Neural Network Assisted Tile Size Selection

Mohammed Rahman, Louis-Noël Pouchet and P. Sadayappan

Dept. of Computer Science and Engineering Ohio State University

June 22, 2010

iWAPT 2010 Workshop Berkeley, USA

Overview

Situation:

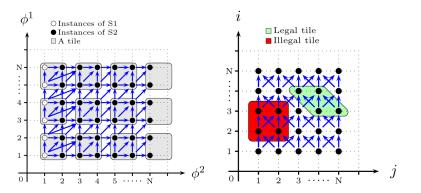
- $\blacktriangleright\,$ New advances in parametric tiling \rightarrow more user code to be tuned
- The problem of tile size selection is complex and unsolved!

Our approach:

- Use machine learning to create a performance predictor of tile size performance, for a specific program
- Rely on the distribution shape to extract promising subspaces for empirical search
- \blacktriangleright Outcome: < 2% of the space traversed \rightarrow 90+% of maximal speedup achieved

Tiling

- Tiling partition the computation into blocks
- Note we consider only rectangular tiling here
- For tiling to be legal, such a partitioning must be legal



Parametric Tiling

Automatic parametric tiling [ICS'09,CGO'10]:

- Produce code where the tile dimensions are parameters
- Seamlessly find/apply all required transformation to make the code tilable
- Actual tile sizes are given at run-time
- very useful for tile size selection (no need to recompile)
- recent progresses have generalized the approach:
 - Operates on arbitrary affine-control loops (imperfectly nested)
 - Produce good quality code
 - Even expose pipeline-parallelism if needed
 - Software (from OSU): Pluto, PrimeTile/DynTile/PTile

Tile Size Selection

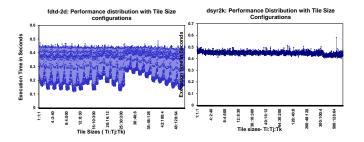
Problem: how to select the tile size to have the best performance?

- data reuse within the execution of a tile;
- data reuse between tiles;
- the layout in memory of the data used in a tile;
- the relative penalty of misses at each level of the hierarchy, which is machine-dependent.
- the cache replacement policy;
- the interaction with other units, such at prefetching;
- the interaction with vectorization, to enable a profitable steady-state for the vectorized loop(s);

► ...

Performance Distribution

Performance distribution of fdtd-2d and syr2k



Search space: 10648 possible tile sizes

- ► {1,2,4,6,8,10,12,16,30,32,40,48,64,100,128, 150,200,256,300,400,500,600}
- Machine: Core i7 (1 thread)
- 2 "standard" distribution shapes

Ojectives

Correlate execution time with tile sizes

- (Static) performance models do exist...
- ... but fail to capture the interplay between all hardware components
- Usually better suited for well-known problems (eg, uniform reuse + square tiles)
- Another view: pruning the space of poor-performing tile sizes

Our approach:

- Build a neural network to model the performance distribution
- Focus directly on the execution time
- ANN dedicated to a specific program + dataset size

Neural Network

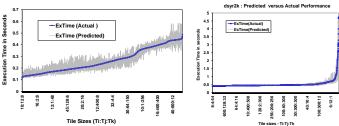
Layout:

- Fully connected, multi-layer perceptron (MLP)
- lnput layer: the tile sizes (T_i, T_j, T_k)
- Output layer: predicted execution time
- One hidden layer consisting of 30 hidden neurons
- Use Stuttgart Neural Network Simulator library

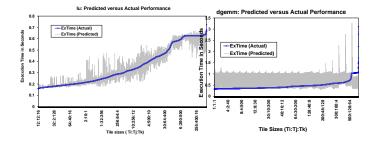
Training:

- Select 5% (530 tuples) from the search space of 10648
- Run the program on the machine using the tile size specified by the tuples
- Train with resilient back-propagation (rprop), using the actual execution time for a tuple
- Standard 10% cross-validation procedure

Performance Prediction [1/2]



Performance Prediction [2/2]



Discussions

- for trmm, lu, 2d-jacobi, syr2k and doitgen, predict more than 90% of our search space with less than 10% deviation for the actual execution time
- In total, can predict 80% and more with less than 10% deviation
- Usually smaller deviation for the best tile sizes
- \rightarrow These ANN are able to model the performance distribution

Openings:

- Program classifier w.r.t. performance distribution
- Training: do not "fit" that much the training points?

