
The Potential of Synergistic Static, Dynamic and Speculative
Loop Nest Optimizations for Automatic Parallelization

Riyadh Baghdadi1, Albert Cohen1,
Cedric Bastoul1, Louis-Noël Pouchet2 and Lawrence Rauchwerger3

1 INRIA Saclay and LRI, Paris-Sud 11 University
2 The Ohio State University 3 Dept. of Computer Science and Engineering, Texas A&M University

1. Introduction
Research in automatic parallelization of loop-centric programs
started with static analysis, then broadened its arsenal to include
dynamic inspection-execution and speculative execution, the best
results involving hybrid static-dynamic schemes. Beyond the detec-
tion of parallelism in a sequential program, scalable parallelization
on many-core processors involves hard and interesting parallelism
adaptation and mapping challenges. These challenges include tai-
loring data locality to the memory hierarchy, structuring indepen-
dent tasks hierarchically to exploit multiple levels of parallelism,
tuning the synchronization grain, balancing the execution load, de-
coupling the execution into thread-level pipelines, and leveraging
heterogeneous hardware with specialized accelerators.

The polyhedral framework allows to model, construct and ap-
ply very complex loop nest transformations addressing most of
the parallelism adaptation and mapping challenges. But apart
from hardware-specific, back-end oriented transformations (if-
conversion, trace scheduling, value prediction), loop nest optimiza-
tion has essentially ignored dynamic and speculative techniques.
Research in polyhedral compilation recently reached a significant
milestone towards the support of dynamic, data-dependent control
flow. This opens a large avenue for blending dynamic analyses and
speculative techniques with advanced loop nest optimizations. Se-
lecting real-world examples from SPEC benchmarks and numerical
kernels, we make a case for the design of synergistic static, dynamic
and speculative loop transformation techniques. We also sketch the
embedding of dynamic information, including speculative assump-
tions, in the heart of affine transformation search spaces.

2. Experimental Study
We consider four motivating benchmarks, illustrating three combi-
nations of dynamic analyses and loop transformations.

Our experiments target three multicore platforms:

• 2-socket quad-core Intel Xeon E5430, 2.66GHz, 16GB RAM
— 8 cores;

• 4-socket quad-core AMD Opteron 8380, 2.50GHz, 64GB RAM
— 16 cores;

• 4-socket hexa-core Intel Xeon E7450, 2.40GHz, 64GB RAM
— 24 cores.

We use OpenMP as the target of automatic and manual transfor-
mations. Baseline and optimized codes were compiled with Intel’s
compiler ICC 11.0, with options -fast -parallel -openmp.

2.1 Dynamic techniques may be neither necessary nor
profitable

The SPEC CPU2000 183.equake and 179.art benchmarks have
frequently been used to motivate dynamic parallelization tech-
niques. We show that static transformation and parallelization tech-
niques can easily be extended to handle the limited degree of data-
dependent behavior in these programs.

Figure 1 shows the smvp() function of equake, well known for
its “sparse” reduction pattern (a histogram computation). The value
of col is read from an array; it is not possible to establish at com-
pilation time whether and when dependences will occur upon ac-
cumulating on w[col][0]. Zhuang et al. [14] used automatically
generated inspection slices to parallelize this loop. The inspector
slice is a simplified version of the original loop to anticipate the
detection of dynamic dependences. In the case of equake, it com-
putes the values of col within a sliding window of loop iterations
to detect possible conflicts and build a safe schedule at run-time.

Speculation has also been used to handle unpredictable memory
accesses in equake. Oancea et al. [7] implemented a speculative
system to spot conflicts at runtime. When a thread detects a de-
pendence violation, it kills other speculative threads and rolls back.
If the number of rollbacks exceeds 1%, the execution proceeds in
serial mode. This approach is similar to [6] which uses transac-
tional memory to implement thread-level speculation to parallelize
equake. Speculation is an interesting solution for dynamic paral-
lelization, but has a high overhead due to memory access tracing,
dependence checking, rollback and/or commit overhead.

