
Dynamic Trace-Based Analysis of
Vectorization Potential of Applications

Justin Holewinski Ragavendar Ramamurthi Mahesh Ravishankar Naznin Fauzia
Louis-Noël Pouchet Atanas Rountev P. Sadayappan

Department of Computer Science and Engineering
The Ohio State University

{holewins,ramamurr,ravishan,fauzia,pouchet,rountev,saday}@cse.ohio-state.edu

Abstract
Recent hardware trends with GPUs and the increasing vector
lengths of SSE-like ISA extensions for multicore CPUs imply that
effective exploitation of SIMD parallelism is critical for achieving
high performance on emerging and future architectures. A vast ma-
jority of existing applications were developed without any attention
by their developers towards effective vectorizability of the codes.
While developers of production compilers such as GNU gcc, In-
tel icc, PGI pgcc, and IBM xlc have invested considerable effort
and made significant advances in enhancing automatic vectoriza-
tion capabilities, these compilers still cannot effectively vectorize
many existing scientific and engineering codes. It is therefore of
considerable interest to analyze existing applications to assess the
inherent latent potential for SIMD parallelism, exploitable through
further compiler advances and/or via manual code changes.

In this paper we develop an approach to infer a program’s SIMD
parallelization potential by analyzing the dynamic data-dependence
graph derived from a sequential execution trace. By considering
only the observed run-time data dependences for the trace, and by
relaxing the execution order of operations to allow any dependence-
preserving reordering, we can detect potential SIMD parallelism
that may otherwise be missed by more conservative compile-time
analyses. We show that for several benchmarks our tool discovers
regions of code within computationally-intensive loops that exhibit
high potential for SIMD parallelism but are not vectorized by state-
of-the-art compilers. We present several case studies of the use of
the tool, both in identifying opportunities to enhance the transfor-
mation capabilities of vectorizing compilers, as well as in point-
ing to code regions to manually modify in order to enable auto-
vectorization and performance improvement by existing compilers.

Categories and Subject Descriptors C.4 [Performance of sys-
tems]: Measurement techniques, Performance attributes; D.1.3
[Programming techniques]: Concurrent programming—Parallel
programming; D.3.4 [Programming Languages]: Processors—
Compilers, Optimization

General Terms Performance, Measurement, Algorithms

Keywords Performance analysis, dynamic analysis, vectorization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/04. . . $10.00

1. Introduction
The SIMD vector units in modern multi-processors achieve very
high performance by applying the same instruction to multiple data
elements at once. As newer generations of multi-core processors
and GPUs continue to extend the width of vector processors, the
exploitation of vector instructions is of increasing importance. Un-
fortunately, many programs are written using structures, pointers,
and other non-array constructs that prevent modern compilers from
performing the analyses and transformations that are required to
fully exploit these vector-processing resources. Even for programs
that use arrays, vectorization potential that exists in the computa-
tion is often missed by compilers. Some typical reasons for this are
(1) conservative dependence analysis, (2) conditional behavior for
handling of boundary cases, which precludes the vectorization of
the common case, and (3) data layouts that do not allow the con-
tiguous memory accesses needed for efficient vector processing.

Given the sustained trend of increasingly-wide vector units, one
key question is whether existing programs can take advantage of
these hardware capabilities. The main contribution of our work is
an automatic approach to characterize the inherent vectorizability
potential of existing applications by analyzing information about
run-time dependences and memory access patterns. The approach
instruments the program to monitor and record instructions and
their data accesses, and then analyzes the resulting trace to con-
struct the dynamic dependence graph for the observed execution.
Next, the graph is used to partition the dynamic instances of in-
structions into sets that are both independent and access the mem-
ory with a fixed stride. These sets represent instruction instances
that can potentially utilize vector resources effectively.

Technical Challenges The identification of potentially vector-
izable operations requires the discovery of fine-grained concur-
rency among operations that access contiguously located data el-
ements. Although there has been considerable prior work (e.g.,
[1, 2, 7, 11, 12, 14, 16, 17, 19, 21, 23, 25, 28, 29, 33, 35, 39]) on us-
ing dynamic analysis for characterizing parallelism in applications,
previously developed approaches have fundamental limitations for
discovering potentially vectorizable operations. Existing work on
using dynamic analysis to characterize potential parallelism in se-
quential programs falls broadly under two general categories: (1)
generation of a parallelism profile and critical-path analysis of the
directed acyclic graph (explicitly constructed or implicitly mod-
eled) representing the run-time dependences of the computation,
and (2) loop-level or region-level characterization of parallelism,
where computations within the loop/region are constrained to ex-
ecute in the original sequential order. An advantage of the former
approach is that the generated parallelism profile implicitly mod-
els all possible dependence-preserving reordering of the operations

since it performs critical-path analysis of the computation DAG.
However, as discussed in the next section, a disadvantage is that in-
dependence and potential concurrency at the level of specific state-
ments or expressions in a loop cannot be deduced. The significant
advantage of the second approach is that such specific loop/region
level concurrency information is extracted. But unlike the former
type of analysis, this characterization may be constrained by the
order of operations within the modeled region/loop that is imposed
by the original program. Thus, the potential for increased paral-
lelism via dependence-preserving reordering of operations is left
unexplored. Finally, none of the previous approaches to dynamic
analysis for characterizing parallelism consider the patterns of run-
time memory accesses, which are critical in the characterization of
vectorization potential.

Approach We develop a new approach to analysis of the dynamic
data dependence graph to characterize maximal concurrency per
statement/operator under all possible dependence-preserving re-
orderings of the computation, with further analysis of concurrent
operations accessing contiguous or uniformly strided data. The
analysis is useful in a number of ways:

1. Characterization of code bases: An automated tool that can be
run through large existing code bases to characterize the inher-
ent vectorization potential of those programs can be valuable
to multiple groups. First, ISVs (Independent Software Vendors)
with large legacy software systems can assess which portions
of the code may need complete algorithmic rewrite (if the tool
shows no vectorizability) versus code changes without algo-
rithm change (if the tool shows high vectorizability potential).
The quantitative information on average vector lengths can be
useful in assessing the potential benefit of converting the code
to use GPUs (where much higher degree of SIMD parallelism is
needed than with short-vector SIMD ISAs). Second, CPU/GPU
designers can assess the potential future benefits of widened
SIMD structures for important market segments by characteriz-
ing the inherent unexploited fine-grained parallelism available
in widely-used software in different domains. In order to illus-
trate this use of the tool, we provide a characterization of the
floating-point benchmarks of the SPEC 2006 benchmark suite.

2. Aid in performance optimization: Many existing applications
contain hot loops with significant vectorization potential. While
sometimes simple scanning of time-consuming loops by an ap-
plication developer may reveal the potential for vectorization,
this is non-trivial in many real codes due to multiple levels of
function calls that must be analyzed. The automatic identifica-
tion of code portions that exhibit inherent vectorizability poten-
tial can aid an applications expert who can then manually trans-
form the code to enhance its vectorizability by compilers. We
illustrate this use of the approach through several case studies.

3. Aid to compiler writers: Identification of potential vectorization
(for existing programs) that is not exploited by current vectoriz-
ing compilers can lead to new insights for compiler writers, and
eventually to new static analyses and transformations for state-
of-the-art compiler technology. Further development (beyond
the scope of this paper) to characterize patterns of statically-
analyzable vectorization opportunities (i.e., no data-dependent
conditions) missed by a vectorizing compiler can be helpful to
compiler writers in enhancing auto-vectorization capabilities.
We provide an illustration of this use case through a case study.

2. Background and Overview
The proposed approach is based on the following key observation:
to identify and quantify the vectorization potential of a given pro-
gram, the dynamic analysis needs to uncover independent opera-

1 for(i = 1; i < N; ++i) {
2 A[i] = 2.0 * A[i-1]; // S1
3 }
4 for(i = 0; i < N; ++i) {
5 for(j = 1; j < N; ++j) {
6 B[j][i] = B[j-1][i] * A[i]; // S2
7 }
8 }

Listing 1: Example 1 for dynamic parallelism analysis.

B[1,1]

B[2,1]

B[3,1]

A[1]

A[2]

B[1,2]

B[2,2]

B[1,1]

B[2,1]

B[1,2]

B[2,2]

Timestamps

t=1

t=2

t=3

t=2(N-1)

(a) (b)

Figure 1: Dependences for Example 1.

tions that could be executed concurrently. Furthermore, these inde-
pendent operations should exhibit a pattern of contiguous access
to memory locations. The rest of this section provides high-level
overview and examples to illustrate these two key issues. The spe-
cific details of the approach are elaborated later in the paper.

2.1 Finding Independent Operations
Prior work on using dynamic analysis to characterize potential
parallelism in sequential programs falls broadly under one of two
general categories. One approach, exemplified by the early work of
Kumar [11], performs timestamp-based analysis of instrumented
statement-level execution of the sequential program, using shadow
variables to maintain last-modify times for each variable. Each run-
time instance of a statement is associated with a timestamp that is
one greater than the largest of the last-modify times of all input
operands of the statement. A histogram of the number of operations
at each time value provides a fine-grained parallelism profile of
the computation, and the maximal timestamp represents the critical
path length for the entire computation.

