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Abstract High-level program optimizations, such as loop transformations, are crit-
ical for high performance on multi-core targets. However, complex sequences of
loop transformations are often required to expose parallelism (both coarse-grain and
fine-grain) and improve data locality. The polyhedral compilation framework has
proved to be very effective at representing these complex sequences and restructuring
compute-intensive applications, seamlessly handling perfectly and imperfectly nested
loops. It models arbitrarily complex sequences of loop transformations in a unified
mathematical framework, dramatically increasing the expressiveness (and expected
effectiveness) of the loop optimization stage. Nevertheless identifying the most effec-
tive loop transformations remains a major challenge: current state-of-the-art heuris-
tics in polyhedral frameworks simply fail to expose good performance over a wide
range of numerical applications. Their lack of effectiveness is mainly due to simplis-
tic performance models that do not reflect the complexity today’s processors (CPU,
cache behavior, etc.).

We address the problem of selecting the best polyhedral optimizations with ded-
icated machine learning models, trained specifically on the target machine. We show
that these models can quickly select high-performance optimizations with very lim-
ited iterative search. We decouple the problem of selecting good complex sequences
of optimizations in two stages: (1) we narrow the set of candidate optimizations using
static cost models to select the loop transformations that implement specific high-
level optimizations (e.g., tiling, parallelism, etc.); (2) we predict the performance of
each high-level complex optimization sequence with trained models that take as input
a performance-counter characterization of the original program.

Our end-to-end framework is validated using numerous benchmarks on two mod-
ern multi-core platforms. We investigate a variety of different machine learning algo-
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rithms and hardware counters, and we obtain performance improvements over pro-
ductions compilers ranging on average from 3.2× to 8.7×, by running not more than
6 program variants from a polyhedral optimization space.

Keywords Loop transformation · polyhedral optimization · iterative compilation · ·
machine learning · performance counters

1 Introduction

Numerous scientific and engineering compute-intensive applications spend most of
their execution time in loop nests that are amenable to high-level optimizations. Typi-
cal examples include dense linear algebra codes (e.g. [4,6,57]) and stencil-based iter-
ative methods (e.g. [19, 40, 50]). Those applications are typically executed on multi-
core architectures, where the data access cost is hidden behind complex memory hi-
erarchies. High-level loop transformations are critical to achieving high performance
in such context to correctly exploit the various levels of parallelism (course-grained
versus fine-grained) available and to leverage the program’s data locality potential.
However, the best loop optimization sequence is program-specific and depends on
the features of the target hardware. Thus, tuning the high-level loop transformations is
critical to reach the best possible performance as illustrated by Pouchet et al. [44–46].

Although significant advances have been made in developing robust and expres-
sive compiler optimization frameworks, identifying the best high-level loop transfor-
mations for a given program and architecture remains an open problem. Manually-
constructed heuristics are used to identify good transformations, but they rely on
overly simplified models of the machine. These simple static models are unable to
characterize the complex interplay between all the hardware resources (e.g., cache,
TLBs, instruction pipelines, hardware prefetch units, SIMD units, etc.). Moreover,
optimization strategies often have conflicting objectives: for instance maximizing
thread-level parallelism may hamper SIMD-level parallelism and can degrade data
locality.

In the quest for performance portability, the compiler community has explored
research based on iterative compilation and machine learning to tune the compiler
optimization flags or optimization passes to find the best set of optimizations for a
given combination of benchmarks and target architectures. Although significant per-
formance improvements have been demonstrated [1, 27, 37, 39], the performance ob-
tained has generally been limited by the optimizations selected for automatic tuning
and by the degrees of freedom available for exploration.

The polyhedral optimization framework has been demonstrated as a powerful al-
ternative to traditional compilation frameworks. Polyhedral frameworks can optimize
a restricted, but important, set of loop nests that contain only affine array accesses.
For loops that are amenable to polyhedral compilation, these frameworks can model
an arbitrarily complex sequence of loop transformations in a single optimization step
within a powerful and unified mathematical framework [22, 23, 31, 32, 35, 59]. The
downside of this expressiveness is the difficulty in selecting an effective set of affine
transformation coefficients that result in the best combination of tiling, coarse- and
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fine-grain parallelization, fusion, distribution, interchange, skewing, permutation and
shifting [13, 28, 46, 53].

Past and current work in polyhedral compilation has contributed algorithms and
tools to expose model-driven approaches for various high-level transformations, in-
cluding (1) loop fusion and distribution to partition the program into independent
loop nests, (2) loop tiling to partition (a sequence of) loop nests into blocks of com-
putations, (3) thread-level parallelism extraction, and (4) SIMD-level parallelism ex-
traction. There has been some recent limited success at developing analytical cost
models to select good complex optimization sequences in the polyhedral model. For
example, Bondhugula et al. proposed the first integrated heuristic for parallelization,
fusion, and tiling in the polyhedral model [8, 9] subsuming all the above optimiza-
tions into a single, tunable cost-model. Individual objectives such as the degree of
fusion or the application of tiling can implicitly be tuned by minor ad-hoc modifica-
tions of Bondhugula’s cost model. Nevertheless, it has been shown that these simple
static models are ineffective at systematically select the most effective transforma-
tion on a range of numerical applications [46]. Previous work on iterative compi-
lation based on the polyhedral framework showed that there are opportunities for
large performance improvements over native compilers [3, 44–46, 53], significantly
outperforming compilation flag tuning, optimization pass selection, or optimization
phase-ordering. However, directly tuning the polyhedral transformation in its original
abstract representation remains a highly complex problem because the search space
is usually infinite. Despite progress in understanding the structure of this space and
how to bound its size [47], this problem remains largely intractable in its original
form.