Interestingly, in the case of equake, one may avoid inspection
and speculation altogether. It is sufficient to enforce atomic execu-
tion of the sparse reduction to w[col][0]. This can be done with
hardware atomic instructions. An alternative is to privatize the w
array to implement a conflict-free parallel reduction. This induces
some overhead to scan the private arrays (as many as concurrent
threads) and sum up the partial accumulation results.

In the case of art, atomic execution of the tailing part of the
match() function is also sufficient to make an outer loop paral-
lel, see Figure 2. Since we are also dealing with a reduction, the
privatization alternative applies as well.

Figure 3 compares the speedup results of static loop transforma-
tion vs. speculative conflict management with Intel’s McRT Soft-
ware Transactional Memory (STM) [12]. We run the full bench-
mark programs on their ref dataset. For equake, the static version
uses a hardware atomic instruction version. The STM version fails
to deliver any speedup while the version with hardware atomic in-
structions scales reasonably well.1 For art, the static version uses
privatization. The critical section is executed rarely and the grain

1 As already pointed out in [3].



for (i=0; i<nodes; i++) {
Anext = Aindex[i];
Alast = Aindex[i+1];

sum0 = A[Anext][0][0]*v[i][0]+
A[Anext][0][1]*v[i][1]+
A[Anext][0][2]*v[i][2];

Anext++;
while (Anext<Alast) {
col = Acol[Anext];

sum0 += A[Anext][0][0]*v[col][0]+
A[Anext][0][1]*v[col][1]+
A[Anext][0][2]*v[col][2];

// Sparse reduction
w[col][0] += A[Anext][0][0]*v[i][0]+
A[Anext][1][0]*v[i][1]+
A[Anext][2][0]*v[i][2];

Anext++;
}
w[i][0] += sum0;

}

Figure 1. equake, core of the smvp() function

if (match_confidence > highest_confidence[winner]) {
highest_confidence[winner] = match_confidence;
set_high[winner] = TRUE;

}

Figure 2. art, end of the match() function

of parallelism is much bigger, which allows the STM version to
yield some speedups although the statically privatized version still
performs better.

We also conducted experiments with different datasets. In the
case of equake, it has a tremendous impact on the relative perfor-
mance of the static privatization and hardware atomic versions, as
shown in Figure 4. With the smaller train dataset, the privatization
version outperforms the hardware atomic version because the pri-
vate arrays fit in the cache and privatization removes all contention
on the hardware atomic instructions. As a side effect, this result
advocates for an adaptive compilation scheme generating multiple
versions and a decision tree to dynamically select the most appro-
priate version depending on program behavior and/or on features
of the input data.

For both benchmarks, we expect more complex loop transfor-
mations like loop tiling to further improve scalability. But we could
not yet find a tool to automate the process. Instead of pursuing the
manual transformation exploration, we prefer to test this hypothesis
on another set of benchmarks more amenable to automatic paral-
lelization with classical loop transformation tools. This will be the
subject of the next section.

Static only STM
8 16 24 8 16 24

equake 2.71 6.51 7.18 0.22 0.34 0.24
art 3.69 4.29 4.26 3.60 3.69 3.98

Figure 3. Speedups for equake and art

2.2 Complex loop transformations on data-dependent
control flow

Dynamic inspection and speculation are very appropriate for
equake, but we showed that it is not strictly needed to resort to
dynamic analysis to achieve good performance. Moreover it is not
always possible to generate lightweight instrumentation slices or

train(small) ref
8 16 24 8 16 24

Locks 0.15 0.21 0.09 0.17 0.22 0.12
STM 0.21 0.27 0.16 0.22 0.34 0.24
HW atomic 3.18 5.84 5.73 2.71 6.51 7.18
Privatization 5.13 6.32 6.01 1.48 2.78 2.04

Figure 4. Speedups for variants of equake on train and ref
datasets

profitable speculation schemes in general [9]. A good example
where we can not extract an efficient inspector is the Givens ro-
tation kernel in Figure 5. It features two nested data-dependent
conditions to distinguish between different complex sine/cosine
computations. These conditions prevent optimization and paral-
lelization in classical frameworks restricted to affine conditional
expressions and loop bounds [2,5].

