## Loop Transformations: Convexity, Pruning and Optimization

Louis-Noël Pouchet ${ }^{1}$ Uday Bondhugula ${ }^{2}$ Cédric Bastoul ${ }^{3}$ Albert Cohen ${ }^{3}$
J. Ramanujam ${ }^{4}$ P. Sadayappan ${ }^{1}$ Nicolas Vasilache ${ }^{5}$
${ }^{1}$ The Ohio State University
${ }^{2}$ IBM T.J. Watson Research Center
${ }^{3}$ ALCHEMY group, INRIA Saclay / University of Paris-Sud 11
${ }^{4}$ Louisiana State University
${ }^{5}$ Reservoir Labs, Inc.
January 28, 2011
ACM 2011 Symposium on Principles of Programming Languages Austin, TX

## Compiler Optimizations for Performance

- High-level loop transformations are critical for performance...
- Coarse-grain parallelism (OpenMP)
- Fine-grain parallelism (SIMD)
- Data locality (reduce cache misses)


## Compiler Optimizations for Performance

- High-level loop transformations are critical for performance...
- Coarse-grain parallelism (OpenMP)
- Fine-grain parallelism (SIMD)
- Data locality (reduce cache misses)
- ... But deciding the best sequence of transformations is hard!
- Conflicting objectives: more SIMD implies less locality, etc.
- It is machine-dependent and of course program-dependent
- Expressive search spaces are required, but challenge the search!


## Compiler Optimizations for Performance

- High-level loop transformations are critical for performance...
- Coarse-grain parallelism (OpenMP)
- Fine-grain parallelism (SIMD)
- Data locality (reduce cache misses)
- ... But deciding the best sequence of transformations is hard!
- Conflicting objectives: more SIMD implies less locality, etc.
- It is machine-dependent and of course program-dependent
- Expressive search spaces are required, but challenge the search!
- Our approach:
- Convexity: model optimization spaces as convex set (ILP, scan, project, etc.)
- Pruning: make our spaces contain all and only semantically equivalent programs in our framework
- Optimization: decompose in two more tractable sub-problems without any loss of expressiveness, empirical search + ILP models


## Spaces of Affine Loop transformations



## Spaces of Affine Loop transformations



Bounded: $10^{200}$
Legal: $10^{50}$
Empirical search: 10

## Spaces of Affine Loop transformations



1 point $\leftrightarrow 1$ unique transformed program

## Polyhedral Representation of Programs

## Static Control Parts

- Loops have affine control only (over-approximation otherwise)


## Polyhedral Representation of Programs

## Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

```
for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...
```

$\mathcal{D}_{S 1}=\left[\begin{array}{rrrr}\mathbf{1} & \mathbf{0} & \mathbf{0} & -\mathbf{1} \\ -1 & 0 & 1 & 0 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -1 & -1 & 1 & 2\end{array}\right] \cdot\left(\begin{array}{c}i \\ j \\ n \\ 1\end{array}\right) \geq \overrightarrow{0}$


## Polyhedral Representation of Programs

## Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\overrightarrow{x_{S}}$ and $\vec{p}$

$$
\begin{aligned}
& f_{\mathrm{s}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right) \\
& f_{\mathbf{a}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right) \\
& f_{\mathbf{x}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right)
\end{aligned}
$$

## Polyhedral Representation of Programs

## Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\overrightarrow{x_{S}}$ and $\vec{p}$
- Data dependence between S1 and S2: a subset of the Cartesian product of $\mathcal{D}_{S 1}$ and $\mathcal{D}_{S 2}$ (exact analysis)

```
for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;
}
```



## Affine Transformations for Iteration Reordering




```
do i' = 1, 3
    do }\mp@subsup{j}{}{\prime}=1,
    S(i=j',j=i')
```


## Affine Transformations for Iteration Reordering




```
do i' = -1, -2, -1
    do }\mp@subsup{j}{}{\prime}=1,
    S(i=3-i',j=\mp@subsup{j}{}{\prime})
```


## Affine Transformations for Iteration Reordering




```
do j' = -1, -3, -1
    do i' = 1, 2
    S(i=4-\mp@subsup{j}{}{\prime},j=\mp@subsup{i}{}{\prime})
```