In contrast to the above fine-grained approach, an alternate tech-
nique by Larus [14] performs analysis of loop-level parallelism at
different levels of nested loops. Loop-level parallelism is measured
by forcing a sequential order of execution of statements within each
iteration of a loop being characterized, so that the only available
concurrency is across different iterations of that loop.

To illustrate Kumar’s approach, consider the code example in
Listing 1. For explanation purposes, this example is extremely
simple and is used only to highlight the parallelism characterization

1 for(i = 1; i < N; ++i) {
2 A[i] = 2.0 * B[i-1]; // S1
3 B[i] = 0.5 * C[i]; // S2
4 }

Listing 2: Example 2 for dynamic parallelism analysis.

from prior work. The run-time instances of the first statement form
a chain of dependences of length N − 1. The second statement
has N(N − 1) run-time instances, with dependences as shown in
the figure. The run-time statement instances and their dependences
define a dynamic data-dependence graph (DDG), as shown in
Fig. 1(a). The top row represents instances of statement S1 and
the other nodes represent instances of statement S2. For ease of
comprehension, a node may be labeled with the array element that
is written by that node.

The analysis of potential parallelism computes a timestamp for
each DDG node, representing the earliest time this node could be
executed; these timestamps are also shown in Fig. 1(a). The largest
timestamp, compared to the number of nodes, provides a charac-
terization of the inherent fine-grain parallelism in the program; this
largest timestamp gives the length of the critical path in the DDG.
In essence, the timestamps implicitly model the best parallel ex-
ecution of all possible dependence-preserving reorderings of the
operations performed by the program. In the example from above,
the critical path has length 2(N − 1), and the overall parallelism is
characterized by (N+1)/2, which is the ratio between the number
(N + 1)(N − 1) of DDG nodes and the length of the critical path.

All nodes with the same timestamp are independent and can be
executed in parallel. However, this method for partitioning of DDG
nodes cannot be used to uncover the groups of independent opera-
tions needed to characterize the vectorizability of the computation.
Consider the example in Listing 1. Statement S2 has large vector-
ization potential: for a particular fixed value of j, all N run-time
statement instances for various values of i are independent (and, as
discussed later, they exhibit a pattern of contiguous access). How-
ever, if one were to consider the instances of S2 that are partitioned
based on the same timestamp in Fig. 1(a), those partitions uncover
less parallelism for S2 than what is truly available in the DDG:
rather than having N − 1 partitions of size N , we have a total of
2(N − 1) partitions. Further, the operations in each partition do
not access contiguous memory locations, i.e., are not potentially
vectorizable.

As described later, we propose a new form of timestamp com-
putation and critical path analysis that focuses on all instances of a
specific statement (e.g., S2 in this example). This analysis consid-
ers whether two instances of the statement of interest are connected
by a path in the DDG (with any instances of other statements along
the path). If such a path exists, our algorithm guarantees that the
timestamp of the first node is smaller than the timestamp of the
second node (i.e., the two nodes will be placed in different parti-
tions). Furthermore, each node is guaranteed to have the earliest
possible timestamp. For the DDG from Fig. 1(a), our timestamps
are shown in Fig. 1(b). Note that all instances of S2 for j=1 are
now given timestamp 1, because they do not depend on any other
instances of S2. In general, all instances of S2 for a particular value
of j have the same timestamp and form a partition. As described
later, these partitions (containing independent operations) are then
subjected to an analysis for contiguous memory access patterns.

The key problem in this example is that the parallelism analy-
sis interleaves the instances of S1 and S2. An alternative approach
could be to separately consider the loops in Listing 1, and perform
loop-level parallelism analysis using an approach based on work by
Larus [14]. This technique tracks inter-iteration dependences and

(a)

(b)(c)

A[1] A[2] A[3] A[4] A[5]

B[1] B[2] B[3] B[4] B[5]

A[1]

A[2]

A[3]

A[4]

A[5]

B[1]

B[2]

B[3]

B[4]

B[5]

B[1] B[2] B[3] B[4] B[5]

A[1] A[2] A[3] A[4] A[5]

Figure 2: Dependences for Example 2.

computes timestamps for all statement instances in all loop itera-
tions. Inside a loop iteration, the statement instances are executed
sequentially. When a statement instance s in loop iteration i de-
pends on a statement instance s′ in another iteration, the execution
of i stops upon reaching s, until s′ is executed. With this approach,
the second loop in Listing 1 will be considered independently, and
the analysis will uncover that any two iterations of the i loop at line
4 are independent. In essence, this will create the parallel partitions
shown in Fig. 1(b).

However, this approach for uncovering loop-level parallelism is
also inappropriate for our target goal to discover independent oper-
ations that can be vectorized. The code in Listing 2 illustrates this
point. There is a loop-carried dependence from S2 to S1, as illus-
trated in Fig. 2(a). As a result, the loop-level parallelism identified
by the analysis would be of the form shown in Fig. 2(b). The result-
ing partitions do not expose the high vectorization potential of S1
(or S2). However, it is easy to see that the computation can be split
into two separate loops: first, a loop that iterates over all instances
of S2, followed by another loop that iterates over all instances of
S1. The loop-level parallelism analysis can easily uncover that each
loop (in this hypothetical transformed version) is fully parallel; in
fact, each loop is fully vectorizable. However, since the unit of anal-
ysis is the original loop code, the potential for parallelism/vector-
ization is not discovered. Our approach, when analyzing the DDG
in Fig. 2(a), will first consider all instances of S1, will discover that
they are all independent, and will form a partition containing all of
them. Similarly, all instances of S2 will be put in a single partition.
The result of our technique is illustrated in Fig. 2(c). Comparing
with Fig. 2(b), it is clear that we uncover more parallelism, which
in turn leads to finding more potential vectorization.

To summarize, this technique characterizes the parallelism of
an entire loop. However, this characterization is constrained by
the order of operations within the loop body that is imposed by
the sequential execution of the original program. Thus the poten-
tial for increased parallelism via dependence-preserving reordering
of operations may be missed. Our approach considers all possible
dependence-preserving reorderings of all run-time instances of a
specific statement of interest, which exposes the necessary paral-
lelism for the purposes of vectorization.

2.2 Finding Operations that Access Contiguously Located
Data Elements

Consider again Example 1 from above, and specifically the times-
tamps shown in Fig. 1(b). Each timestamp defines a partition con-
taining N instances of S2 that are independent of each other. Fur-
thermore, all these instances access contiguous regions of memory.

For a fixed j and varying i, the triples of memory addresses cor-
responding to the triple of expressions (B[j][i], B[j− 1][i], A[i])
exhibit a pattern of contiguous memory access with the row-major
data layout used for arrays in C. This makes the statement instances
within each partition viable candidates for vectorization.

We propose the first analysis to analyze contiguous memory
accesses of independent operations in order to characterize vec-
torization potential. As described later, the analysis considers all
statement instances within a single parallel partition, and defines
subpartitions such that within a subpartition, the tuples of mem-
ory accesses follow the same pattern of contiguous memory ac-
cesses. For example, tuple (B[j][i], B[j− 1][i], A[i]) for a fixed
j and varying i will produce tuples of run-time addresses of the
form (c1 + i × d, c2 + i × d, c3 + i × d). Here d is the size an
array element and c1,2,3 are base addresses. These tuples represent
accesses to contiguous memory, and together form one single sub-
partition (which covers the entire parallel partition defined by this
particular value of j). One can imagine all statement instances in
the subpartition being combined into a single vector operation [c1 :
c1+(N−1)×d] = [c2 : c2+(N−1)×d]⊕[c3 : c3+(N−1)×d]
where ⊕ represents a vector operation on vectors of size N . Our
analysis computes such subpartitions and uses them to characterize
the vectorization potential of the analyzed statement.

3. Analyzing Dynamic Data-Dependence Graphs
for Vectorization Potential

DDG Generation Generating a dynamic data-dependence graph
(DDG) requires an execution trace of the program (or a con-
tiguous subtrace), containing run-time instances of static instruc-
tions, including any relevant run-time data such as memory ad-
dresses for loads/stores, procedure calls, etc. Our implementation
uses LLVM [15] to instrument arbitrary C/C++/Fortran code. The
Clang [3] front-end is used to compile C/C++ code into LLVM
IR, and the DragonEgg [4] GCC plugin is used to compile Fortran
77/90 code into LLVM IR. The LLVM IR is instrumented to gener-
ate a run-time trace to disk, and the instrumented code is compiled
to native code.

Once an execution trace is available, the construction of the
DDG creates a graph node for each dynamic instruction instance.
Edges are created between pairs of dependent nodes (i.e., one in-
struction instance consumes a value produced by the other). In
our implementation each graph node represents a dynamic instance
of an LLVM IR instruction, and dependences are tracked through
memory and LLVM virtual registers. To construct the graph edges,
bookkeeping information for each memory/register remembers the
graph node that performed the last write to this location. Note that
the graph represents only flow dependences. Anti-dependences and
output dependences are not considered, since they do not repre-
sent essential features of the computation, and could potentially
be eliminated via transformations such as scalar/array expansion.
Control dependences are also not considered, since our goal is to
focus on the data flow and the optimization potential implied by
it. It is straightforward to augment the DDG with additional cate-
gories of dependences, without having to modify in any way the
subsequent graph analyses (described below).