There are loop-carried dependences from and to all three condi-
tional branches. These are flow dependences and cannot be elimi-
nated by array expansion (privatization, renaming) techniques. No
dynamic parallelism detection method alone can find scalable par-
allelism on this example: it may only extract parallelism in the inner
loops (which can also be extracted with static techniques, but does
not bring significant performance benefit). The loop nest must be
transformed to express coarser grain parallelism at the outer loop
level. This is the specialty of affine transformations in the polyhe-
dral framework: here, a composition of privatization, loop skewing
and loop tiling would be possible [5]. The question is how to auto-
mate this transformation.

Fortunately, profiling the kernel shows that the third (else)
branch is almost always executed on dense matrices. With the
assumption that the third branch is almost always executed, one
may speculatively ignore the dependences arising from the first
two branches. Even better, one may virtually eliminate the if
conditionals from the loop nest, yielding a static control loop nest.
With these assumptions PLUTO [2] is able to tile the loop nest,
which greatly enhance the scalability of the parallelization. The
first part of result is shown in Figure 6.2 As announced earlier, it
is more complex than tiling: the loop nest also needs to be skewed
to allow the outer loops to be permuted. This transformation is
always correct, even when the control flow takes one of the two
cold branches. It happens to preserve the dependences arising from
the two cold branches as well. We are in an ideal situation where the
speculative assumption offers extra flexibility in applying complex
transformations, but does not incur any runtime overhead. The end
result is a 7.02× speedup on 8 cores for 5000×5000 matrices, see
Figure 8.

Interestingly, the fact that dependences are compatible with a
composition and loop skewing and loop tiling can also be captured
with conservative, purely static methods, as demonstrated by Ben-
abderrahmane et al. [1], resulting in the exact same code.

2.3 Dynamic techniques helping loop transformations
In the previous experiments, different static methods were always
capable of extracting scalable parallelism. Figure 7 shows the for-
ward elimination step of the Gauss-J kernel, a Gauss-Jordan elim-
ination algorithm looking for zero diagonal elements at each elim-
ination step. Pivoting is the main source of data-dependent control
flow.

Just like the Givens rotation kernel, a combination of skewing
and tiling is required to achieve the best performance. Static anal-

2 floord(n, d) and ceild(n, d) implement n/d and (n + d − 1)/d
respectively, where / is the Euclidian division and not the truncating integer
division of C and most ISAs.



for (k=0; k<N; k++) {
for (i=0; i<M-1-k; i++) {
if (A_r[i+1][k] == 0.0 && A_i[i+1][k] == 0.0) {
// Data-dependent condition, rarely executed
for (j=k; j<N; j++) {
t1_r = A_r[i+1][j];
t1_i = A_i[i+1][j];
t2_r = A_r[i][j];
t2_i = A_i[i][j];
A_r[i][j] = t1_r;
A_i[i][j] = t1_i;
A_r[i+1][j] = t2_r;
A_i[i+1][j] = t2_i;

}
} else if (A_r[i][k] == 0.0 && A_i[i][k] == 0.0) {
// Data-dependent condition, rarely executed
ng = sqrt(A_r[i+1][k]*A_r[i+1][k]
+ A_i[i+1][k]*A_i[i+1][k]);

s_r = A_r[i+1][k] / ng;
s_i = -A_i[i+1][k] / ng;
for (j=k; j<N; j++) {
t1_r = -s_r*A_r[i][j] - s_i*A_i[i][j];
t1_i = -s_r*A_i[i][j] + s_i*A_r[i][j];
t2_r = s_r*A_r[i+1][j] - s_i*A_i[i+1][j];
t2_i = s_r*A_i[i+1][j] + s_i*A_r[i+1][j];
A_r[i][j] = t1_r;
A_i[i][j] = t1_i;
A_r[i+1][j] = t2_r;
A_i[i+1][j] = t2_i;