## Affine Transformations for Iteration Reordering




```
do j' = -1, -3, -1
    do i' = 1, 2
    S(i=4-\mp@subsup{j}{}{\prime},j=\mp@subsup{i}{}{\prime})
```


## Affine Schedule

## Definition (Affine multidimensional schedule)

Given a statement $S$, an affine schedule $\Theta^{S}$ of dimension $m$ is an affine form on the $d$ outer loop iterators $\vec{x}_{S}$ and the $p$ global parameters $\vec{n}$.
$\Theta^{S} \in \mathbb{Z}^{m \times(d+p+1)}$ can be written as:

$$
\Theta^{S}\left(\vec{x}_{S}\right)=\left(\begin{array}{ccc}
\theta_{1,1} & \ldots & \theta_{1, d+p+1} \\
\vdots & & \vdots \\
\theta_{m, 1} & \ldots & \theta_{m, d+p+1}
\end{array}\right) \cdot\left(\begin{array}{c}
\vec{x}_{S} \\
\vec{n} \\
1
\end{array}\right)
$$

$\Theta_{k}^{S}$ denotes the $\mathrm{k}^{\text {th }}$ row of $\Theta^{S}$.

Definition (Bounded affine multidimensional schedule)
$\Theta^{S}$ is a bounded schedule if $\theta_{i, j}^{S} \in[x, y]$ with $x, y \in \mathbb{Z}$

## Space of Semantics-Preserving Affine Schedules



1 point $\leftrightarrow \quad 1$ unique semantically equivalent program (up to affine iteration reordering)

## Semantics Preservation

## Definition (Causality condition)

Given $\Theta^{R}$ a schedule for the instances of $R, \Theta^{S}$ a schedule for the instances of $S . \Theta^{R}$ and $\Theta^{S}$ preserve the dependence $\mathcal{D}_{R, S}$ if $\forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}$ :

$$
\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)
$$

$\prec$ denotes the lexicographic ordering.
$\left(a_{1}, \ldots, a_{n}\right) \prec\left(b_{1}, \ldots, b_{m}\right)$ iff $\exists i, 1 \leq i \leq \min (n, m)$ s.t. $\left(a_{1}, \ldots, a_{i-1}\right)=\left(b_{1}, \ldots, b_{i-1}\right)$ and $a_{i}<b_{i}$

## Lexico-positivity of Dependence Satisfaction

- $\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)$ is equivalently written $\Theta^{S}\left(\vec{x}_{S}\right)-\Theta^{R}\left(\vec{x}_{R}\right) \succ \overrightarrow{0}$


## Lexico-positivity of Dependence Satisfaction

- $\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)$ is equivalently written $\Theta^{S}\left(\vec{x}_{S}\right)-\Theta^{R}\left(\vec{x}_{R}\right) \succ \overrightarrow{0}$
- Considering the row $p$ of the scheduling matrices:

$$
\Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}
$$

## Lexico-positivity of Dependence Satisfaction

- $\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)$ is equivalently written $\Theta^{S}\left(\vec{x}_{S}\right)-\Theta^{R}\left(\vec{x}_{R}\right) \succ \overrightarrow{0}$
- Considering the row $p$ of the scheduling matrices:

$$
\Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}
$$

- $\delta_{p} \geq 1$ implies no constraints on $\delta_{k}, k>p$
- $\delta_{p} \geq 0$ is required if $\nexists k<p, \delta_{k} \geq 1$


## Lexico-positivity of Dependence Satisfaction

- $\Theta^{R}\left(\vec{x}_{R}\right) \prec \Theta^{S}\left(\vec{x}_{S}\right)$ is equivalently written $\Theta^{S}\left(\vec{x}_{S}\right)-\Theta^{R}\left(\vec{x}_{R}\right) \succ \overrightarrow{0}$
- Considering the row $p$ of the scheduling matrices:

$$
\Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}
$$

- $\delta_{p} \geq 1$ implies no constraints on $\delta_{k}, k>p$
- $\delta_{p} \geq 0$ is required if $\nexists k<p, \delta_{k} \geq 1$
- Schedule lower bound:


