence of matrix-by-vector products x = Ab, y = Bx, z = Cy
I x = Ab, y = Bx can be fused, also y = Bx, z = Cy
I They cannot be fused all together

I Determining the Fusibility of a group of statements is reducible to
exhibiting compatible pairwise loop permutations

I Extremely easy to compute all possible loop permutations that lead to fuse
a pair of statements

I Never check L on more than two statements!

I Stronger definition of fusion
I Guarantee at most c instances are not fused

−c < Θ
R
k (~0)−Θ

S
k(~0) < c

I No combinatorial choice
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Space of Semantics-Preserving Fusion Choices: Full Optimization Algorithm POPL’11

The Optimization Algorithm in a Nutshell

Proceeds from the outer-most loop level to the inner-most:
1 Compute the space of valid fusion/distribution/code motion choices

2 Select a fusion/distribution/code motion scheme in this space

3 Compute an affine schedule that implements this scheme
I Static cost model to select the schedule
I Compound of skewing, shifting, fusion, distribution, interchange, tiling and

parallelization (OpenMP)
I Maximize locality for each set of statements to be fused
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Experimental Results: POPL’11

Experimental Results

O F 1

Benchmark #loops #stmts #refs #dim #cst #points #dim #cst #points Time perf-Intel perf-AMD

advect3d 12 4 32 12 58 75 9 43 26 0.82s 1.47× 5.19×
atax 4 4 10 12 58 75 6 25 16 0.06s 3.66× 1.88×
bicg 3 4 10 12 58 75 10 52 26 0.05s 1.75× 1.40×
gemver 7 4 19 12 58 75 6 28 8 0.06s 1.34× 1.33×
ludcmp 9 14 35 182 3003 ≈ 1012 40 443 8 0.54s 1.98× 1.45×
doitgen 5 3 7 6 22 13 3 10 4 0.08s 15.35× 14.27×
varcovar 7 7 26 42 350 47293 22 193 96 0.09s 7.24× 14.83×
correl 5 6 12 30 215 4683 21 162 176 0.09s 3.00× 3.44×

Table: Search space statistics and performance improvement

I Performance portability: empirical search on the target machine of the
optimal fusion structure

I Outperforms state-of-the-art cost models
I Full implementation in the source-to-source polyhedral compiler PoCC

OSU / IBM / INRIA / LSU / Reservoir 23



Conclusion: POPL’11

Conclusion

Take-home message:

⇒ Clear formalization of loop fusion in the polyhedral model

⇒ Formal definition of all semantically equivalent programs up to:
I statement reordering
I limited affine iteration reordering
I arbitrary affine iteration reordering

⇒ Effective and portable hybrid empirical optimization algorithm
(parallelization + data locality)

Future work:
I Develop static cost models for fusion / distribution / code motion
I Use statistical techniques to learn optimization algorithms
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