}
} else {
// Most frequently executed case
nm = sqrt(A_r[i][k] * A_r[i][k] + A_i[i][k] * A_i[i][k] +
A_r[i+1][k] * A_r[i+1][k] + A_i[i+1][k] * A_i[i+1][k]);

nf = sqrt(A_r[i][k] * A_r[i][k] + A_i[i][k] * A_i[i][k]);
sig_r = A_r[i][k] / nf;
sig_i = A_i[i][k] / nf;
c_r = nf / nm;
s_r = (sig_r * A_r[i+1][k] + sig_i * A_i[i+1][k]) / nm;
s_i = (sig_i * A_r[i+1][k] - sig_r * -A_i[i+1][k]) / nm;
for (j=k; j<N; j++) {
t1_r = -s_r*A_r[i][j] - s_i*A_i[i][j] + c_r*A_r[i+1][j];
t1_i = -s_r*A_i[i][j] + s_i*A_r[i][j] + c_r*A_i[i+1][j];
t2_r = c_r*A_r[i][j] + s_r*A_r[i+1][j] - s_i*A_i[i+1][j];
t2_i = c_r*A_i[i][j] + s_r*A_i[i+1][j] + s_i*A_r[i+1][j];
A_r[i][j] = t1_r;
A_i[i][j] = t1_i;
A_r[i+1][j] = t2_r;
A_i[i+1][j] = t2_i;

}
}

}
}

Figure 5. Givens kernel

ysis alone only extracts parallelism on the intermediate i loop,
leading to a weak 1.5× speedup on 8 cores. Dynamic analysis
amounts to speculatively assuming that diagonal elements are not
null, hence that row permutations will be infrequent. Such a spec-
ulative assumption can be used to dramatically improve the appli-
cability of static loop transformations: it “virtually” eliminates the
dependences due to row permutations, and enables PLUTO to dis-
cover the composition of skewing and tiling we were hoping for.
The transformed loop nest follows a similar pattern as Givens, with
extra conflict detection code at block boundaries; only the first pivot
at the north-west corner of a block needs to be checked to detect
mispeculations. It may lead to sequential recomputation of the al-
gorithm on the south-western part of the matrix defined by an of-
fending diagonal block.

Figure 8 shows the ideal results on a 10000×10000 random ma-
trix where pivoting is never required. Coarse grain parallelization
and locality optimization through tiling yield a super-linear 10.54×
speedup (both original and transformed versions are automatically
and fully vectorized).

// Skewed and tiled outer loops
for (c0=-1; c0<=min(floord(M-2, 16), floord(N+M-3, 32)); c0++) {
lb1 = max(max(max(0, ceild(32*c0-M+2,32)),
ceild(32*c0-N+1, 32)), ceild(32*c0-31,64));

ub1 = min(floord(M-2, 32), floord(32*c0+31, 32));

// Parallel loop on coarse-grain blocks
#pragma omp parallel for shared(c0,lb1,ub1) \

private(c1,c2,c3,c4,cond1,cond2)
for (c1=lb1; c1<=ub1; c1++) {
if (c0 <= c1) {
for (c3=max(0,32*c1);c3<=min(M-2,32*c1+31);c3++) {
cond1 = (A_r[c3+1][0] == 0.0 && A_i[c3+1][0] == 0.0);
cond2 = (A_r[c3][0] == 0.0 && A_i[c3][0] == 0.0);
if (cond1) {
for (c4=0;c4<=N-1;c4++) {
t1_r = A_r[c3+1][c4];
t1_i = A_i[c3+1][c4];
t2_r = A_r[c3][c4];
t2_i = A_i[c3][c4];
A_r[c3][c4] = t1_r;
A_i[c3][c4] = t1_i;
A_r[c3+1][c4] = t2_r;
A_i[c3+1][c4] = t2_i;

}
} else if (cond2) {
ng = sqrt(A_r[c3+1][0]*A_r[c3+1][0]
+ A_i[c3+1][0]*A_i[c3+1][0]);

s_r = A_r[c3+1][0] / ng;
s_i = -A_i[c3+1][0] / ng;
for (c4=0;c4<=N-1;c4++) {
t1_r = -s_r*A_r[c3][c4] - s_i*A_i[c3][c4];
t1_i = -s_r*A_i[c3][c4] + s_i*A_r[c3][c4];
t2_r = s_r*A_r[c3+1][c4] - s_i*A_i[c3+1][c4];
t2_i = s_r*A_i[c3+1][c4] + s_i*A_r[c3+1][c4];
A_r[c3][c4] = t1_r;
A_i[c3][c4] = t1_i;
A_r[c3+1][c4] = t2_r;
A_i[c3+1][c4] = t2_i;