## Lemma (Schedule lower bound)

Given $\Theta_{k}^{R}, \Theta_{k}^{S}$ such that each coefficient value is bounded in $[x, y]$. Then there exists $K \in \mathbb{Z}$ such that:

$$
\Theta_{k}^{S}\left(\vec{x}_{S}\right)-\Theta_{k}^{R}\left(\vec{x}_{R}\right)>-K . \vec{n}-K
$$

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$

(iii)


## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)
$\forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S}$,

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)

$$
\begin{aligned}
& \forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S} \\
& \quad \Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}^{\mathcal{D}_{R, S}}
\end{aligned}
$$

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)

$$
\begin{aligned}
& \forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S} \\
& \quad \Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right) \geq \delta_{p}^{\mathcal{D}_{R, S}}-\sum_{k=1}^{p-1} \delta_{k}^{\mathcal{D}_{R, S}} \cdot(K . \vec{n}+K)
\end{aligned}
$$

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)

$$
\begin{aligned}
& \forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S} \\
& \qquad \Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right)-\delta_{p}^{\mathcal{D}_{R, S}}+\sum_{k=1}^{p-1} \delta_{k}^{\mathcal{D}_{R, S}} \cdot(K . \vec{n}+K) \geq 0
\end{aligned}
$$

$\rightarrow$ Use Farkas lemma to build all non-negative functions over a polyhedron (here, the dependence polyhedra) [Feautrier,92]

## Convex Form of All Bounded Affine Schedules

## Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^{R}, \Theta^{S} \ldots$ of dimension $m$, the program semantics is preserved if the three following conditions hold:
(i) $\forall \mathcal{D}_{R, S}, \delta_{p}^{\mathcal{D}_{R, S}} \in\{0,1\}$
(ii) $\forall \mathcal{D}_{R, S}, \sum_{p=1}^{m} \delta_{p}^{\mathcal{D}_{R, S}}=1$
(iii)

$$
\begin{aligned}
& \forall \mathcal{D}_{R, S}, \forall p \in\{1, \ldots, m\}, \forall\left\langle\vec{x}_{R}, \vec{x}_{S}\right\rangle \in \mathcal{D}_{R, S} \\
& \quad \Theta_{p}^{S}\left(\vec{x}_{S}\right)-\Theta_{p}^{R}\left(\vec{x}_{R}\right)-\delta_{p}^{\mathcal{D}_{R, S}}+\sum_{k=1}^{p-1} \delta_{k}^{\mathcal{D}_{R, S}} \cdot(K . \vec{n}+K) \geq 0
\end{aligned}
$$

$\rightarrow$ Use Farkas lemma to build all non-negative functions over a polyhedron (here, the dependence polyhedra) [Feautrier,92]
$\rightarrow$ Bounded coefficients required [Vasilache,07]

## Space of Semantics-Preserving Fusion Choices

 fusion / distribution / code motion choices

1 point $\leftrightarrow 1$ unique semantically equivalent program (up to "partial" statement reordering)

## Fusion in the Polyhedral Model



```
for (i = 0; i <= N; ++i) \{
    Blue(i);
    Red(i);
\}
```

Perfectly aligned fusion

## Fusion in the Polyhedral Model



```
Blue(0);
for (i = 1; i <= N; ++i) {
    Blue(i);
    Red(i-1);
}
Red (N);
```

Fusion with shift of 1
Not all instances are fused

## Fusion in the Polyhedral Model



```
for (i = 0; i < P; ++i)
    Blue(i);
for (i = P; i <= N; ++i) {
    Blue(i);
    Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
    Red(i-P);
```

Fusion with parametric shift of $P$
Automatic generation of prolog/epilog code

## Fusion in the Polyhedral Model



```
for (i = 0; i < P; ++i)
    Blue(i);
for (i = P; i <= N; ++i) {
    Blue(i);
    Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
    Red(i-P);
```

Many other transformations may be required to enable fusion: interchange, skewing, etc.