One interesting case that arises in practice is due to reductions,
for example, because of a statement s+=a[i] in an i-loop. The
instances of such a statement would form a chain of dependences in
the DDG. However, sometimes it is possible to vectorize reductions
(e.g., by updating a vector sv instead of a scalar s). Our analysis
currently does not consider the potential for such vectorization. A
possible enhancement is to identify and remove dependence edges
that are due to updates of reduction variables; detection of such

Algorithm 1: Timestamp computation.
Input: id: static instruction ID, graph: DDG

1 foreach Node node in TopologicalOrder(graph) do
2 TS← 0;
3 foreach pred in Predecessors(graph, node) do
4 TS← Max(TS, GetTimeStamp(pred));
5 end
6 if GetInstructionID(node) == id then
7 TS← TS + 1;
8 end
9 AssignTimeStamp(node, TS);

10 end

dependences has already been used by prior work [22] in a different
context.

Candidate Instructions The execution trace may contain many
instructions that should not be analyzed for SIMD parallelism,
such as integer operations for loop book-keeping. Hence, the anal-
ysis is restricted to instructions that involve floating-point addition,
subtraction, multiplication, and division. These instructions corre-
spond to the set of floating-point instructions that have vector coun-
terparts in SIMD architectures. They are also of particular impor-
tance for optimization of certain computationally-intensive appli-
cations (as exemplified by the SPEC floating-point benchmarks).
Of course, all other instructions that participate in dependences are
taken into account by the analysis, but their potential SIMD paral-
lelism is not characterized.

3.1 Generation of Parallel Partitions
To benefit from SIMD parallelism, an instruction must exhibit
fine-grained parallelism. For a static instruction s that is being
characterized, the potential parallelism of {s1, s2, . . .} (where sk
is the k-th run-time instance of s) can be uncovered by observing
the data dependences from any si to any sj for j > i. This is
equivalent to identifying whether the DDG contains a path from
the node for si to the node for sj . Such a path exists if and only if
the data produced by si is directly or indirectly used by sj (i.e., si
and sj cannot be executed concurrently).

Each candidate static instruction s (as described earlier) is an-
alyzed independently, using Algorithm 1. A unique ID for s is as-
signed at instrumentation time. A topological sort traversal of the
DDG is performed and a timestamp is assigned to each node. For
each visited node, the largest predecessor timestamp is determined.
If the node is an instance of the static instruction s being analyzed,
the timestamp is incremented by one; otherwise, it is not altered.

The generated timestamps are then used to construct parti-
tions within the graph, by putting all instances of s with the same
timestamp into the same partition. An example illustrating this ap-
proach was shown earlier in Section 2. Consider the DDG shown
in Fig. 1(a). The nodes at the top of the DDG represent the run-
time instances of S1, while the rest of the DDG nodes are instances
of S2. Suppose we wanted to evaluate the potential vectorizability
of S2. For this static instruction, the analysis will compute times-
tamps for S2 instances as shown in Fig. 1(b). Each timestamp value
defines one partition of S2 instances.

PROPERTY 3.1. Consider any DDG node si and a DDG path p
ending at si. Let s(p) be the number of nodes on p (excluding si)
that are instances of the static instruction s being analyzed. The
timestamp computed for si by Algorithm 1 is the largest value of
s(p) for all p leading to si.

The proof is by induction on the length of p. This property has
two implications. First, consider two instances si and sj of s. If

there exists a run-time dependence from si to sj (either directly, or
indirectly through instances of instructions other than s, or through
other instances of s itself), then the timestamp of si is strictly
smaller than the timestamp of sj . Thus, all instances of s with
the same timestamp (i.e., in the same partition) are independent
of each other. Second, each si is assigned the smallest possible
timestamp—that is, it is scheduled at the earliest possible time.
Considering the average partition size as a metric of available
parallelism for the instances of s, the following property can be
proven easily.

PROPERTY 3.2. Algorithm 1 finds the maximum available paral-
lelism for each static instruction s.

3.2 Partitioning for Contiguous Access
Algorithm 1 ensures that the instances of s within a partition are in-
dependent, but efficient SIMD parallelism also requires contiguous
memory access. On most SIMD architectures, the cost of loading
vector elements individually and shuffling them into a vector regis-
ter offsets the benefit of exploiting the vector hardware.

Thus, the partitions must be further subdivided into units that
exhibit parallelism and contiguous memory access. In general, we
want to ensure unit-stride accesses—the distance in memory be-
tween consecutive memory accesses is equal to the size of the data
type. We also allow zero-stride (i.e., the distance in memory be-
tween consecutive accesses is zero), since vector splats (copying a
scalar value into all elements of a vector) are cheap for most SIMD
architectures. Note that the zero-stride case also covers operations
with constant operands.

To ensure unit-stride, the instruction instances within a parallel
partition are sorted according to the memory addresses of their
operands. For constants or values produced by other instructions
but not saved to memory, an artificial address of zero is used. The
sorted list is then scanned, ending the current subpartition (and
starting a new one) when the stride is (1) non-zero and non-unit,
or (2) different from the previously observed stride. The result is a
(now potentially larger) set of subpartitions such that the dynamic
instruction instances within a subpartition are independent, and
exhibit uniform zero-stride or unit-stride accesses to memory. The
average size of these subpartitions is a metric of the vectorization
potential of the static instruction being characterized.

3.3 Non-Unit Constant Stride Access
The contiguous access check performed in the previous stage is im-
portant for discovering efficient vectorization potential, but a varia-
tion of the check can be used to explore the potential benefit of data
layout transformations on the original code. It is not uncommon to
find computations where fine-grained concurrency exists but the
data accessed has a non-unit but constant stride. In the first loop in
Listing 3 there is a loop-carried dependence along the inner j loop
but the i loop is parallel. If the loops were permuted, we would
have fine-grained parallelism in the inner loop for the instances of
S1, but the access stride would be N . A data layout transformation
to transpose the array (i.e., swap the first and second array dimen-
sions) would enable unit-stride access and efficient vectorization.
Listing 4 shows how the code could be transformed.

The second loop in Listing 3 illustrates a scenario with arrays
of structures that results in fine-grained concurrent operations but
non-unit access stride. The instances of S2 are all independent but
they exhibit stride-2 access (e.g., 8 bytes if x and y are single-
precision floating-point). The same is true for the instances of S3.
In this case, changing the data structure from an array of structures
to a structure of arrays would enable parallel, stride-1 access which
could be automatically vectorized.

By relaxing the unit/zero-stride condition to instead check for
any non-unit constant stride, we can detect cases such as the ones

1 for(i = 0 ; i < N ; i++)
2 for(j = 2 ; j < N ; j++)
3 A[i][j] = 2*A[i][j-1] - A[i][j-2]; // S1
4
5 for (i = 0 ; i < N ; i++) {
6 C[i].x = B[i].x + B[i].y; // S2
7 C[i].y = B[i].x - B[i].y; // S3
8 }

Listing 3: Vectorization benefits of data layout transforma-
tions: stride-N column access and array-of-structures access.

1 // transposed declarations for A, B, and C
2 for(j = 2 ; j < N ; j++)
3 for(i = 0 ; i < N ; i++)
4 A[j][i] = 2*A[j-1][i] - A[j-2][i]; // S1
5
6 for (i = 0 ; i < N ; i++) {
7 C.x[i] = B.x[i] + B.y[i]; // S2
8 C.y[i] = B.x[i] - B.y[i]; // S3
9 }

Listing 4: Loop transformations and data layout transforma-
tions applied to Listing 3.

illustrated in Listing 3. Given the partitions produced by Algo-
rithm 1, we apply the unit-stride analysis from the previous sub-
section. At the end, any instruction instance that belongs to a sub-
partition of size one is identified. All such instances (of the same
static instruction, and with the same timestamp) are then sorted
and scanned. When the currently observed stride does not match
the previously observed one, the instruction is put on a waitlist for
future processing, and the scanning based on the current stride con-
tinues until the end of the list is reached; this results in one subpar-
tition. Any waitlisted instructions are then traversed again, in sorted
order, so that the next subpartition can be formed.

4. Evaluation
In this section we present a number of studies to illustrate the use
of the dynamic analysis tool. Although the studies are restricted
to analysis of sequential programs, the tool can also be used with
parallel programs using Pthreads, OpenMP, MPI, etc.—the instru-
mentation and trace generation would be applied to one or more
sequential processes or threads of the parallel program to assess
the potential for SIMD vector parallelism within a process/thread.
Further, although we only concentrate on characterizing floating-
point operations (because they tend to be the focus of most SIMD
optimization efforts), such analysis can be carried out for any type
of operations, e.g., integer arithmetic.

The experiments were performed on a machine with an In-
tel Xeon E5630 processor and 12GB memory, running Linux
2.6.32. To obtain performance measurements, the Intel icc compiler
(12.1.3) was used to compile the program code, at the O3 optimiza-
tion level. Profiling data was obtained with HPCToolkit [9] version
5.2.1, at sampling period 500 thousand cycles. The instrumentation
infrastructure was implemented in LLVM 3.0.