}
} else {
nm = sqrt(A_r[c3][0]*A_r[c3][0]
+ A_i[c3][0]*A_i[c3][0]
+ A_r[c3+1][0]*A_r[c3+1][0]
+ A_i[c3+1][0]*A_i[c3+1][0]);

nf = sqrt(A_r[c3][0] * A_r[c3][0]
+ A_i[c3][0] * A_i[c3][0]);

sig_r = A_r[c3][0] / nf;
sig_i = A_i[c3][0] / nf;
c_r = nf/nm;
s_r = (sig_r*A_r[c3+1][0] + sig_i*A_i[c3+1][0]) / nm;
s_i = (sig_i*A_r[c3+1][0] - sig_r*A_i[c3+1][0]) / nm;
for (c4=0;c4<=N-1;c4++) {
t1_r = -s_r*A_r[c3][c4] - s_i*A_i[c3][c4]
+ c_r*A_r[c3+1][c4];

t1_i = -s_r*A_i[c3][c4] + s_i*A_r[c3][c4]
+ c_r*A_i[c3+1][c4];

t2_r = c_r*A_r[c3][c4] + s_r*A_r[c3+1][c4]
- s_i*A_i[c3+1][c4];

t2_i = c_r*A_i[c3][c4] + s_r*A_i[c3+1][c4]
+ s_i*A_r[c3+1][c4];

A_r[c3][c4] = t1_r;
A_i[c3][c4] = t1_i;
A_r[c3+1][c4] = t2_r;
A_i[c3+1][c4] = t2_i;

}
}

}
/* And much more */

Figure 6. Optimized Givens kernel (part)

In practice, the speculation always succeeds in the case of pos-
itive definite matrices.3 Positive definite matrices have other inter-
esting properties such as being nonsingular, having its largest el-
ement on the diagonal, and having all positive diagonal elements.
No (partial) pivoting is necessary for a strictly column diagonally

3 A matrix A is positive definite if xTAx > 0 for all nonzero x.



for (k=1; k<=n-1; ++k)
{
// Make sure that diagonal element is not null
// 1st data-dependent condition
if (a[k][k] == 0)
{
amax = abs(a[k][k]);
m = k;
for (i=k+1; i<=n; i++)
// Find the row with largest pivot
for (i=k+1; i<=n; i++) {
aabs = abs(a[i][k]);
// 2nd data-dependent condition
if (aabs > amax) {

amax = aabs;
m = i;

}
}

// Row permutation
// 3rd data-dependent condition
if (m != k) {
swap(b[m], b[k]);
for (j=k; j<=n; j++) {

swap(a[k][j], a[m][j]);
}

}
}

// Update a[][]
for (i=k+1; i<=n; i++) {
xfac = a[i][k] / a[k][k];
for (j=k+1; j<=n; j++) {
a[i][j] = a[i][j] - xfac*a[k][j];

}
b[i] = b[i] - xfac*b[k];

}
}

Figure 7. Forward reduction step of Gauss-J

Static Synergistic
Givens 1 7.02
Gauss-J 1.5 10.54

Figure 8. Givens and (ideal) Gauss-J speedups on the 8-core target

dominant matrix when performing Gaussian elimination or LU fac-
torization. Fortunately, many matrices that arise in finite element
methods are diagonally dominant: Figure 9 shows the speedups of
Gauss-J running on different matrices of the Harwell-Boeing col-
lection. Performance variations are due to the matrix size and mis-
peculations.

Synergistic Size
bcsstruc2 2.72 1806× 1806
watt 2.96 1856× 1856
bcsstruc4 3.23 1922× 1922
oilgen 3.54 2205× 2205
econaus 0.83 2529× 2529
psmigr 4.46 3140× 3140
gemat1 0.88 4929× 4929

Figure 9. Gauss-J speedups on the 8-core target, with different
Harwell-Boeing matrices

3. Towards Synergistic Transformations and
Dynamic Analyses

The previous experiments show that loop transformations can be
very profitable on dynamic, data-dependent control flow. Some-
times, conservative results of static analyses are sufficient to en-
able these transformations and achieve scalable parallelism. But
our point is not to oppose static and dynamic methods. It is much
more interesting to study the impact of dynamic information on
the effectiveness of loop nest transformations, and to exploit static
analysis knowledge to focus the dynamic analysis effort.

