Loop Transformations: Convexity, Pruning and Optimization

Louis-Noël Pouchet¹ Uday Bondhugula² Cédric Bastoul³ Albert Cohen³ J. Ramanujam⁴ P. Sadayappan¹ Nicolas Vasilache⁵

¹ The Ohio State University
 ² IBM T.J. Watson Research Center
 ³ ALCHEMY group, INRIA Saclay / University of Paris-Sud 11

 ⁴ Louisiana State University
 ⁵ Reservoir Labs, Inc.

January 28, 2011 ACM 2011 Symposium on Principles of Programming Languages Austin, TX

Compiler Optimizations for Performance

High-level loop transformations are critical for performance...

- Coarse-grain parallelism (OpenMP)
- Fine-grain parallelism (SIMD)
- Data locality (reduce cache misses)

Compiler Optimizations for Performance

High-level loop transformations are critical for performance...

- Coarse-grain parallelism (OpenMP)
- Fine-grain parallelism (SIMD)
- Data locality (reduce cache misses)

... But deciding the best sequence of transformations is hard!

- Conflicting objectives: more SIMD implies less locality, etc.
- It is machine-dependent and of course program-dependent
- Expressive search spaces are required, but challenge the search!

Compiler Optimizations for Performance

High-level loop transformations are critical for performance...

- Coarse-grain parallelism (OpenMP)
- Fine-grain parallelism (SIMD)
- Data locality (reduce cache misses)

... But deciding the best sequence of transformations is hard!

- Conflicting objectives: more SIMD implies less locality, etc.
- It is machine-dependent and of course program-dependent
- Expressive search spaces are required, but challenge the search!

Our approach:

- Convexity: model optimization spaces as convex set (ILP, scan, project, etc.)
- Pruning: make our spaces contain all and only semantically equivalent programs in our framework
- Optimization: decompose in two more tractable sub-problems without any loss of expressiveness, empirical search + ILP models

Spaces of Affine Loop transformations

Spaces of Affine Loop transformations

Spaces of Affine Loop transformations

1 point \leftrightarrow 1 unique transformed program

Polyhedral Representation of Programs

Static Control Parts

Loops have affine control only (over-approximation otherwise)

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

POPL'11

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}

$$f_{s}(\vec{x_{52}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

for (i=0; i. s[i] = 0;
. for (j=0; j. . s[i] = s[i]+a[i][j]*x[j];
}
$$f_{s}(\vec{x_{52}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

$$f_{x}(\vec{x_{52}}) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}
- ► Data dependence between S1 and S2: a subset of the Cartesian product of D_{S1} and D_{S2} (exact analysis)

Affine Schedule

Definition (Affine multidimensional schedule)

Given a statement *S*, an affine schedule Θ^S of dimension *m* is an affine form on the *d* outer loop iterators \vec{x}_S and the *p* global parameters \vec{n} . $\Theta^S \in \mathbb{Z}^{m \times (d+p+1)}$ can be written as:

$$\Theta^{S}(\vec{x}_{S}) = \begin{pmatrix} \theta_{1,1} & \dots & \theta_{1,d+p+1} \\ \vdots & & \vdots \\ \theta_{m,1} & \dots & \theta_{m,d+p+1} \end{pmatrix} \cdot \begin{pmatrix} \vec{x}_{S} \\ \vec{n} \\ 1 \end{pmatrix}$$

 Θ_k^S denotes the kth row of Θ^S .

Definition (Bounded affine multidimensional schedule)

 Θ^S is a bounded schedule if $\theta^S_{i,j} \in [x,y]$ with $x, y \in \mathbb{Z}$

Space of Semantics-Preserving Affine Schedules

1 point ↔ 1 unique semantically equivalent program (up to affine iteration reordering)

Semantics Preservation

Definition (Causality condition)

Given Θ^R a schedule for the instances of R, Θ^S a schedule for the instances of S. Θ^R and Θ^S preserve the dependence $\mathcal{D}_{R,S}$ if $\forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S}$:

 $\Theta^R(\vec{x}_R) \prec \Theta^S(\vec{x}_S)$

 \prec denotes the *lexicographic ordering*.

