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Introduction: Situation PLDI’08

Motivation

I New architecture→ New high-performance libraries needed

I New architecture→ New optimization flow needed

I Architecture complexity/diversity increases faster than optimization
progress

I Traditional approaches lose performance portability. . .

We want a portable optimization process!
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Introduction: The Problem PLDI’08

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...
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knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2
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architecture 1

Code for 
architecture N.........
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Introduction: The Problem PLDI’08

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization 
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2

Code for 
architecture 1

Code for 
architecture N.........

Our approach: 
build an expressive 

set of program versions

In reality, there is a complex interplay between all components
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Generating Program Versions: Overview PLDI’08

Iterative Optimization Flow

Input
code Optimization 1 Optimization N.........Optimization 2

High-level transformations

CompilerTarget
code

Program version = result of a sequence of loop transformation
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Generating Program Versions: Overview PLDI’08

Iterative Optimization Flow

Input
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CompilerTarget
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Generating Program Versions: Properties PLDI’08

Set of Program Versions

What matters is the result of the application of optimizations, not the
optimization sequence

All-in-one approach:
I Legality: semantics is always preserved
I Uniqueness: all versions of the set are distinct
I Expressiveness: a version is the result of an arbitrarily complex

sequence of loop transformation
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Generating Program Versions: The Representation PLDI’08

The Polyhedral Model in a Nutshell

I Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

I Granularity: each executed instance of each statement

Θ :



|~p

|~p


for (i = ...; i < ...; ++i)

S1(i);

for (i = ...; i < ...; ++i)

S2(i);

I First row→ all outer-most loops
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The Polyhedral Model in a Nutshell

I Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

I Granularity: each executed instance of each statement

Θ :
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for (j = ...; j < ...; ++j)
S2(...,j);
for (i = ...; i < ...; ++i)
for (j = ...; j < ...; ++j)
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I Minor change→ significant impact
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Generating Program Versions: The Representation PLDI’08

The Polyhedral Model in a Nutshell

I Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

I Granularity: each executed instance of each statement

Θ :



|~p

~ı

| |

~p

|
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~p

|~p

~ı

| |

~p

|

c

~p


for (j = ...; j < ...; ++j)
S2(...,j);
for (i = ...; i < ...; ++i)
for (j = ...; j < ...; ++j)
S1(i,j);
S2(i,j);

Transformation Description

|

~ı
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

~p fusion Fuses two loops, a.k.a. jamming
distribution Splits a single loop nest into many, a.k.a. fission or splitting

c peeling Extracts one iteration of a given loop
shifting Allows to reorder loops
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Generating Program Versions: Contributions PLDI’08

Previous Contributions

Previous work (CGO’07, Part I, One-Dimensional Time):
I Focus on Static Control Parts (SCoP)

I SCoP: Consecutive set of statements with affine control flow

I Complete framework for one-dimensional schedules

I Efficient search space construction, efficient traversal

I Drawbacks in applicability

I Drawbacks in expressiveness

We previously solved a simpler problem...
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Generating Program Versions: Contributions PLDI’08

New Contributions

Dealing with multidimensional schedules:
I Applicability on any Static Control Parts

I Increased expressiveness

I Design of scalable traversal methods
I Dedicated genetic algorithm

I Dedicated heuristic
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Generating Program Versions: Looking Into Details PLDI’08

Deeper In The Method

Multidimensional schedules: high expressiveness, complex problem

Set of 
program 
versions

Tested
versions

- combinatorial expression of legality

- heuristic needed: greedy selection of 
  dependences + ordering
  (see Some Efficient Solutions to the Affine Scheduling 

    Problem, Part II: Multidimensional Time, Feautrier, 1992)

- Code generation friendly bounds on the 
  schedule coefficients

- multiple polytopes to traverse

- large and expressive spaces 
  (up to 10   )

- partial enumeration (mandatory):
  completion mechanism+ subspace partitioning

- shape the space: 
  optimized polytope projection (required) 
  + constrained dynamic scan

Space
construction

Space
traversal

50

Distinct
schedules
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Traversing the Search Space: Extensive Analysis PLDI’08

Observations on the Performance Distribution
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Performance distribution - 8x8 DCT

Best
Average

Worst for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
tmp[i][j] = 0.0;
for (k = 0; k < M; k++)
tmp[i][j] += block[i][k] *

cos1[j][k];
}

for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
sum2 = 0.0;
for (k = 0; k < M; k++)
sum2 += cos1[i][k] * tmp[k][j];
block[i][j] = ROUND(sum2);

}

I Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
I Search space analyzed: 66×19683 = 1.29×106 different legal

program versions
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Traversing the Search Space: Extensive Analysis PLDI’08
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I Take one specific value for the first row
I Try the 19863 possible values for the second row

I Very low proportion of best points: < 0.02%
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Traversing the Search Space: Extensive Analysis PLDI’08
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I Performance variation is large for good values of the first row

I It is usually reduced for bad values of the first row
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Traversing the Search Space: Extensive Analysis PLDI’08
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Traversing the Search Space: Extensive Analysis PLDI’08

Scanning The Space of Program Versions

The search space:
I Performance variation indicates to partition the space

I Non-uniform distribution of performance

I No clear analytical property of the optimization function

→ Build dedicated heuristic and genetic operators aware of these static
and dynamic characteristics
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Traversing the Search Space: Heuristic PLDI’08

Dedicated Heuristic

I Multidimensional version of the heuristic presented in Part I
I Discover 80%+ of the performance improvement in less than 50 runs for

small kernels

I Feedback directed, yet deterministic
I Leverages our knowledge about performance distribution
I Relies on the completion algorithm to instantiate the full version

I But unsatisfactory results for larger programs...
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Traversing the Search Space: Genetic Operators PLDI’08

Dedicated GA Operators

Mutation
I Performance distribution is not uniform
I Tailored to focus on the most promising subspaces
I Preserves legality (closed under affine constraints)

Cross-over
I Row cross-over( )

+
( )

=
( )

I Column cross-over( )
+

( )
=

( )

I Both preserve legality
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Traversing the Search Space: Genetic Operators PLDI’08

Dedicated GA Results
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I GA converges towards the maximal space speedup
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Traversing the Search Space: Experimental Results PLDI’08

Experimental Results [1/3]
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Traversing the Search Space: Experimental Results PLDI’08

Experimental Results [2/3]
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Traversing the Search Space: Experimental Results PLDI’08

Experimental Results [3/3]

Looking into details (hardware counters+compilation trace):
I Better activity of the processing units

I Best version may vary significantly for different architectures

I Different source code may trigger different compiler optimizations

→ Our method is a portable optimization process
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Conclusion: PLDI’08

Conclusion

I Scalable algorithms (GA and heuristic) to traverse the space, with
dedicated pruning and search strategies

I Part I + Part II: applicability observed on various compilers (GCC, ICC,
Open64) and architectures (x86_32, x86_64, MIPS32, ST231 VLIW)

I Tunable framework: open to other search space construction
strategies

I Take-home message:
I All-in-one: legality, uniqueness, expressiveness
I Generic and portable approach for high-level transformation selection
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Conclusion: PLDI’08

Tunuing: Distribute and Tile

I Focus on fuse/distribute legality affine constraints (presented algorithm
with additional constraints)

I Use PLuTo as a tiling / parallel backend

I Driven by program versions

I Excellent performance gains (research report coming soon...)
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