The Gauss-J kernel shows that excellent results can be expected
when operating dynamic analyses (inspection, speculation) and ag-
gressive loop nest optimizations in synergy. Indeed, we expect that
the benefits of static and dynamic methods can nurture each other
in a large number of parallelization and loop transformation prob-
lems. Under conservative analysis hypotheses, it may be possible
to transform the control flow to generate more efficient dynamic
analysis code; the result of these analyses may authorize bolder
hypotheses on the dependences (speculative or not), which in turn
open for more aggressive loop transformations.

Our study is still too preliminary to demonstrate the effective
profitability of such a synergistic approach on full applications.
However, it is already possible to sketch the principles of a polyhe-
dral compilation framework embedding dynamic information into
its search space construction, and generating inspection, conflict
detection and/or recovery code automatically (and on demand).

The polyhedral framework captures three important compo-
nents of the semantics of a loop nest in a rich, algebraic frame-
work. These components are the iteration domains (the set of loop
iterations) of all statements, the access functions for all array refer-
ences in these statements, and multidimensional scheduling func-
tions to capture the relative ordering of the statement iterations.
These three components are represented as systems of affine in-
equalities (unions of convex polyhedra). Affine transformations are
pushing their way into production compilers, including GCC [13]
and IBM XL, leveraging two unique advantages:

• arbitrarily complex compositions of loop transformations can
be represented, while offering a flexible framework to validate
their legality [5];

• well-structured search spaces can be built, allowing the design
effective heuristics to derive such complex sequences of loop
transformations automatically, addressing the parallelism and
locality interplay of modern architectures [2,4].

The recent work of Benabderrahmane et al. extends the ap-
plicability of the polyhedral framework to data-dependent control
flow [1], but it still relies on conservative results from static anal-
ysis. There is a clear opportunity to refine the set of affine depen-
dence constraints defining the search space of affine transforma-
tions. The main challenge is to capture the outcome of the data-
dependent condition of an inspection or conflict detection slice. The
condition itself cannot be precisely characterized statically (other-
wise there would be no justification for dynamic analysis); but it
has been generated by a previous compilation pass that can be de-
signed to retain the causal relation between the outcome of the con-
dition and the presence of a dependence constraint over a specific
set of statement instances.

For example, considering Gauss-J again, a negative outcome of
the first data-dependent condition a[k][k] == 0 guarantees the
absence of any dependence involving the row-swapping statements.
This is the very speculative hypothesis that enabled loop tiling,
improving locality and reducing synchronization overhead.

Since dynamic techniques can also benefit from loop transfor-
mations to become more effective and mitigate their intrinsic over-



head, it would be ideal to derive the inspection, conflict detection or
recovery code from the assumptions made in the polyhedral repre-
sentation itself. For example, a parallelization heuristic may choose
to weight dependences according to their likelihood to occur at run-
time (based on profile data), and to ignore some of these depen-
dences when looking for profitable affine transformations. Once a
good candidate composition of loop transformations is found, the
polyhedral code generator produces not only the transformed (par-
allel) loop nest, but also the interleaved dynamic analysis code to
validate the original assumption. This is exactly the principle of
hybrid analysis by Rus et al. [11], but extended beyond parallelism
detection and towards the validation of arbitrarily complex loop
nest transformations.

Considering Gauss-J once again, an expert programmer can
easily guess that the first data-dependent condition has a good
predictability potential on some relevant classes of matrices, and
that the second data-dependent condition aabs > amax is very un-
likely to be a relevant candidate for speculation because it amounts
to precisely predicting the row of the maximum pivot. A compiler
looking for speculative execution points may not be able to figure
this out statically, but it can rely on offline profiling, or multiver-
sioning and online profiling. Before opting for a more expensive
speculation strategy, the compiler can leverage static dependence
information to discover that a lightweight inspection scheme is not
sufficient to enable loop tiling: the permutation-hampering depen-
dences would be detected too late, until after the completion of the
i loop of the update part. In addition, the compiler can also use
static dependence information to figure out the actual impact of the
speculative hypothesis. Speculating on the negative outcome of the
first condition is sufficient to enable loop tiling, but a highly pre-
dictable condition that does not help refining the dependence con-
straints is unlikely to be a good speculation candidate in general.
Both predictability and dependence disambiguation are required:
this is exactly the objective of the sensitivity analysis by Rus et
al. [10], which we would like to revisit in the context of polyhedral
compilation.