 $(a_1, \ldots, a_n) \prec (b_1, \ldots, b_m)$ iff $\exists i, 1 \le i \le \min(n, m)$ s.t. $(a_1, \ldots, a_{i-1}) = (b_1, \ldots, b_{i-1})$ and $a_i < b_i$

• $\Theta^{R}(\vec{x}_{R}) \prec \Theta^{S}(\vec{x}_{S})$ is equivalently written $\Theta^{S}(\vec{x}_{S}) - \Theta^{R}(\vec{x}_{R}) \succ \vec{0}$

- $\Theta^{R}(\vec{x}_{R}) \prec \Theta^{S}(\vec{x}_{S})$ is equivalently written $\Theta^{S}(\vec{x}_{S}) \Theta^{R}(\vec{x}_{R}) \succ \vec{0}$
- Considering the row p of the scheduling matrices:

$$\Theta_p^S(\vec{x}_S) - \Theta_p^R(\vec{x}_R) \ge \delta_p$$

- $\Theta^{R}(\vec{x}_{R}) \prec \Theta^{S}(\vec{x}_{S})$ is equivalently written $\Theta^{S}(\vec{x}_{S}) \Theta^{R}(\vec{x}_{R}) \succ \vec{0}$
- Considering the row p of the scheduling matrices:

$$\Theta_p^S(\vec{x}_S) - \Theta_p^R(\vec{x}_R) \ge \delta_p$$

- $\delta_p \ge 1$ implies no constraints on δ_k , k > p
- $\hat{\delta_p} \ge 0$ is required if $\not\exists k < p, \, \delta_k \ge 1$

- $\Theta^{R}(\vec{x}_{R}) \prec \Theta^{S}(\vec{x}_{S})$ is equivalently written $\Theta^{S}(\vec{x}_{S}) \Theta^{R}(\vec{x}_{R}) \succ \vec{0}$
- Considering the row p of the scheduling matrices:

$$\Theta_p^S(\vec{x}_S) - \Theta_p^R(\vec{x}_R) \ge \delta_p$$

- $\delta_p \ge 1$ implies no constraints on δ_k , k > p
- $\delta_p \ge 0$ is required if $\not\exists k < p, \, \delta_k \ge 1$
- Schedule lower bound:

Lemma (Schedule lower bound)

Given Θ_k^R , Θ_k^S such that each coefficient value is bounded in [x, y]. Then there exists $K \in \mathbb{Z}$ such that:

$$\Theta_k^S(\vec{x}_S) - \Theta_k^R(\vec{x}_R) > -K.\vec{n} - K$$

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \dots$ of dimension *m*, the program semantics is preserved if the three following conditions hold:

(i)
$$\forall \mathcal{D}_{R,S}, \, \delta_p^{\mathcal{D}_{R,S}} \in \{0,1\}$$

(ii) $\forall \mathcal{D}_{R,S}, \, \sum_{p=1}^m \delta_p^{\mathcal{D}_{R,S}} = 1$

(iii) $\forall \mathcal{D}_{R,S}, \forall p \in \{1,\ldots,m\}, \forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S},$

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \dots$ of dimension *m*, the program semantics is preserved if the three following conditions hold:

(i)
$$\forall \mathcal{D}_{R,S}, \ \delta_p^{\mathcal{D}_{R,S}} \in \{0,1\}$$

(ii) $\forall \mathcal{D}_{R,S}, \ \sum_{p=1}^m \delta_p^{\mathcal{D}_{R,S}} = 1$

(iii) $\forall \mathcal{D}_{R,S}, \forall p \in \{1,\ldots,m\}, \forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S},$

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \dots$ of dimension *m*, the program semantics is preserved if the three following conditions hold:

(i)
$$\forall \mathcal{D}_{R,S}, \ \delta_p^{\mathcal{D}_{R,S}} \in \{0,1\}$$

(ii) $\forall \mathcal{D}_{R,S}, \ \sum_{p=1}^m \delta_p^{\mathcal{D}_{R,S}} = 1$

(iii)
$$\forall \mathcal{D}_{R,S}, \forall p \in \{1,\ldots,m\}, \forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S},$$

$$\Theta_p^S(\vec{x}_S) - \Theta_p^R(\vec{x}_R) \ge \delta_p^{\mathcal{D}_{R,S}}$$