4.1 Characterization of Applications
We illustrate the use of the tool for characterizing software col-
lections by applying it to the SPEC CFP2006 floating-point bench-
marks, and kernels from the UTDSP benchmark suite [32]. We also
include two stand-alone compute kernels: a 2-D Gauss-Seidel sten-
cil code and a kernel from a 2-D PDE grid-based solver; they are
elaborated upon later as case studies illustrating potential use of the
analysis for performance optimization and compiler enhancement.

Unit Stride Non-unit Stride

Benchmark Loop Percent Percent Average Percent Average Percent Average
Cycles Packed Concur. Vec. Ops Vec. Size Vec. Ops Vec. Size

410.bwaves block solver.f : 55 79.2% 53.0% 39.9 97.5% 11.1 0.0% –
block solver.f : 176 65.8% 66.4% 8.3 100.0% 5.0 0.0% –

433.milc

gauge stuff.c : 258 22.0% 0.0% 10453.4 36.2% 10427.4 49.7% 3.3
path product.c : 49 17.9% 0.0% 73316.6 36.4% 69441.5 63.6% 3.2
quark stuff.c : 566 15.2% 0.0% 23687.7 88.3% 11.4 7.5% 4.2
quark stuff.c : 960 44.9% 0.0% 11447.3 65.1% 15.5 18.7% 2.3
quark stuff.c : 973 35.0% 0.0% 61566.7 57.4% 13.8 32.9% 2.4
quark stuff.c : 1452 14.2% 0.0% 20736.0 36.4% 20736.0 63.6% 502.3
quark stuff.c : 1460 13.6% 0.0% 20736.0 36.4% 20736.0 63.6% 20736.0
quark stuff.c : 1523 15.4% 0.0% 2921.1 55.0% 2000.0 45.0% 4.2

434.zeusmp advx3.f : 637 11.3% 35.0% 66613.9 74.3% 442.1 16.6% 16.0

435.gromacs

innerf.f : 3960 60.4% 4.4% 4.0 60.3% 12.0 21.5% 2.0
ns.c : 1264 16.2% 3.8% 4.9 60.0% 42.0 20.9% 2.1
ns.c : 1461 35.3% 3.3% 40.3 64.1% 31.0 35.1% 2.0
ns.c : 1503 13.3% 0.0% 5.0 62.5% 5.0 30.0% 2.0

436.cactusADM StaggeredLeapfrog2.F : 342 18.4% 100.0% 80.0 100.0% 80.0 0.0% –
StaggeredLeapfrog2.F : 366 81.1% 96.9% 78.0 100.0% 78.0 0.0% –

437.leslie3d

tml.f : 522 15.6% 98.5% 8805.5 100.0% 158.3 0.0% –
tml.f : 889 13.4% 99.2% 7434.2 99.9% 178.4 0.0% –
tml.f : 1269 12.4% 99.2% 438.3 100.0% 22.0 0.0% –
tml.f : 3569 21.6% 98.6% 8100.0 100.0% 90.0 0.0% –

444.namd
ComputeList.C : 71 33.2% 0.0% 130.2 86.0% 101.1 13.7% 11.4
ComputeList.C : 75 66.4% 0.0% 313.3 93.3% 295.4 6.6% 7.8

ComputeNonbondedBase.h : 321 12.9% 0.0% 15.6 85.9% 262.8 7.8% 5.4

447.dealII

mapping q1.cc : 514 10.4% 0.0% 1.0 0.0% – 0.0% –
step-14.cc : 715 16.2% 0.0% 130.9 75.6% 58.2 24.3% 24.9
step-14.cc : 780 10.9% 0.0% 27.0 66.7% 27.0 33.3% 27.0
step-14.cc : 3198 19.1% 3.1% 335.6 87.5% 12.5 12.5% 18.8

450.soplex

ssvector.cc : 983 10.6% 0.0% 373.0 32.2% 18.5 56.2% 18.2
slufactor.cc : 839 12.5% 0.0% 59.7 43.2% 6.5 39.4% 2.0
spxsolve.cc : 126 37.7% 0.0% 384.3 92.3% 25.6 3.5% 2.1
spxsolve.cc : 200 58.5% 0.0% 361.6 88.2% 15.9 5.0% 2.1
svector.h : 293 12.8% 0.0% 1.7 0.0% – 40.0% 2.0

453.povray

bbox.cpp : 894 53.3% 0.2% 11.2 62.6% 14.8 27.3% 2.7
csg.cpp : 248 58.6% 0.0% 4.3 35.5% 4.8 41.1% 2.0
csg.cpp : 254 16.2% 0.2% 1.0 0.0% – 0.0% –

lbuffer.cpp : 1373 23.0% 0.1% 14.8 63.8% 16.4 29.8% 2.9
lighting.cpp : 600 66.9% 1.0% 13.1 65.4% 13.9 28.1% 2.0
lighting.cpp : 938 27.1% 0.1% 13.7 63.3% 15.7 29.7% 2.8
lighting.cpp : 2298 31.5% 1.0% 7.7 59.3% 16.2 26.5% 2.9
lighting.cpp : 4120 41.7% 0.8% 11.4 64.8% 13.1 25.0% 2.1

454.calculix

Chv update.c : 736 13.6% 91.5% 27.4 48.4% 15.0 51.6% 11.4
e c3d.f : 675 69.7% 0.1% 35.6 100.0% 12.3 0.0% –

FrontMtx update.c : 207 16.4% 91.3% 774.0 96.4% 28.6 3.1% 9.4
FrontMtx update.c : 38 14.0% 91.2% 1116.3 96.7% 12.9 2.6% 4.7

mafillsm.f : 144 74.7% 0.4% 6064.8 99.2% 136.9 0.8% 3.1
Utilities DV.c : 1241 11.4% 96.6% 2.0 50.0% 49.0 0.0% –

459.GemsFDTD
NFT.F90 : 1068 17.4% 0.0% 24.2 69.9% 9.9 19.3% 2.1
update.F90 : 108 17.3% 97.4% 201.0 100.0% 201.0 0.0% –
update.F90 : 242 17.1% 97.3% 200.0 100.0% 200.0 0.0% –

465.tonto mol.F90 : 5565 15.7% 80.4% 50779.4 99.2% 150.7 0.3% 2.4
mol.F90 : 11659 59.0% 19.5% 266.6 97.2% 31.6 1.0% 4.4

470.lbm lbm.c : 186 99.6% 100.0% 137487.0 61.6% 137487.0 38.4% 72.1

481.wrf

solve em.F90 : 179 87.9% 79.1% 1198.6 97.4% 39.7 1.2% 15.1
solve em.F90 : 884 14.4% 89.3% 54721.8 99.8% 117.0 0.2% 29.1
solve em.F90 : 1258 14.8% 89.6% 9887.1 93.6% 89.1 6.4% 28.5
solve em.F90 : 1538 12.8% 87.4% 95531.4 95.4% 27.6 4.6% 7.6

482.sphinx3

approx cont mgau.c : 279 39.8% 68.1% 8949.0 75.2% 6886.1 24.8% 2.3
cont mgau.c : 652 17.0% 72.8% 3.7 75.0% 39.0 0.0% –
subvq.c : 456 30.8% 75.0% 19154.8 75.5% 15360.0 24.5% 2048.0
vector.c : 521 25.9% 86.1% 3.3 75.0% 13.0 0.0% –

Table 1: Analysis results for analyzed benchmark loops.

The stand-alone kernels and UTDSP benchmarks were directly
analyzed by the tool and the results are shown in Tables 2 and 3. For
full application codes, such as the SPEC CFP2006 floating-point

benchmarks, the output produced by the dynamic analysis will be
very extensive. Therefore, we only analyze and report character-
istics for time-consuming loops identified via profiling by HPC-

Unit Stride Non-unit Stride

Benchmark Percent Average Percent Average Percent Average
Packed Concur. Vec. Ops Vec. Size Vec. Ops Vec. Size

2-D Gauss-Seidel Stencil 0.0% 226 22.2% 46.1 77.4% 9.3
2-D PDE Grid Solver 0.0% 231426 100.0% 820.8 0.0% —

Table 2: Analysis results for computation kernels.

Unit Stride Non-unit Stride

Benchmark Type Percent Average Percent Average Percent Average
Packed Concur. Vec. Ops Vec. Size Vec. Ops Vec. Size

FFT Array 49.9% 568.9 79.3% 24.1 12.2% 2.0
Pointer 0.0% 568.9 79.3% 24.1 12.2% 2.0

FIR Array 99.8% 99.9 100.0% 57.4 0.0% –
Pointer 0.0% 99.9 100.0% 57.4 0.0% –

IIR Array 0.00% 43.6 64.8% 14.3 15.6% 8.9
Pointer 0.00% 43.6 64.8% 14.3 15.6% 8.9

LATNRM Array 7.8% 7.4 74.6% 23.9 0.0% –
Pointer 8.2% 7.4 74.6% 23.9 0.0% –

LMSFIR Array 0.0% 2.7 48.3% 22.1 16.5% 21.8
Pointer 0.0% 2.8 49.4% 28.0 16.2% 21.9

MULT Array 50.4% 181.9 100.0% 18.2 0.0% –
Pointer 0.00% 181.9 100.0% 18.2 0.0% –

Table 3: Analysis results for UTDSP benchmark suite.

