
Iterative Optimization in the Polyhedral Model:
Part II, Multidimensional Time

Louis-Noël Pouchet1 Cédric Bastoul1 Albert Cohen1 John Cavazos2

1ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France
2Dept. of Computer & Information Sciences, University of Delaware, USA

June 9, 2008

ACM SIGPLAN 2008 Conference on
Programming Languages Design and Implementation

Tucson, Arizona



Introduction: Situation PLDI’08

Motivation

I New architecture→ New high-performance libraries needed

I New architecture→ New optimization flow needed

I Architecture complexity/diversity increases faster than optimization
progress

I Traditional approaches lose performance portability. . .

We want a portable optimization process!

INRIA Saclay / U. of Delaware 2 / 18



Introduction: The Problem PLDI’08

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2

Code for 
architecture 1

Code for 
architecture N.........

INRIA Saclay / U. of Delaware 3 / 18



Introduction: The Problem PLDI’08

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain 
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2

Code for 
architecture 1

Code for 
architecture N.........

   locality improvement,
= vectorization,
   parallelization, etc...

INRIA Saclay / U. of Delaware 3 / 18



Introduction: The Problem PLDI’08

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization 
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2

Code for 
architecture 1

Code for 
architecture N.........

   parameter tuning,
= phase ordering,
   etc...

INRIA Saclay / U. of Delaware 3 / 18



Introduction: The Problem PLDI’08

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization 
interaction

GCC has 205 passes...

Domain 
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2

Code for 
architecture 1

Code for 
architecture N.........

   pattern recognition, 
= hand-tuned kernel codes, 
   etc...

INRIA Saclay / U. of Delaware 3 / 18



Introduction: The Problem PLDI’08

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization 
interaction

GCC has 205 passes...

Domain 
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2

Code for 
architecture 1

Code for 
architecture N.........

= Auto-tuning libraries

INRIA Saclay / U. of Delaware 3 / 18



Introduction: The Problem PLDI’08

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization 
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2

Code for 
architecture 1

Code for 
architecture N.........

Our approach: 
build an expressive 

set of program versions

In reality, there is a complex interplay between all components

INRIA Saclay / U. of Delaware 3 / 18



Generating Program Versions: Overview PLDI’08

Iterative Optimization Flow

Input
code Optimization 1 Optimization N.........Optimization 2

High-level transformations

CompilerTarget
code

Program version = result of a sequence of loop transformation

INRIA Saclay / U. of Delaware 4 / 18



Generating Program Versions: Overview PLDI’08

Iterative Optimization Flow

Input
code

CompilerTarget
code

Set of 
program 
versions

Program version = result of a sequence of loop transformation

INRIA Saclay / U. of Delaware 4 / 18



Generating Program Versions: Overview PLDI’08

Iterative Optimization Flow

Input
code

CompilerTarget
codeRun

Space 
explorer

Final
code

Set of 
program 
versions

Program version = result of a sequence of loop transformation

INRIA Saclay / U. of Delaware 4 / 18



Generating Program Versions: Properties PLDI’08

Set of Program Versions

What matters is the result of the application of optimizations, not the
optimization sequence

All-in-one approach:
I Legality: semantics is always preserved
I Uniqueness: all versions of the set are distinct
I Expressiveness: a version is the result of an arbitrarily complex

sequence of loop transformation

INRIA Saclay / U. of Delaware 5 / 18



Generating Program Versions: The Representation PLDI’08

The Polyhedral Model in a Nutshell

I Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

I Granularity: each executed instance of each statement

Θ :



|~p

|~p


for (i = ...; i < ...; ++i)

S1(i);

for (i = ...; i < ...; ++i)

S2(i);

I First row→ all outer-most loops

INRIA Saclay / U. of Delaware 6 / 18



Generating Program Versions: The Representation PLDI’08

The Polyhedral Model in a Nutshell

I Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

I Granularity: each executed instance of each statement

Θ :



|~p

|~p


for (i = ...; i < ...; ++i)
for (j = ...; j < ...; ++j)
S1(i,j);

for (i = ...; i < ...; ++i)
for (j = ...; j < ...; ++j)
S2(i,j);