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \dots$ of dimension *m*, the program semantics is preserved if the three following conditions hold:

$$\begin{array}{ll} (i) & \forall \mathcal{D}_{R,S}, \ \delta_p^{\mathcal{D}_{R,S}} \in \{0,1\} \\ (ii) & \forall \mathcal{D}_{R,S}, \ \sum_{p=1}^m \delta_p^{\mathcal{D}_{R,S}} = 1 \\ (iii) & \forall \mathcal{D}_{R,S}, \ \forall p \in \{1,\ldots,m\}, \ \forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S}, \\ & \Theta_p^S(\vec{x}_S) - \Theta_p^R(\vec{x}_R) \ge \delta_p^{\mathcal{D}_{R,S}} - \sum_{k=1}^{p-1} \delta_k^{\mathcal{D}_{R,S}}.(K.\vec{n}+K) \end{array}$$

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \dots$ of dimension *m*, the program semantics is preserved if the three following conditions hold:

$$\begin{array}{ll} (i) & \forall \mathcal{D}_{R,S}, \ \delta_p^{\mathcal{D}_{R,S}} \in \{0,1\} \\ (ii) & \forall \mathcal{D}_{R,S}, \ \sum_{p=1}^m \delta_p^{\mathcal{D}_{R,S}} = 1 \\ (iii) & \forall \mathcal{D}_{R,S}, \ \forall p \in \{1,\ldots,m\}, \ \forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S}, \\ & \Theta_p^S(\vec{x}_S) - \Theta_p^R(\vec{x}_R) - \delta_p^{\mathcal{D}_{R,S}} + \sum_{k=1}^{p-1} \delta_k^{\mathcal{D}_{R,S}}.(K.\vec{n}+K) \ge 0 \end{array}$$

→ Use Farkas lemma to build all non-negative functions over a polyhedron (here, the dependence polyhedra) [Feautrier,92]

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules $\Theta^R, \Theta^S \dots$ of dimension *m*, the program semantics is preserved if the three following conditions hold:

(i)
$$\forall \mathcal{D}_{R,S}, \ \delta_p^{\mathcal{D}_{R,S}} \in \{0,1\}$$

(ii) $\forall \mathcal{D}_{R,S}, \ \sum_{p=1}^m \delta_p^{\mathcal{D}_{R,S}} = 1$
(iii) $\forall \mathcal{D}_{R,S}, \ \forall p \in \{1,\ldots,m\}, \ \forall \langle \vec{x}_R, \vec{x}_S \rangle \in \mathcal{D}_{R,S},$
 $\Theta_p^S(\vec{x}_S) - \Theta_p^R(\vec{x}_R) - \delta_p^{\mathcal{D}_{R,S}} + \sum_{k=1}^{p-1} \delta_k^{\mathcal{D}_{R,S}}.(K.\vec{n}+K) \ge 0$

- → Use Farkas lemma to build all non-negative functions over a polyhedron (here, the dependence polyhedra) [Feautrier,92]
- → Bounded coefficients required [Vasilache,07]

for (i = 0; i <= N; ++i) {
 Blue(i);
 Red(i);
}</pre>

Perfectly aligned fusion

Blue(0);
for (i = 1; i <= N; ++i) {
 Blue(i);
 Red(i-1);
}
Red(N);</pre>

Fusion with shift of 1 Not all instances are fused

for (i = 0; i < P; ++i)
Blue(i);
for (i = P; i <= N; ++i) {
 Blue(i);
 Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
 Red(i-P);</pre>

Fusion with parametric shift of P

Automatic generation of prolog/epilog code


```
for (i = 0; i < P; ++i)
Blue(i);
for (i = P; i <= N; ++i) {
  Blue(i);
  Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
  Red(i-P);</pre>
```

Many other transformations may be required to enable fusion: interchange, skewing, etc.