Selecting the Best Tile Size

The performance distribution can drive the empirical search to focus on promising subspaces

Tile size selection:

- Random approach has a huge variability on some distribution shapes
- Exhaustive search is likely not needed
- Need for an intermediate solution
 - Low number of empirical runs
 - Good convergence, good variability
 - General enough to work on arbitrary user codes

Overview of the Algorithm

- Generate a parametrically tiled code
- 3 Randomly select x% of the tile size space, and run them on the machine
- Train an ANN using this data
- Use the ANN to predict performance of the entire space
- Sollect y tile sizes that are predicted best and not already ran
- Sun the y tile sizes on the machine, output the best found

Experimental Setup

- Studied various kernels (perfectly/imperfectly nested, BLAS & stencils)
- Only focused on single-threaded execution, on an Intel Core i7
- Comparison: simple random search (R), ANN search (ANN)
- Repeat each experiment 100 times, for various sampling rate

Experimental Results (y = 50**)**

		doitgen	gemm	syr2k	lu	2d-jacobi	fdtd-2d
1%	R-best	100%	99.86%	98.15%	99.89%	99.91%	97.75%
	R-average	98.71%	96.29%	94.80%	92.19%	94.10%	84.15%
	R-worst	95.35%	69.64%	89.81%	40.63%	17.69%	31.02%
	ANN-best	100%	99.86%	100%	100%	99.91%	100%
	ANN-average	98.89%	96.35%	96.01%	92.62%	98.51%	84.50%
	ANN-worst	97.26%	82.93%	89.79%	79.68%	94.23%	66.53%
2%	R-best	99.97%	99.86%	98.71%	99.89%	100%	100%
	R-average	98.71%	96.42%	94.80%	92.87%	97.60%	84.10%
	R-worst	86.49%	67.89%	88.20%	45.29%	55.98%	27.30%
	ANN-best	100%	99.86%	100%	100%	100%	100%
	ANN-average	98.89%	96.76%	96.69%	95.34%	98.55%	88.61%
	ANN-worst	97.26%	89.83%	89.65%	85.80%	94.17%	60.65%
3%	R-best	99.97%	99.86%	98.71%	99.89%	100%	100%
	R-average	98.77%	96.47%	94.80%	94.27%	98.39%	85.47%
	R-worst	94.89%	63.58%	87.99%	61.24%	84.54%	47.99%
	ANN-best	99.97%	99.86%	100%	100%	100%	100%
	ANN-average	98.93%	97.14%	97.17%	95.34%	98.74%	91.45%
	ANN-worst	97.64%	91.01%	92.27%	85.80%	94.50%	63.34%
4%	R-best	99.97%	99.86%	98.71%	99.89%	100%	100%
	R-average	98.80%	96.65%	94.93%	92.19%	98.41%	85.55%
	R-worst	96.86%	69.73%	88.57%	52.03%	82.47%	43.74%
	ANN-best	100%	99.86%	100%	100%	100%	100%
	ANN-average	98.99%	97.67%	97.20%	95.79%	98.90%	93.55%
	ANN-worst	98.28%	93.65%	92.66%	85.80%	94.50%	79.26%

Some Related Work

Epshteyn et al. [LCPC'05]:

- Search-oriented contribution
- Uses regression curves to approximate the performance distribution
- Uses active learning to select good candidates for empirical evaluation
- Good results for BLAS kernels

Yuki *et al.* [CGO'10]:

- Aims at selecting/combining between different static models
- Uses program features to characterize accesses, train ANN
- Results demonstrated for matrix-like kernels

Conclusions and Future Work

ANN is a candidate approach to connect tile sizes with performance

- Good prediction quality
- Deviation usually smaller for the good points
- Combined search heuristic proposed:
 - Strong variability improvement over naive random approach
 - ▶ 90+% efficiency using < 2% of the space, likely can be improved further

Future work:

Generalization!

- Categorize benchmarks reg. the performance distribution shape
- Dataset size
- Do not try to fit the random samples during training
 - Reduce the training time
 - problem: ANN configuration

Acknowledgements

This work was funded in part by the U.S. National Science Foundation through award 0926688 and the Defense Advanced Research Projects Agency through AFRL Contract FA8650-09-C-7915. The opinions and findings in this document do not necessarily reflect the views of either the United States Government or the Ohio State University.