I Second row→ all next outer-most loops

INRIA Saclay / U. of Delaware 6 / 18



Generating Program Versions: The Representation PLDI’08

The Polyhedral Model in a Nutshell

I Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

I Granularity: each executed instance of each statement

Θ :



|~p |~p

|~p


for (j = ...; j < ...; ++j)
S2(...,j);
for (i = ...; i < ...; ++i)
for (j = ...; j < ...; ++j)
S1(i,j);
S2(i,j);

I Minor change→ significant impact

INRIA Saclay / U. of Delaware 6 / 18



Generating Program Versions: The Representation PLDI’08

The Polyhedral Model in a Nutshell

I Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

I Granularity: each executed instance of each statement

Θ :



|~p

~ı

| |

~p

|

c

~p

|~p

~ı

| |

~p

|

c

~p


for (j = ...; j < ...; ++j)
S2(...,j);
for (i = ...; i < ...; ++i)
for (j = ...; j < ...; ++j)
S1(i,j);
S2(i,j);

Transformation Description

|

~ı
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

~p fusion Fuses two loops, a.k.a. jamming
distribution Splits a single loop nest into many, a.k.a. fission or splitting

c peeling Extracts one iteration of a given loop
shifting Allows to reorder loops

INRIA Saclay / U. of Delaware 6 / 18



Generating Program Versions: Contributions PLDI’08

Previous Contributions

Previous work (CGO’07, Part I, One-Dimensional Time):
I Focus on Static Control Parts (SCoP)

I SCoP: Consecutive set of statements with affine control flow

I Complete framework for one-dimensional schedules

I Efficient search space construction, efficient traversal

I Drawbacks in applicability

I Drawbacks in expressiveness

We previously solved a simpler problem...

INRIA Saclay / U. of Delaware 7 / 18



Generating Program Versions: Contributions PLDI’08

New Contributions

Dealing with multidimensional schedules:
I Applicability on any Static Control Parts

I Increased expressiveness

I Design of scalable traversal methods
I Dedicated genetic algorithm

I Dedicated heuristic

INRIA Saclay / U. of Delaware 8 / 18



Generating Program Versions: Looking Into Details PLDI’08

Deeper In The Method

Multidimensional schedules: high expressiveness, complex problem

Set of 
program 
versions

Tested
versions

- combinatorial expression of legality

- heuristic needed: greedy selection of 
  dependences + ordering
  (see Some Efficient Solutions to the Affine Scheduling 

    Problem, Part II: Multidimensional Time, Feautrier, 1992)

- Code generation friendly bounds on the 
  schedule coefficients

- multiple polytopes to traverse

- large and expressive spaces 
  (up to 10   )

- partial enumeration (mandatory):
  completion mechanism+ subspace partitioning

- shape the space: 
  optimized polytope projection (required) 
  + constrained dynamic scan

Space
construction

Space
traversal

50

Distinct
schedules

INRIA Saclay / U. of Delaware 9 / 18



Traversing the Search Space: Extensive Analysis PLDI’08

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10  20  30  40  50  60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
tmp[i][j] = 0.0;
for (k = 0; k < M; k++)
tmp[i][j] += block[i][k] *

cos1[j][k];
}

for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
sum2 = 0.0;
for (k = 0; k < M; k++)
sum2 += cos1[i][k] * tmp[k][j];
block[i][j] = ROUND(sum2);

}

I Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
I Search space analyzed: 66×19683 = 1.29×106 different legal

program versions

INRIA Saclay / U. of Delaware 10 / 18



Traversing the Search Space: Extensive Analysis PLDI’08

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10  20  30  40  50  60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst

Θ :




I Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
I Search space analyzed: 66×19683 = 1.29×106 different legal

program versions

INRIA Saclay / U. of Delaware 10 / 18



Traversing the Search Space: Extensive Analysis PLDI’08

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10  20  30  40  50  60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst
I best
I average
I worst

I Take one specific value for the first row
I Try the 19863 possible values for the second row

I Very low proportion of best points: < 0.02%

INRIA Saclay / U. of Delaware 10 / 18



Traversing the Search Space: Extensive Analysis PLDI’08

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10  20  30  40  50  60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000
Point index of the second schedule dimension, first one fixed

Performance distribution (sorted) - 8x8 DCT

I Take one specific value for the first row
I Try the 19863 possible values for the second row
I Very low proportion of best points: < 0.02%

INRIA Saclay / U. of Delaware 10 / 18



Traversing the Search Space: Extensive Analysis PLDI’08

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10  20  30  40  50  60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst Large performance variation