Toolkit, analyzing only loops that account for at least 10% of total
execution cycles during a run of the benchmark using the SPEC
reference data set (the 10% threshold was selected to reduce the
amount of data presented; we also collected data at a threshold of
5%). To perform the DDG analysis for a particular loop, we col-
lected several subtraces corresponding to separate instances of the
loop (using the SPEC train data set, and for a few large loops the
test data set). A subtrace was started upon loop entry and terminated
upon loop exit and its DDG was constructed and analyzed. We ran-
domly chose several instances of the loop, analyzed each corre-
sponding subtrace to obtain the various metrics described later, and
chose one representative subtrace to be included in the measure-
ments presented in the paper.

The results of the analysis for SPEC CFP2006 are shown in
Table 1. For each benchmark, we only show loops that account for
at least 10% of total execution cycles. We start with all innermost
loops, and only include a parent loop if the total percentage of
execution cycles spent in it is at least 10 percentage points greater
than the sum of the percentages for its inner loops. The gamess
benchmark could not be compiled with LLVM and was not used in
the experiments.

The Percent Packed metric shows the percentage of floating-
point run-time operations that were executed using packed (i.e.,
vector) SSE instructions, as reported by HPCToolkit. This column
provides information on the effectiveness of current compilers (we
used Intel icc since we have found it to be superior to other pro-
duction compilers in vectorization capability) in vectorizing each
of the identified hot loops. A high value indicates that a significant
fraction of the floating-point operations in that loop were executed
via packed SIMD instructions. A zero value indicates that the com-
piler was unable to achieve any vectorization at all for the loop.

The Average Concurrency metric was computed by determin-
ing the average partition size across the collection of partitions for
all floating-point instructions in the graph, where partitions were
formed by considering only instruction independence (Sect. 3.1).
For this metric, both singleton and non-singleton partitions were
considered. From the non-singleton parallel partitions, subparti-
tions containing unit-stride operations were formed (as described
in Sect. 3.2). The Percent Vec. Ops metric (i.e., potentially vector-

izable run-time instructions) shows the number of operations that
belong to non-singleton unit-stride subpartitions, as percent of the
total number of operations in the graph. The Average Vec. Size met-
ric represents the average size of these non-singleton vectorizable
subpartitions. The general trend is that for most of the loops, many
run-time instructions belong to partitions that exhibit both inde-
pendence and contiguous memory access. Furthermore, the sizes
of these partitions are large—in many cases, much larger than the
vector sizes in existing and emerging architectures. Thus, the anal-
ysis indicates that the majority of the analyzed loops may have high
vectorization potential.

The run-time instructions within a non-singleton parallel parti-
tion that did not belong in any unit-stride subpartition were further
analyzed with the non-unit stride analysis described in Section 3.3.
The analysis reported the number of such instructions that could
be placed in subpartitions accessing data at some fixed non-unit
stride. This number, as percent of the total number of all run-time
instructions in the graph, is shown in column Percent Vec. Ops. The
average size of such subpartitions is given in the last column. There
are several examples where a significant number of independent in-
structions can be combined together using non-unit stride, and the
sizes of the partitions are large as well. This indicates that data lay-
out transformations may be beneficial in these cases.

There may be cases where the percentage of packed instruc-
tions observed via profiling exceeds the sum of the values in
columns Percent Vec. Ops (e.g., Utilities DV.c:1241 in
454.calculix and vector.c:521 in 482.sphinx3). This happens
in the presence of a reduction (e.g., s+=expr): our analysis con-
siders the chain of dependences and treats the computation as non-
vectorizable. However, there exist approaches to vectorize reduc-
tions, and icc employs some of them. In future work, our approach
could be extended to ignore dependences due to reductions, which
would uncover these additional vectorization opportunities.

As is typical of other work on dynamic analysis of fine-grained
dependences (e.g., [14, 36]), the instrumentation incurs an over-
head of two to three orders of magnitude, relative to the execution
time of the original unmodified code. The cost of DDG analysis
depends on graph size and memory access patterns, and is typi-
cally of the order of tens to hundreds of microseconds per DDG

node. Although we have not focused on tool optimization, the util-
ity of the current unoptimized implementation of our prototype is
not hampered for two reasons. First, the analysis is intended to be
performed offline, e.g., during performance tuning. Many profiling
analyses have been successfully used in this setting, and various
existing techniques can be readily applied to reduce their cost (e.g.,
[36, 38]). Second, the instrumented code can be run with much
smaller problem sizes than the “production” size: in our experience,
although metrics such as average vector size can vary with problem
size, the qualitative insights about potential vectorizability do not
change.

4.2 Assisting Vectorization Experts
Many institutions possess large code bases that were largely de-
veloped before the recent emergence of SIMD parallelism in all
CPUs/GPUs. When the original developers of the code are not
available to adapt it for improved vectorization, an automated tool
can be very valuable. For some loops, a quick scan of the code of a
hot loop by a vectorization expert will immediately reveal the op-
portunities for enhancing vectorizability through code changes. But
this is certainly not the norm, especially with C++ codes or C codes
that make heavy use of pointers. An automated tool allows the vec-
torization expert to quickly eliminate loops with little to no vector-
ization potential, and concentrate on the loops with high potential.
With these, some of the code structures involve multiple levels of
function calls and the output from the tool is valuable input to the
expert, indicating that the effort to unravel the code is likely worth
it. As an example, the hot loops in 444.namd are generated using
C preprocessor macros and it is very difficult to get an understand-
ing of the code just by scanning it. If we examine the HPCToolkit
profile data, we know the loops are hot, but not whether or not we
have any hope of vectorizing them. However, our analysis shows
that there is a high potential for vectorization in this part of code,
so it may be worth the time investment of a vectorization expert to
carefully analyze these loops.

Another use case is for identifying missed opportunities in com-
piler test suites. Vendor compilers are typically tested against large
amounts of code to gauge the performance of the compiler’s vector-
izer. It is easy to automate this testing to see how much of the code
is vectorized, but for the remaining code, it is not clear whether the
code is just not vectorizable, or if the compiler is missing an oppor-
tunity. It would take considerable effort for a vectorization expert to
manually analyze all of the non-vectorized code. The analysis tool
can help to automate the process and focus the expert’s effort on
identifying why code that has been identified as being potentially
vectorizable is not actually being vectorized by the compiler.

4.3 Array-Based vs. Pointer-Based Code
Auto-vectorizing compilers are becoming increasingly good at vec-
torizing array-based code, but pointer-based code is often not vec-
torized due to the added complexities with pointer aliasing and the
verification of contiguous access during the compiler’s static anal-
ysis. A primary benefit of the proposed dynamic analysis technique
is the ability to analyze pointer based code just as easily as array
based code. Both versions of the same computation will provide the
same analysis results, since the dynamic analysis considers IR-level
arithmetic operations, and does not make a distinction between data
that is read from arrays or pointer dereferencing.

To test this facet of our analysis, we used the UTDSP [32]
benchmark suite, which contains both array- and pointer-based ver-
sions of several computation kernels for digital signal processors
(DSP). The suite was created to evaluate the quality of code gen-
erated by a high-level language compiler (e.g., a C compiler) tar-
geting a programmable DSP. Thus, each kernel was written in dif-
ferent styles, including an array-based version and a pointer-based

Original Trans. Speedup

2-D Seidel
Xeon E5630 0.228s 0.074s 3.086×

Core i7 2600K 0.170s 0.083s 2.055×
PhenomII 1100T 0.200s 0.068s 2.926×

2-D PDE
Xeon E5630 0.355s 0.185s 1.909×

Core i7 2600K 0.198s 0.116s 1.699×
PhenomII 1100T 0.722s 0.401s 1.799×

410.bwaves
Xeon E5630 2.42e-1s 1.88e-2s 1.284×

Core i7 2600K 1.72e-1s 1.24e-1s 1.382×
PhenomII 1100T 2.74e-1s 2.50e-1s 1.100×

433.milc
Xeon E5630 2.13e-2s 1.24e-2s 1.725×

Core i7 2600K 9.10e-3s 7.30e-3s 1.245×
Phenom II 1100T 3.05e-2s 1.99e-2 1.528×

435.gromacs
Xeon E5630 238.5s 149.4s 1.596×

Core i7 2600K 163.6s 98.1s 1.667×
Phenom II 1100T 210.3s 151.8s 1.386×

Table 4: Performance measurements for the case studies.

version. Both versions provide identical functionality, except for
the use of arrays or pointers to traverse the data structures.

Table 3 shows the results of this experiment. The measurements
include the percentage of vectorizable operations found in the pro-
gram, the average vector size, and the percentage of operations that
are actually vectorized by the Intel icc compiler. We see that our
analysis is invariant to the form of the code1, but icc fails to vec-
torize some of the pointer-based code. Such knowledge would be
very useful in optimizing certain applications, where a conversion
from pointer-based code to array-based code may be worthwhile if
the potential benefits are high. The dynamic analysis from our tool
could be a valuable first step in the process.