## Affine Constraints for Fusibility

- Two statements can be fused if their timestamp can overlap


## Definition (Generalized fusibility check)

Given $v_{R}$ (resp. $v_{S}$ ) the set of vertices of $\mathcal{D}_{R}$ (resp. $\mathcal{D}_{S}$ ). $R$ and $S$ are fusible at level $p$ if, $\forall k \in\{1 \ldots p\}$, there exist two semantics-preserving schedules $\Theta_{k}^{R}$ and $\Theta_{k}^{S}$ such that

$$
\exists\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right) \in v_{R} \times v_{S} \times v_{R}, \quad \Theta_{k}^{R}\left(\vec{x}_{1}\right) \leq \Theta_{k}^{S}\left(\vec{x}_{2}\right) \leq \Theta_{k}^{R}\left(\vec{x}_{3}\right)
$$

- Intersect $\mathcal{L}$ with fusibility and distribution constraints
- Completeness: if the test fails, then there is no sequence of affine transformations that can implement this fusion structure


## Fusion / Distribution / Code Motion

Our strategy:
(1) Build a set containing all unique fusion / distribution / code motion combinations
(2) Prune all combinations that do not preserve the semantics

Given two statements R and S, three choices:
(1) R is fully before $\mathrm{S} \rightarrow$ distribution + code motion
(2) R is fully after $\mathrm{S} \rightarrow$ distribution + code motion
(3) otherwise $\rightarrow$ fusion
$\Rightarrow$ It corresponds to all total preorders of $R$ and $S$

## Affine Encoding of Total Preorders

Principle:

- Model a total preorder with 3 binary variables

$$
p_{i, j}: i<j \quad s_{i, j}: i>j \quad e_{i, j}: i=j
$$

- Enforce totality and mutual exclusion
- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: $e_{i, j}=1 \wedge e_{j, k}=1 \Rightarrow e_{i, k}=1$


## Affine Encoding of Total Preorders

Principle:

- Model a total preorder with 3 binary variables

$$
p_{i, j}: i<j \quad s_{i, j}: i>j \quad e_{i, j}: i=j
$$

- Enforce totality and mutual exclusion
- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: $e_{i, j}=1 \wedge e_{j, k}=1 \Rightarrow e_{i, k}=1$
- This set contains one and only one point per distinct total preorder of $n$ elements


## Affine Encoding of Total Preorders

Principle:

- Model a total preorder with 3 binary variables

$$
p_{i, j}: i<j \quad s_{i, j}: i>j \quad e_{i, j}: i=j
$$

- Enforce totality and mutual exclusion
- Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: $e_{i, j}=1 \wedge e_{j, k}=1 \Rightarrow e_{i, k}=1$
- This set contains one and only one point per distinct total preorder of $n$ elements
- Easy pruning: just bound the sum of some variables

$$
\text { e.g., } e_{1,2}+e_{4,5}+e_{8,12}<3
$$

- Automatic removal of supersets of unfusible sets


## Convex set of All Unique Total Preorders

$$
\left.O=\left\{\begin{array}{l}
0 \leq p_{i, j} \leq 1 \\
0 \leq e_{i, j} \leq 1 \\
0 \leq s_{i, j} \leq 1
\end{array}\right\} \quad \text { constrained to: } O=\left\{\begin{array}{r}
0 \leq p_{i, j} \leq 1 \\
0 \leq e_{i, j} \leq 1
\end{array}\right\} \begin{array}{l}
p_{i, j}+e_{i, j} \leq 1
\end{array}\right\} \begin{aligned}
& \text { Variables are } \\
& \text { binary } \\
& \text { Relaxed mutual } \\
& \text { exclusion }
\end{aligned}
$$

- Systematic construction for a given $n$, needs $n^{2}$ Boolean variables
- Enable ILP modeling, enumeration, etc.
- Extension to multidimensional total preorders (i.e., multi-level fusion)


## Pruning for Semantics Preservation

Intuition: enumerate the smallest sets of unfusible statements

- Use an intermediate structure to represent sets of statements
- Graph representation of maybe-unfusible sets (1 node per statement)
- Enumerate sets from the smallest to the largest
- Leverage dependence graph + properties of fusion / distribution
- Compute properties by intersecting $\mathcal{L}$ with additional fusion / distribution / code motion affine constraints
- Any individual point can be removed from $O$


## Space of Semantics-Preserving Fusion Choices



All unique semantics-preserving fusion / distribution / code motion choices

1 point $\leftrightarrow 1$ unique semantically equivalent program (up to statement reordering)

## Space of Semantics-Preserving Fusion Choices



All unique semantics-preserving fusion / distribution / code motion choices

1 point $\leftrightarrow \quad$ many unique semantically equivalent programs (up to iteration reordering)