I Performance variation is large for good values of the first row

I It is usually reduced for bad values of the first row

INRIA Saclay / U. of Delaware 10 / 18



Traversing the Search Space: Extensive Analysis PLDI’08

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10  20  30  40  50  60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst Small performance variation

I Performance variation is large for good values of the first row
I It is usually reduced for bad values of the first row

INRIA Saclay / U. of Delaware 10 / 18



Traversing the Search Space: Extensive Analysis PLDI’08

Scanning The Space of Program Versions

The search space:
I Performance variation indicates to partition the space

I Non-uniform distribution of performance

I No clear analytical property of the optimization function

→ Build dedicated heuristic and genetic operators aware of these static
and dynamic characteristics

INRIA Saclay / U. of Delaware 11 / 18



Traversing the Search Space: Heuristic PLDI’08

Dedicated Heuristic

I Multidimensional version of the heuristic presented in Part I
I Discover 80%+ of the performance improvement in less than 50 runs for

small kernels

I Feedback directed, yet deterministic
I Leverages our knowledge about performance distribution
I Relies on the completion algorithm to instantiate the full version

I But unsatisfactory results for larger programs...

INRIA Saclay / U. of Delaware 12 / 18



Traversing the Search Space: Genetic Operators PLDI’08

Dedicated GA Operators

Mutation
I Performance distribution is not uniform
I Tailored to focus on the most promising subspaces
I Preserves legality (closed under affine constraints)

Cross-over
I Row cross-over( )

+
( )

=
( )

I Column cross-over( )
+

( )
=

( )

I Both preserve legality

INRIA Saclay / U. of Delaware 13 / 18



Traversing the Search Space: Genetic Operators PLDI’08

Dedicated GA Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50  100  150  200  250  300  350  400  450  500

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Number of runs

GA versus Random - 8x8 DCT

Random
GA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Point index of the second schedule dimension, first one fixed

Performance distribution (sorted) - 8x8 DCT

I GA converges towards the maximal space speedup

INRIA Saclay / U. of Delaware 14 / 18



Traversing the Search Space: Experimental Results PLDI’08

Experimental Results [1/3]

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

dct
edge

iir fir lm
sfir

m
atm

ult

latnrm
lpc ludcm

p

radar
average

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Performance improvement for AMD Athlon64

Heuristic
GA

baseline: gcc -O3 -ftree-vectorize -msse2
INRIA Saclay / U. of Delaware 15 / 18



Traversing the Search Space: Experimental Results PLDI’08

Experimental Results [2/3]

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

dct
edge

iir fir lm
sfir

m
atm

ult

latnrm
lpc ludcm

p

radar
average

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Performance improvement for ST231

Heuristic
GA

baseline: st200cc -O3 -OPT:alias=restrict -mauto-prefetch
INRIA Saclay / U. of Delaware 16 / 18



Traversing the Search Space: Experimental Results PLDI’08

Experimental Results [3/3]

Looking into details (hardware counters+compilation trace):
I Better activity of the processing units

I Best version may vary significantly for different architectures

I Different source code may trigger different compiler optimizations

→ Our method is a portable optimization process

INRIA Saclay / U. of Delaware 17 / 18



Conclusion: PLDI’08

Conclusion

I Scalable algorithms (GA and heuristic) to traverse the space, with
dedicated pruning and search strategies

I Part I + Part II: applicability observed on various compilers (GCC, ICC,
Open64) and architectures (x86_32, x86_64, MIPS32, ST231 VLIW)

I Tunable framework: open to other search space construction
strategies

I Take-home message:
I All-in-one: legality, uniqueness, expressiveness
I Generic and portable approach for high-level transformation selection

INRIA Saclay / U. of Delaware 18 / 18



Conclusion: PLDI’08

Tunuing: Distribute and Tile

I Focus on fuse/distribute legality affine constraints (presented algorithm
with additional constraints)

I Use PLuTo as a tiling / parallel backend

I Driven by program versions

I Excellent performance gains (research report coming soon...)

INRIA Saclay / U. of Delaware 19 / 18


	Introduction
	Situation
	The Problem

	Generating Program Versions
	Overview
	Properties
	The Representation
	Contributions
	Looking Into Details

	Traversing the Search Space
	Extensive Analysis
	Heuristic
	Genetic Operators
	Experimental Results

	Conclusion