4.4 Case Studies
Based on the results from the previous subsections, some bench-
marks were manually transformed to enable vectorization by icc.
The targeted benchmarks were the Gauss-Seidel stencil, the PDE
grid solver, and the 410.bwaves, 433.milc, and 435.gromacs bench-
marks from SPEC CFP2006. A comparison of the performance of
the original and modified versions is shown in Table 4. In addi-
tion to the Intel Xeon E5630 machine used for the measurements
presented earlier, two other machines were used in these experi-
ments: an Intel Core i7 2600K and an AMD PhenomII 1100T, both
with the same icc configuration. For each benchmark, we show
the total execution time for both versions, as well as the achieved
speedup. When the target of the optimization is a particular loop
(e.g., bwaves and gromacs), the measurements in the table are
based on the total time spent in the loop. The reference data sets
were used when running the SPEC benchmarks.

Gauss-Seidel In this case study we analyze the vectorization po-
tential of a 9-point Gauss-Seidel stencil code. This code has been
identified by our analysis as being not auto-vectorized by the ven-
dor compiler, but possessing non-trivial vectorization potential (see
Table 2). Listing 5 shows the original kernel. It has a loop-carried
dependence in the innermost j loop, since the fourth operand
A[i][j-1] is produced in the previous iteration of this loop.
Similarly, the outer i loop also has loop-carried dependences. Due
to the dependences, icc was unable to vectorize the code. This was
not unexpected. However, what surprised us was that the dynamic
analysis revealed vectorization potential for this code.

The analysis classified two out of the eight addition opera-
tions (A[i-1][j-1]+A[i-1][j]+A[i-1][j+1]) as vector-
izable. This is because the operands were all produced in the previ-
ous iteration of the i loop. The only true dependence in the loop is

1 The discrepancy in LMSFIR is due to a difference in the way the two ver-
sions are written, resulting in slightly different distributions of operations.

1 /* Original */
2 cnst = 1/9.0;
3 for(t=0; t<T ; t++)
4 for(i=1; i<N-1; i++)
5 for(j=1; j<N-1; j++)
6 A[i][j] = (A[i-1][j-1] + A[i-1][j] +
7 A[i-1][j+1] + A[i][j-1] +
8 A[i][j] + A[i][j+1] +
9 A[i+1][j-1] + A[i+1][j] +

10 A[i+1][j+1]) * cnst;
11 /* Transformed */
12 cnst = 1/9.0;
13 for(t=0; t<T; t++)
14 for(i=1; i<N-1; i++) {
15 for(j=1; j<N-1; j++)
16 temp[j] = A[i-1][j-1] + A[i-1][j] +
17 A[i-1][j+1] + A[i][j] +
18 A[i][j+1] + A[i+1][j-1] +
19 A[i+1][j] + A[i+1][j+1];
20
21 for(j=1;j<N-1;j++)
22 A[i][j] = cnst * (A[i][j-1] + temp[j]);
23 }

Listing 5: Original and transformed Gauss-Seidel code.

due to A[i][j-1]. The operations involving elements from row
i+1, and even the addition of A[i][j] and A[i][j+1], could
be performed in vectorized mode by splitting the loop into a se-
quence of two loops, as shown in Listing 5. The first j loop in the
transformed code is now completely vectorized by icc, resulting in
significant performance improvement (see the results in Table 4,
obtained for N = 1000 and T = 20).

The extent of vectorizability of the Gauss-Seidel code was a
surprise to us since our initial expectation was that the code would
not exhibit vectorization potential due to loop-carried dependences.
Closer examination of the dependences shows that all the informa-
tion needed to transform the code is actually derivable from purely
static analysis. However, to our knowledge, no research or produc-
tion compiler can perform the transformation we performed manu-
ally. This example illustrates how the developed dynamic analysis
can be valuable for compiler writers to identify scenarios where
enhancements to static analysis and transformation capabilities can
enable improved code transformations for vectorization.

2-D PDE Solver In this case study we analyze the core computa-
tion from a 2-D PDE grid-based solver. The code is from the exam-
ples included with PETSc [20] 3.1-p7 and solves the solid fuel igni-
tion problem, modeled as a partial differential equation. The origi-
nal source can be found under /src/snes/examples/tutorials/ex5.c in
the PETSc distribution. We see that this code is not auto-vectorized
by icc, but our analysis shows very high vectorization potential. In
this kernel, the 2-D computation grid is distributed onto a 2-D grid
of blocks, where the computation is performed by iterating over
every cell within every block. For our purposes, we consider only
sequential execution of the program.

The per-block kernel code is shown in Listing 6. The if condi-
tion in the innermost loop is a boundary condition check that forces
grid points on the boundary to follow a different path of execution
as compared to the other interior points. The loop bounds for this
loop nest, along with two of the four conditions that can trigger
the if statement, are data dependent. As a result, compilers are
forced to be conservative and assume that for each iteration of the
loop, it is unknown whether the then or else clause will be ex-
ecuted. Due to this constraint, the vectorizability of this particular
loop nest, as written, is very low. Further, without more constraints
on the values within the info structure, static analysis cannot de-
termine transformations that would enable vectorization.

1 /* Original */
2 for (j=info->ys; j<info->ys+info->ym; j++) {
3 for (i=info->xs; i<info->xs+info->xm; i++) {
4 if (i == 0 || j == 0 ||
5 i == info->mx-1 || j == info->my-1) {
6 f[j][i] = x[j][i];
7 } else {
8 u = x[j][i];
9 uxx = (2.0*u-x[j][i-1]-x[j][i+1])*hydhx;

10 uyy = (2.0*u-x[j-1][i]-x[j+1][i])*hxdhy;
11 f[j][i] = uxx+uyy-sc*PetscExpScalar(u);
12 }
13 }
14 }
15 /* Transformed */
16 if(info->ys==0 || info->xs==0 ||
17 (info->ys+info->ym)==my ||
18 (info->xs+info->xm)==mx) {
19 /* Same as lines 2-14 */
20 }
21 else {
22 for(j=info->ys; j<info->ys+info->ym; j++) {
23 for(i=info->xs; i<info->xs+info->xm; i++) {
24 u = x[j][i];
25 uxx = (2.0*u-x[j][i-1]-x[j][i+1])*hydhx;
26 uyy = (2.0*u-x[j-1][i]-x[j+1][i])*hxdhy;
27 f[j][i] = uxx+uyy-sc*PetscExpScalar(u);
28 }
29 }
30 }

Listing 6: Original and transformed 2-D PDE Solver.

However, the results of the dynamic analysis show a great po-
tential for vectorizability within this code (see Table 2). Specifi-
cally, the else clause exhibits perfect vectorizability. To allow a
compiler to vectorize this loop, we can rewrite the code to extract
the if/then/else construct and then hoist an if to provide a
vectorizable loop. The modified code is shown in Listing 6. The key
to the vectorization-enabling transformation is the observation that
cells which correspond to the boundary condition can only occur
on boundary blocks. We observe that i and j cannot be zero ex-
cept within blocks along the top or left edge of the grid, and cannot
be equal to the maximum index value (mx-1 and my-1) except
within blocks along the right or bottom edge of the grid. There-
fore, the kernel code can be split into two separate versions; one
for boundary blocks and one for interior blocks, as shown in List-
ing 6. While this code should provide no speed-up for boundary
blocks, it enables vectorization for interior blocks and provides an
advantage when the blocks are in at least a 3× 3 grid.

Table 4 shows the total execution time for the original and
modified code for a case where the block size is 512 × 512 and
blocks are in a grid of size 16 × 16. As shown in the table, the
performance improvement is substantial.

410.bwaves In the 410.bwaves benchmark, one of the loops we
analyzed in our extended study (at 5% threshold for hot loops) is
at jacobi_lam.f:30. This loop exhibits a very low percentage
of packed instructions, while the dynamic analysis shows that there
are significant numbers of vectorizable operations at unit and non-
unit stride. The result from the non-unit stride analysis suggests
possible improvements through data layout transformation.

Listing 7 is representative of the computation within this loop.
Arrays je and jv are of size (5,5,nx,ny,nz), and array q is
of size (5,nx,ny,nz) where nx, ny and nz are program con-
stants. While there is no dependence between the iterations of the
innermost loop i, there are two factors that hinder vectorization.
First, there is no unit-stride data access pattern since i is used to
access the third dimension of the arrays. Second, the use of mod

1 ish = 1
2 ksh = 1
3 jsh = 1
4 !! Original
5 do k = 1,nz
6 kp1 = mod(k,nz+1-ksh)+ksh
7 do j=1,ny
8 jp1=mod(j,ny+1-jsh)+jsh
9 do i=1,nx

10 ip1=mod(i,nx+1-ish)+ish
11 !! Some computation
12 je(1,1,i,j,k) = ...
13 je(1,2,i,j,k) = ...
14 ...
15 je(4,5,i,j,k) = ...
16 je(5,5,i,j,k) = ...
17 !! Some computation
18 ros = q(1,ip1,jp1,kp1)
19 !! Similar computation for jv as for je
20 enddo
21 enddo
22 enddo
23 !! Transformed
24 do k = 1,nz
25 kp1 = mod(k,nz+1-ksh)+ksh
26 do j=1,ny
27 jp1=mod(j,ny+1-jsh)+jsh
28 do i=1,nx-1
29 ip1=i+1
30 !! Some computation
31 je(i,1,1,j,k) = ...
32 je(i,1,2,j,k) = ...
33 ...
34 !! Some computation
35 ros = q(ip1,1,jp1,kp1)
36 !! Similar computation for jv as for je
37 enddo
38 i = nx
39 ip1 = 1
40 !! Inner loop computation (lines 11-19)
41 enddo
42 enddo

Listing 7: Original and transformed bwaves code.

operations to calculate the neighbor with wrap-around boundary
conditions hampers the vectorization of accesses to array q.