## Space of Semantics-Preserving Fusion Choices



## Objectives for Effective Optimization

Objectives:

- Achieve efficient coarse-grain parallelization
- Combine iterative search of profitable transformations for tiling
$\rightarrow$ loop fusion and loop distribution

Tiling Hyperplane method [Bondhugula,08]

- Model-driven approach for automatic parallelization + locality improvement
- Tiling-oriented
- Poor model-driven heuristic for the selection of loop fusion (not portable)
- Overly relaxed definition of fused statements


## Fusibility Restricted to Non-negative Schedules

- Fusibility is not a transitive relation!
- Example: sequence of matrix-by-vector products $x=A b, y=B x, z=C y$
- $x=A b, y=B x$ can be fused, also $y=B x, z=C y$
- They cannot be fused all together
- Determining the Fusibility of a group of statements is reducible to exhibiting compatible pairwise loop permutations
- Extremely easy to compute all possible loop permutations that lead to fuse a pair of statements
- Never check $\mathcal{L}$ on more than two statements!
- Stronger definition of fusion
- Guarantee at most $c$ instances are not fused

$$
-c<\Theta_{k}^{R}(\overrightarrow{0})-\Theta_{k}^{S}(\overrightarrow{0})<c
$$

- No combinatorial choice


## The Optimization Algorithm in a Nutshell

Proceeds from the outer-most loop level to the inner-most:
(1) Compute the space of valid fusion/distribution/code motion choices
(2) Select a fusion/distribution/code motion scheme in this space
(0) Compute an affine schedule that implements this scheme

- Static cost model to select the schedule
- Compound of skewing, shifting, fusion, distribution, interchange, tiling and parallelization (OpenMP)
- Maximize locality for each set of statements to be fused


## Experimental Results

|  |  |  |  | O |  |  | $\mathcal{F}^{1}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Benchmark | \#loops | \#stmts | \#refs | \#dim | \#cst | \#points | \#dim | \#cst | \#points | Time | perf-Intel | perf-AMD |
| advect3d | 12 | 4 | 32 | 12 | 58 | 75 | 9 | 43 | 26 | 0.82s | $1.47 \times$ | $5.19 \times$ |
| atax | 4 | 4 | 10 | 12 | 58 | 75 | 6 | 25 | 16 | 0.06s | $3.66 \times$ | $1.88 \times$ |
| bicg | 3 | 4 | 10 | 12 | 58 | 75 | 10 | 52 | 26 | 0.05s | $1.75 \times$ | $1.40 \times$ |
| gemver | 7 | 4 | 19 | 12 | 58 | 75 | 6 | 28 | 8 | 0.06 s | $1.34 \times$ | $1.33 \times$ |
| ludcmp | 9 | 14 | 35 | 182 | 3003 | $\approx 10^{12}$ | 40 | 443 | 8 | 0.54s | $1.98 \times$ | $1.45 \times$ |
| doitgen | 5 | 3 | 7 | 6 | 22 | 13 | 3 | 10 | 4 | 0.08s | $15.35 \times$ | $14.27 \times$ |
| varcovar | 7 | 7 | 26 | 42 | 350 | 47293 | 22 | 193 | 96 | 0.09s | $7.24 \times$ | $14.83 \times$ |
| correl | 5 | 6 | 12 | 30 | 215 | 4683 | 21 | 162 | 176 | 0.09s | $3.00 \times$ | $3.44 \times$ |

Table: Search space statistics and performance improvement

- Performance portability: empirical search on the target machine of the optimal fusion structure
- Outperforms state-of-the-art cost models
- Full implementation in the source-to-source polyhedral compiler PoCC


## Conclusion

## Take-home message:

$\Rightarrow$ Clear formalization of loop fusion in the polyhedral model
$\Rightarrow$ Formal definition of all semantically equivalent programs up to:

- statement reordering
- limited affine iteration reordering
- arbitrary affine iteration reordering
$\Rightarrow$ Effective and portable hybrid empirical optimization algorithm (parallelization + data locality)

Future work:

- Develop static cost models for fusion / distribution / code motion
- Use statistical techniques to learn optimization algorithms