Affine Constraints for Fusibility

Two statements can be fused if their timestamp can overlap

Definition (Generalized fusibility check)

Given v_R (resp. v_S) the set of vertices of \mathcal{D}_R (resp. \mathcal{D}_S). R and S are fusible at level p if, $\forall k \in \{1 \dots p\}$, there exist two semantics-preserving schedules Θ_k^R and Θ_k^S such that

 $\exists (\vec{x}_1, \vec{x}_2, \vec{x}_3) \in v_R \times v_S \times v_R, \quad \Theta_k^R(\vec{x}_1) \le \Theta_k^S(\vec{x}_2) \le \Theta_k^R(\vec{x}_3)$

- Intersect *L* with fusibility and distribution constraints
- Completeness: if the test fails, then there is no sequence of affine transformations that can implement this fusion structure

Fusion / Distribution / Code Motion

Our strategy:

- Build a set containing all unique fusion / distribution / code motion combinations
- Prune all combinations that do not preserve the semantics

Given two statements R and S, three choices:

- **()** R is *fully before* $S \rightarrow distribution + code motion$
- **2** R is *fully after* $S \rightarrow$ distribution + code motion
- $\textcircled{0} \quad \text{otherwise} \rightarrow \text{fusion}$
- \Rightarrow It corresponds to all total preorders of R and S

Affine Encoding of Total Preorders

Principle:

Model a total preorder with 3 binary variables

 $p_{i,j}: i < j$ $s_{i,j}: i > j$ $e_{i,j}: i = j$

- Enforce totality and mutual exclusion
- ► Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: e_{i,j} = 1 ∧ e_{j,k} = 1 ⇒ e_{i,k} = 1

Affine Encoding of Total Preorders

Principle:

Model a total preorder with 3 binary variables

 $p_{i,j}: i < j$ $s_{i,j}: i > j$ $e_{i,j}: i = j$

- Enforce totality and mutual exclusion
- ► Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: e_{i,j} = 1 ∧ e_{j,k} = 1 ⇒ e_{i,k} = 1
- This set contains one and only one point per distinct total preorder of n elements

Affine Encoding of Total Preorders

Principle:

Model a total preorder with 3 binary variables

 $p_{i,j}: i < j$ $s_{i,j}: i > j$ $e_{i,j}: i = j$

- Enforce totality and mutual exclusion
- ► Enforce all cases of transitivity through affine inequalities connecting some variables. Ex: e_{i,j} = 1 ∧ e_{j,k} = 1 ⇒ e_{i,k} = 1
- This set contains one and only one point per distinct total preorder of n elements
- ► Easy pruning: just bound the sum of some variables e.g., e_{1,2} + e_{4,5} + e_{8,12} < 3</p>
- Automatic removal of supersets of unfusible sets

Convex set of All Unique Total Preorders

$$\mathcal{O} = \left\{ \begin{array}{c} 0 \leq p_{i,j} \leq 1\\ 0 \leq e_{i,j} \leq 1\\ 0 \leq e_{i,j} \leq 1 \end{array} \right\} \quad \text{constrained to:} \quad \mathcal{O} = \left\{ \begin{array}{c} 0 \leq p_{i,j} \leq 1\\ 0 \leq e_{i,j} \leq 1\\ 0 \leq e_{i,j} \leq 1\\ 0 \leq s_{i,j} \leq 1 \end{array} \right\} \quad \text{constrained to:} \quad \mathcal{O} = \left\{ \begin{array}{c} 0 \leq p_{i,j} \leq 1\\ \forall k \in]j,n] & e_{i,j} + e_{i,k} \leq 1 + e_{i,k}\\ \forall k \in]i,j[& p_{i,k} + p_{k,j} \leq 1 + e_{i,k}\\ \forall k \in]j,n] & e_{i,j} + p_{i,k} \leq 1 + p_{i,j}\\ \forall k \in]i,j[& p_{i,k} + p_{k,j} \leq 1 + p_{i,j}\\ \forall k \in]i,j[& e_{i,j} + p_{i,k} \leq 1 + p_{i,k}\\ \forall k \in]i,j[& e_{i,j} + p_{i,k} \leq 1 + p_{i,k}\\ \forall k \in]i,j[& e_{k,j} + p_{i,k} \leq 1 + p_{i,k}\\ \forall k \in]j,n] & e_{i,j} + p_{i,k} \leq 1 + p_{i,k}\\ \forall k \in]j,n] & e_{i,j} + p_{i,k} \leq 1 + p_{i,k}\\ \forall k \in]j,n] & e_{i,j} + p_{i,k} \leq 1 + p_{i,k}\\ \forall k \in]j,n] & e_{i,j} + p_{i,k} \leq 1 + p_{i,k}\\ \forall k \in]j,n] & e_{i,j} + p_{i,j} + p_{i,k} \leq 1 + p_{i,k}\\ \end{array} \right\} \begin{array}{c} \text{Complex}\\ \text{transitivity}\\ \text{on } p \text{ and } p \end{array}$$