To address these problems, a data layout transformation was
performed on arrays je, jv, and q: the dimension which was
originally accessed by i (and ip1) was moved to become the
fastest varying dimension of the arrays. This transformation is
shown in Listing 7. The modified code has a stride-1 data access
pattern. The mod operations were removed by peeling the last
iteration of the i loop, and introducing ip1=i+1 within the loop.
The value of ip1 for the peeled iteration was set to 1. Table 4
shows the performance of the original and modified versions.

433.milc In this case study we explore the benefits of data lay-
out transformations on the 433.milc benchmark. Specifically, we
focus on one of the loops from Table 1. The loop starting at
quark_stuff.c:1452 shows no automatic vectorization by the
compiler. There is also limited potential for vectorization at unit
stride. However, the non-unit stride analysis shows significant po-
tential for vectorization, implying that a data layout transformation
may speed up the computation.

This loop iterates over every point in a lattice, applying a matrix-
vector multiplication operation at each point. The matrices are of
size 3 × 3 and the vectors are of size 3, both containing complex
numbers. The lattice itself holds a matrix at each point, and ex-
ternal arrays of vectors are used for the vector inputs and outputs.
The matrix-vector multiplication is not vectorized by the compiler
due to non-unit stride access (distribution of real/imaginary com-
ponents) and a small inner loop trip count (3).

1 /* Original data layout */
2 typedef struct { double r, i; } complex;
3 typedef struct { complex c[3]; } su3_vector;
4 typedef struct { complex e[3][3]; } su3_matrix;
5 su3_matrix lattice[NUM_SITES];
6 su3_vector vec[NUM_SITES], out_vec[NUM_SITES];
7 /* Original computation */
8 for(s = 0; s < NUM_SITES; ++s) {
9 for(i = 0; i < 3; ++i) {

10 complex x = { 0.0, 0.0 };
11 for(j = 0; j < 3; ++j) {
12 complex y;
13 y.r = lattice[s].e[i][j].r * vec[s].c[j].r -
14 lattice[s].e[i][j].i * vec[s].c[j].i;
15 y.i = lattice[s].e[i][j].r * vec[s].c[j].i +
16 lattice[s].e[i][j].i * vec[s].c[j].r;
17 x.r += y.r; x.i += y.i;
18 }
19 out_vec[s].c[i] = x;
20 }
21 }
22 /* Transformed data layout */
23 typedef struct {
24 double r[3][3][NUM_SITES];
25 double i[3][3][NUM_SITES];
26 } lattice_dlt;
27 typedef struct {
28 double r[3][NUM_SITES];
29 double i[3][NUM_SITES];
30 } vec_dlt;
31 lattice_dlt lattice;
32 vec_dlt vec, out_vec;
33 /* Transformed computation */
34 /* Initialize the elements of out_vec to 0.0 */
35 for(i = 0; i < 3; ++i) {
36 for(j = 0; j < 3; ++j) {
37 for(s = 0; s < NUM_SITES; ++s) {
38 double x_r, x_i;
39 x_r = lattice.r[i][j][s] * vec.r[j][s] -
40 lattice.i[i][j][s] * vec.i[j][s];
41 x_i = lattice.r[i][j][s] * vec.i[j][s] +
42 lattice.i[i][j][s] * vec.r[j][s];
43 out_vec.r[i][s] += x_r;
44 out_vec.i[i][s] += x_i;
45 }
46 }
47 }

Listing 8: Original and transformed milc code.

To help us isolate the required changes, we created a version
of the benchmark that only contains the computation we identified.
The full benchmark was too large to optimize manually without
in-depth understanding of the entire application, and the smaller,
kernel-ized version allowed us to show proof-of-concept benefits of
a data layout transformation. To optimize this operation, the trans-
formation was applied to the lattice data structure, where the lattice
of matrices was converted to a matrix of lattices. This modification
exposes unit-stride operations within the inner loop. The original
and transformed code are shown in Listing 8. Table 4 demonstrates
a significant speedup for the modified kernel.

435.gromacs For this case study we focus on the loop at line
3960 in innerf.f from 435.gromacs. While icc is not able to
vectorize this loop in any significant manner, the dynamic analysis
results indicate the existence of unit-stride operations. Lines 1–14
of Listing 9 represent the computation within the loop.

The value of j3 is data dependent (based on the run-time values
in indirection array jjnr) and is used to index into arrays pos and
faction. The compiler has to assume that the loop is not parallel,
in case two or more elements of jjnr have the same value and
thus create a dependence through faction(j3). Furthermore,
the access patterns for pos and faction are not regular due to
the arbitrary values of j3. Thus, the loop is not vectorized by icc.

1 !! Original
2 do k = nj0,nj1
3 jnr = jjnr(k)+1
4 j3 = 3*jnr-2
5 jx1 = pos(j3)
6 ...
7 tx11 = ...
8 fjx1 = faction(j3) - tx11
9 tx21 = ...

10 fjx1 = fjx1 - tx21
11 tx31 = ...
12 faction(j3) = fjx1 - tx31
13 ...
14 enddo
15 !! Transformed
16 do k = nj0,nj1,4
17 do k_vect = 1,4
18 jnr = jjnr(k+k_vect-1)+1
19 vect_j3(k_vect) = 3*jnr-2
20 vect_jx1(k_vect) = pos(vect_j3(k_vect))
21 ...
22 vect_fjx1(k_vect) = faction(vect_j3(k_vect))
23 ...
24 enddo
25 do k_vect = 1,4
26 tx11 = ...
27 vect_fjx1(k_vect) = vect_fjx1(k_vect) - tx11
28 tx21 = ...
29 vect_fjx1(k_vect) = vect_fjx1(k_vect) - tx21
30 tx31 = ...
31 vect_fjx1(k_vect) = vect_fjx1(k_vect) - tx31
32 ...
33 enddo
34 do k_vect = 1,4
35 faction(vect_j3(k_vect)) = vect_fjx1(k_vect)
36 ...
37 enddo
38 enddo

Listing 9: Original and transformed gromacs code.

When the dynamic analysis results were examined at the level
of individual statements, it became clear that the loop is in fact par-
allel: the values in jjnr ensure that distinct elements of faction
are accessed by each iteration. (The relatively low average concur-
rency in Table 1 is due to the small number of loop iterations and
to a few chains of reductions.) Furthermore, although the accesses
to pos and faction do not exhibit any patterns, the rest of the
computation in the loop body is done through scalars and can be
easily vectorized.

For better vectorization, the loop was strip-mined as shown in
Lines 15–38 of Listing 9. (The cleanup loop is not shown.) Loop
distribution of the inner k_vect loop was then applied to move all
reads from pos and faction above the computation, and to move
all writes to faction after the computation. Array expansion of
temporary j3 was also performed to hold the necessary indices
of faction. The middle k_vect loop is now vectorized by icc.
Table 4 shows the reduction in the total time spent in the loop due
to the transformation.

Unlike in the earlier case studies, here the analysis results do
not necessarily generalize to arbitrary input data. Specifically, the
fact that all iterations of the loop were independent affects both
the vectorization potential and the code modifications. As written,
the transformed code in Listing 9 is not correct for all possible
inputs. It becomes necessary to assert this correctness with the help
of additional information—e.g., an expert’s knowledge of certain
properties of the problem domain, or some compiler analysis of the
intra- and inter-procedural code context surrounding the loop.

Limitations Although these case studies demonstrate the useful-
ness of the analysis reports, the proposed technique has a num-
ber of limitations. For example, for the loop from 435.gromacs,

the conclusions about vectorizability are dependent on proper-
ties of the input data. As another example, we investigated loop
bbox.cpp:894 from 453.povray in greater depth. This bench-
mark is a ray-tracer, and the loop in question implements a work-
list algorithm that intersects a ray with a tree of bounding boxes.
The computation is driven by a priority queue. Each iteration of
the loop removes a bounding box from the queue and, if necessary,
adds other bounding boxes to the queue. Inside an iteration, what
processing is performed on the current bounding box depends on
whether it is an inner node or a leaf of the tree, and whether the
ray intersects the boxes of its children. The overall structure of the
computation is very irregular and heavily depends on the actual
run-time data. As part of the intersection tests for boxes and the
scene objects contained in them, some low-level operations (e.g.,
computing the angle between two vectors) occur repeatedly, with
high concurrency and with some potential vectorizability for cer-
tain subcomputations. However, the highly-irregular structure of
the control flow makes it extremely challenging to exploit the vec-
torization potential without significant changes to the code by a
domain expert with a deep understanding of the algorithm.

An interesting direction for future work is to refine the dynamic
analysis to distinguish computations with irregular data-dependent
control flow from ones where the control flow is more structured
and vectorization potential is more likely to be actually realizable
through code transformations.