4. Conclusion
This paper does not attempt to be complete, in terms of state-of-
the-art transformations or dynamic analysis techniques. Our goal is
to study whether the effectiveness of parallelizing compilers can or
cannot be improved when blending static and dynamic techniques
rather than opposing them. Our findings show that there is a strong
potential in following this path:

• aggressive loop nest optimizations are required for scalability,
and it is possible to enable them on data-dependent control-
flow;

• it is possible and profitable to leverage dynamic analysis infor-
mation to enhance the effectiveness and applicability of loop
transformations.

We also sketched how to embed dynamic information into affine
transformation spaces, while synthesizing inspection and/or specu-
lation code automatically.

We are working on fully automating these techniques. We also
plan to extend parallelism detection among acyclic control-flow re-
gions nested into loop nests, combining affine loop transformations
with decoupled software pipelining [8].

References
[1] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul.

The polyhedral model is more widely applicable than you think.
In Proceedings of the International Conference on Compiler

Construction (ETAPS CC’10), LNCS, Paphos, Cyprus, Mar. 2010.
Springer-Verlag.

[2] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelization and locality optimiza-
tion system. In ACM SIGPLAN Conf. on Programming Languages
Design and Implementation (PLDI’08), Tucson, AZ, USA, June
2008.

[3] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software transactional memory: why is it only a
research toy? Commun. ACM, 51(11):40–46, 2008.

[4] P. Feautrier. Some efficient solutions to the affine scheduling problem,
part II: multidimensional time. Intl. J. of Parallel Programming,
21(6):389–420, Dec. 1992.

[5] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies. Intl. J. of Parallel Pro-
gramming, 34(3):261–317, June 2006. Special issue on Microgrids.

[6] M. Mehrara, J. Hao, P. Hsu, and S. Mahlke. Parallelizing sequential
applications on commodity hardware using a low-cost software
transactional memory. In Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation,
pages 166–176, Dublin, Ireland, 2009. ACM.

[7] C. E. Oancea, A. Mycroft, and T. Harris. A lightweight in-place
implementation for software thread-level speculation. In Proceedings
of the twenty-first annual symposium on Parallelism in algorithms and
architectures, pages 223–232, Calgary, AB, Canada, 2009. ACM.

[8] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread
extraction with decoupled software pipelining. In Proceedings of
the 38th annual IEEE/ACM International Symposium on Microar-
chitecture, pages 105–118, Barcelona, Spain, 2005. IEEE Computer
Society.

[9] L. Rauchwerger. Run-time parallelization: its time has come. Journal
of Parallel Computing, 24(3-4), 1998.

[10] S. Rus, M. Pennings, and L. Rauchwerger. Sensitivity analysis for
automatic parallelization on multi-cores. In Proceedings of the 21st
annual international conference on Supercomputing, pages 263–273,
Seattle, Washington, 2007. ACM.

[11] S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid analysis: Static
& dynamic memory reference analysis. International Journal of
Parallel Programming, 31(4):251–283, 2003.

[12] B. Saha, A. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: a high performance software transactional
memory system for a multi-core runtime. In Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 187–197, New York, New York, USA,
2006. ACM.

[13] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li, T. Grosser, H. Jagasia,
R. Ladelsky, S. Pop, J. Sjödin, and R. Upadrasta. Graphite two years
after: First lessons learned from real-world polyhedral compilation.
In GCC Research Opportunities Workshop (GROW’10), Pisa, Italy,
Jan. 2010.

[14] X. Zhuang, A. E. Eichenberger, Y. Luo, K. O’Brien, and K. O’Brien.
Exploiting parallelism with Dependence-Aware scheduling. In
Parallel Architectures and Compilation Techniques, International
Conference on, pages 193–202, Los Alamitos, CA, USA, 2009. IEEE
Computer Society.