- Systematic construction for a given n, needs n^2 Boolean variables
- Enable ILP modeling, enumeration, etc.
- Extension to multidimensional total preorders (i.e., multi-level fusion)

Pruning for Semantics Preservation

Intuition: enumerate the smallest sets of unfusible statements

- Use an intermediate structure to represent sets of statements
 - Graph representation of maybe-unfusible sets (1 node per statement)
 - Enumerate sets from the smallest to the largest
- Leverage dependence graph + properties of fusion / distribution
- Compute properties by intersecting *L* with additional fusion / distribution / code motion affine constraints
- Any individual point can be removed from O

Objectives for Effective Optimization

Objectives:

- Achieve efficient coarse-grain parallelization
- Combine iterative search of profitable transformations for tiling
 - $\rightarrow~$ loop fusion and loop distribution

Tiling Hyperplane method [Bondhugula,08]

- Model-driven approach for automatic parallelization + locality improvement
- Tiling-oriented
- > Poor model-driven heuristic for the selection of loop fusion (not portable)
- Overly relaxed definition of fused statements

Fusibility Restricted to Non-negative Schedules

- Fusibility is not a transitive relation!
 - Example: sequence of matrix-by-vector products x = Ab, y = Bx, z = Cy
 - x = Ab, y = Bx can be fused, also y = Bx, z = Cy
 - They cannot be fused all together

 Determining the Fusibility of a group of statements is reducible to exhibiting compatible pairwise loop permutations

- Extremely easy to compute all possible loop permutations that lead to fuse a pair of statements
- Never check L on more than two statements!

Stronger definition of fusion

Guarantee at most c instances are not fused

$$-c < \Theta_k^R(\vec{0}) - \Theta_k^S(\vec{0}) < c$$

No combinatorial choice

The Optimization Algorithm in a Nutshell

Proceeds from the outer-most loop level to the inner-most:

- Compute the space of valid fusion/distribution/code motion choices
- Select a fusion/distribution/code motion scheme in this space
- Ompute an affine schedule that implements this scheme
 - Static cost model to select the schedule
 - Compound of skewing, shifting, fusion, distribution, interchange, tiling and parallelization (OpenMP)
 - Maximize locality for each set of statements to be fused

Experimental Results

					0			\mathcal{F}^1				
Benchmark	#loops	#stmts	#refs	#dim	#cst	#points	#dim	#cst	#points	Time	perf-Intel	perf-AMD
advect3d	12	4	32	12	58	75	9	43	26	0.82s	1.47×	5.19×
atax	4	4	10	12	58	75	6	25	16	0.06s	3.66×	1.88×
bicg	3	4	10	12	58	75	10	52	26	0.05s	1.75×	1.40×
gemver	7	4	19	12	58	75	6	28	8	0.06s	1.34×	1.33×
ludcmp	9	14	35	182	3003	$\approx 10^{12}$	40	443	8	0.54s	1.98×	1.45×
doitgen	5	3	7	6	22	13	3	10	4	0.08s	15.35×	14.27×
varcovar	7	7	26	42	350	47293	22	193	96	0.09s	7.24×	14.83×
correl	5	6	12	30	215	4683	21	162	176	0.09s	3.00×	3.44×

Table: Search space statistics and performance improvement

- Performance portability: empirical search on the target machine of the optimal fusion structure
- Outperforms state-of-the-art cost models
- Full implementation in the source-to-source polyhedral compiler PoCC

Conclusion

Take-home message:

- \Rightarrow Clear formalization of loop fusion in the polyhedral model
- ⇒ Formal definition of all semantically equivalent programs up to:
 - statement reordering
 - limited affine iteration reordering
 - arbitrary affine iteration reordering
- ⇒ Effective and portable hybrid empirical optimization algorithm (parallelization + data locality)

Future work:

- Develop static cost models for fusion / distribution / code motion
- Use statistical techniques to learn optimization algorithms