5. Related Work
A number of techniques have been proposed to measure the avail-
able parallelism at the statement or instruction level (e.g., [1, 7, 8,
11, 12, 16, 17, 21, 23–25, 28, 33]). Several approaches aim to char-
acterize instruction-level parallelism (ILP) and how it is affected
by hardware features and compiler optimizations (e.g., [12, 33]).
Austin and Sohi [1] construct a dynamic dependence graph and use
it to measure ILP for several configurations. Typically, in these and
similar studies, a program execution trace is first created; next, pos-
sible parallel schedules are defined by taking into account the de-
pendences between binary instructions in the trace, under various
assumptions (e.g., anti and output dependences may be ignored). A
notable exception is the work by Kumar [11], which does not create
a trace and instead instruments the program to compute the parallel
schedule online. Some generalizations of this approach have been
proposed in recent work [7].

Researchers have also considered dynamic analysis of loop-
level parallelism, where all iterations of a loop may run concur-
rently with each other. The approach by Larus [14] generates an
execution trace and analyzes it to model the effects of loop-level
parallelism. A related technique is applied in the context of spec-
ulative parallelization of loops, where shadow locations are used
to track dynamic dependences across loop iterations [22]. Several
other approaches of similar nature have been investigated in more
recent work (e.g., [2, 19, 30, 31, 35, 39]).

The efficient collection of dynamic data-dependence informa-
tion has also been explored by previous work. Tallam et al. use run-
time control flow information to reconstruct significant portions
of the dynamic data-dependence graph of the program run [26],
and have proposed a technique for producing lightweight tracing
of multi-threaded code [27]. Zhang et al. use an approach to col-
lect compressed profiles from program executions, including data
dependence information [37]; they also propose techniques to de-
crease the cost of maintaining a dynamic dependence graph in the
context of dynamic slicing [36, 38].

Automatic parallelization is also closely related to the charac-
terization of vectorization in programs. Techniques to automati-
cally exploit fine-grained parallelism must first determine the de-
pendences between instructions. There is a body of work on the

characterization of dynamic data dependences in the context of
speculative execution (e.g., [22, 30, 40]).

Automatic vectorization has been the subject of extensive study
[5, 6, 10, 13, 18, 34] These approaches use static dependence
analysis and then convert scalar instructions to vector instructions,
in cases when the conditions for efficient vectorization are met. To
the best of our knowledge, no prior work has addressed the topic of
this paper—the development of an approach for dynamic analysis
of vectorizability of computations.

6. Acknowledgments
We thank the PLDI reviewers for their valuable comments. This
material is based upon work supported by the National Sci-
ence Foundation under grants CCF-0811781, CCF-0926127, OCI-
0904549, CCF-1017204, and by the Department of Energy’s Office
of Advanced Scientific Computing under grant DE-SC0005033.

7. Conclusion
This paper presents a new dynamic analysis for the characteriza-
tion of SIMD parallelism potential in programs. Existing methods
for characterizing concurrency have fundamental limitations in dis-
covering potentially vectorizable operations, but these problems are
overcome by the newly developed approach. The use of the analysis
is illustrated by characterizing several computationally-intensive
loops in benchmarks. The results demonstrate that the approach
can detect potential opportunities for vectorization that are missed
by a state-of-the-art vectorizing compiler. In addition to its use in
characterizing large software suites for vectorization potential, the
proposed technique can assist vectorization experts in identifying
potentially profitable code regions on which attention should be fo-
cused, as well as aid compiler experts by identifying potentially
vectorizable code that the compiler’s vectorizer misses.

References
[1] T. Austin and G. Sohi. Dynamic dependency analysis of ordinary

programs. In ISCA, pages 342–351, 1992.
[2] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Re-

visiting the sequential programming model for multi-core. In MICRO,
pages 69–84, 2007.

[3] Clang. clang.llvm.org.
[4] DragonEgg. dragonegg.llvm.org.
[5] A. Eichenberger, P. Wu, and K. O’Brien. Vectorization for simd

architectures with alignment constraints. In PLDI, 2004.
[6] L. Fireman, E. Petrank, and A. Zaks. New algorithms for simd

alignment. In CC, 2007.
[7] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin: Re-

thinking and rebooting gprof for the multicore age. In PLDI, pages
458–469, 2011.

[8] C. Hammacher, K. Streit, S. Hack, and A. Zeller. Profiling Java
programs for parallelism. In International Workshop on Multicore
Software Engineering, pages 49–55, 2009.

[9] HPCToolkit. www.hpctoolkit.org.
[10] K. Kennedy and J. Allen. Optimizing compilers for modern architec-

tures: A dependence-based approach. Morgan Kaufmann, 2002.
[11] M. Kumar. Measuring parallelism in computation-intensive scien-

tific/engineering applications. IEEE TC, 37(9):1088–1098, Sept.
1988.

[12] M. Lam and R. Wilson. Limits of control flow on parallelism. In ISCA,
pages 46–57, 1992.

[13] S. Larsen and S. P. Amarasinghe. Exploiting superword level paral-
lelism with multimedia instruction sets. In PLDI, 2000.

[14] J. Larus. Loop-level parallelism in numeric and symbolic programs.
IEEE TPDS, 4(1):812–826, July 1993.

[15] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, page 75, 2004.

[16] J. Mak and A. Mycroft. Limits of parallelism using dynamic depen-
dency graphs. In WODA, pages 42–48, 2009.

[17] A. Nicolau and J. Fisher. Measuring the parallelism available for very
long instruction word architectures. IEEE TC, 33(11):968–976, 1984.

[18] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved
data for simd. In PLDI, 2006.

[19] C. Oancea and A. Mycroft. Set-congruence dynamic analysis for
thread-level speculation (TLS). In LCPC, pages 156–171, 2008.

[20] PETSc. www.mcs.anl.gov/petsc.
[21] M. Postiff, D. Greene, G. Tyson, and T. Mudge. The limits of instruc-

tion level parallelism in SPEC95 applications. SIGARCH Computer
Architecture News, 27(1):31–34, 1999.

[22] L. Rauchwerger and D. Padua. The LRPD test: Speculative run-time
parallelization of loops with privatization and reduction paralleliza-
tion. In PLDI, pages 218–232, 1995.

[23] L. Rauchwerger, P. Dubey, and R. Nair. Measuring limits of paral-
lelism and characterizing its vulnerability to resource constraints. In
MICRO, pages 105–117, 1993.

[24] A. Rountev, K. Van Valkenburgh, D. Yan, and P. Sadayappan. Un-
derstanding parallelism-inhibiting dependences in sequential Java pro-
grams. In IEEE International Conference on Software Maintenance,
page 9, 2010.

[25] D. Stefanović and M. Martonosi. Limits and graph structure of avail-
able instruction-level parallelism. In Euro-Par, pages 1018–1022,
2000.

[26] S. Tallam and R. Gupta. Unified control flow and data dependence
traces. ACM TACO, 4(3):19, 2007.

[27] S. Tallam, C. Tian, R. Gupta, and X. Zhang. Enabling tracing of long-
running multithreaded programs via dynamic execution reduction. In
ISSTA, pages 207–218, 2007.

[28] K. Theobald, G. Gao, and L. Hendren. On the limits of program
parallelism and its smoothability. In MICRO, pages 10–19, 1992.

[29] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard
execution model for speculative parallelization on multicores. In
MICRO, pages 330–341, 2008.

[30] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Speculative paralleliza-
tion of sequential loops on multicores. JPP, 37(5):508–535, 2009.

[31] G. Tournavitis, Z. Wang, Zheng, B. Franke, and M. O’Boyle. Towards
a holistic approach to auto-parallelization. In PLDI, pages 177–187,
2009.

[32] UTDSP Benchmarks. www.eecg.toronto.edu/˜corinna.
[33] D. Wall. Limits of instruction-level parallelism. In ASPLOS, pages

176–188, 1991.
[34] M. J. Wolfe. High Performance Compilers For Parallel Computing.

Addison-Wesley, 1996.
[35] P. Wu, A. Kejariwal, and C. Caşcaval. Compiler-driven dependence

profiling to guide program parallelization. In LCPC, pages 232–248,
2008.

[36] X. Zhang and R. Gupta. Cost effective dynamic program slicing. In
PLDI, pages 94–106, 2004.

[37] X. Zhang and R. Gupta. Whole execution traces and their applications.
ACM TACO, 2(3):301–334, 2005.

[38] X. Zhang, R. Gupta, and Y. Zhang. Cost and precision tradeoffs
of dynamic data slicing algorithms. ACM TOPLAS, 27(4):631–661,
2005.

[39] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering
hidden loop level parallelism in sequential applications. In HPCA,
pages 290–301, 2008.

[40] X. Zhuang, A. E. Eichenberger, Y. Luo, K. O’Brien, and K. O’Brien.
Exploiting parallelism with dependence-aware scheduling. In PACT,
pages 193–202, 2009.

clang.llvm.org
dragonegg.llvm.org
www.hpctoolkit.org
www.mcs.anl.gov/petsc
www.eecg.toronto.edu/~corinna

	Introduction
	Background and Overview
	Finding Independent Operations
	Finding Operations that Access Contiguously Located Data Elements

	Analyzing Dynamic Data-Dependence Graphs for Vectorization Potential
	Generation of Parallel Partitions
	Partitioning for Contiguous Access
	Non-Unit Constant Stride Access

	Evaluation
	Characterization of Applications
	Assisting Vectorization Experts
	Array-Based vs. Pointer-Based Code
	Case Studies

	Related Work
	Acknowledgments
	Conclusion