We now summarize the contributions of the current article. We address the prob-
lem of effectively balancing the trade-off between data locality and various levels of
parallelism in a large set of high-level optimizations to achieve the best performance.
As a direct benefit of our problem formalization, we integrate the power of iterative
compilation schemes with the expressiveness and efficiency of high-level polyhedral
transformations. Our technique relies on a training phase where numerous possibil-
ities to drive the high-level optimizer are tested using a source-to-source polyhedral
compiler on top of a standard production compiler. We show how the problem of se-
lecting the best optimization criteria can be effectively learned using feedback from
the dynamic behavior of various possible high-level transformations. By correlating
hardware performance counters to the success of a polyhedral optimization sequence
we are able to build a model that predicts very effective polyhedral optimization
sequences for an unseen program. Our results show it is possible to achieve solid
performance improvements by using the high-level transformation that was predicted
best by our model, improving performance on average by 2× up to 7× over the
native compiler. To the best of our knowledge, this is the first effort that demon-
strates very effective discovery of complex high-level loop transformations within
the polyhedral model using machine learning models. A performance that is close to
the search-space-optimal can be attained by evaluating no more than 6 optimized pro-
gram versions, using an iterative compilation approach. We explore different learning
algorithms for building our models and report their ability to predict good polyhedral
transformations. We observe that while no single algorithm is systematically the best
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for all benchmarks, by combining models we can reach 8.7× average performance
improvement over the native compiler, by testing no more than 6 program versions.
Finally, we study feature reduction on our set of performance counters and show that
only a handful of counters is required to characterize programs for this problem.

In Section 2, we first present details on the optimization space we consider before
analyzing the performance distribution of the considered search space in Section 3.
We present our machine learning approach to select good optimizations in Section 4.
Experimental results are presented in Section 5. We discuss related work in Section 6.

2 Optimization Space

We now present the optimization search space we consider in this work. Any can-
didate optimization in this space can be automatically computed and applied on the
input program, thus producing a transformed variant to be executed on the target ma-
chine. Deciding how to select an optimization in this space is the subject of the later
Section 4.

2.1 Overview of the Approach

High-level loop transformations are crucial to effectively map a piece of code onto
a particular processor. Effective mapping typically requires the partitioning of the
computation into disjoint parts to be executed on different cores, and the transforma-
tion of those partitions into streams to be executed on each SIMD unit. In addition,
the way data is accessed by the code may need to be reorganized to better exploit
the cache memory hierarchy and improve communication costs. Addressing these
challenges for compute-intensive programs has been demonstrated to be a strength
of the polyhedral optimization framework. Several previous studies have shown how
tiling, parallelization, vectorization, or data locality enhancement can be efficiently
addressed in an affine transformation framework [9, 23, 31, 35, 49, 54].

High-level optimization primitives, such as tiling or parallelization, often require
a complex sequence of enabling loop transformations to be applied while preserv-
ing the semantics. As an example, tiling a loop nest may require skewing, fusion,
peeling, and shifting of loop iterations before it can be applied. A limitation of pre-
vious approaches, whether polyhedral-based [28,36] or syntactic-based [12], was the
challenge of computing the enabling sequence that was required to apply the main
optimization primitives. This led most previous work to be limited in applicability:
the enabling transformations were not considered in a separate fashion, so that trans-
formations such as tiling and coarse-grained parallelization could not be applied in
the most effective fashion.

We address this issue by decoupling the problem of selecting a polyhedral opti-
mization into two steps: (1) select a sequence of high-level optimizations, from the set
shown in Table 1, this selection being based on machine learning and feedback from
hardware performance counters; and (2) for the selected high-level optimizations,
use static cost models to compute the appropriate enabling transformations. We thus
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keep the expressiveness and applicability of the polyhedral model, while focusing the
selection decision only on the main transformations.

Table 1 shows the various high-level optimizations we consider and their pa-
rameter range, they are each described in the following sections. For each of these
high-level optimizations, we rely on a polyhedral-based transformation framework
to compute any required enabling loop transformation. If such sequence of enabling
loop transformations exist, it will be found by the static model.

Table 1 High-level primitives considered in this work

High-level optimization Possible values
loop fusion / distribution max-fuse, smart-fuse, no-fuse
loop tiling tile size (one per tiled loop) :1 (no tiling), 32
wavefronting on, off
thread-level parallelization on, off
pre-vectorization on, off
SIMD-level parallelization on, off
register-tiling unroll factors: 1 (no unrolling), 2, 4, 8

We remark that high-level transformations are by far not sufficient to achieve
optimal performance. Numerous low-level optimizations are also required, and chip
makers such as Intel have developed extremely effective closed-source compilers for
their processors.

We consider such compilers as black-boxes, because of the difficulty in precisely
determining which optimizations are implemented and when. Technically, the loop
optimization stages of those compilers may interact with our source-level transforma-
tions in a detrimental way, by either altering the loop structure we generated, and/or
by becoming unable to apply a profitable loop optimization on the code we have gen-
erated. A typical example is SIMD vectorization, which may or may not be success-
fully applied by the back-end compiler on the transformed program we generated,
even if the resulting program is indeed vectorizable. Consequently, our optimization
scheme may result in sub-optimal performance if for instance the compiler is unable
to apply SIMD vectorization on our transformed program while it was able to apply
it on the original program or some other variants. A precise and fine-grain tracking of
the back-end compiler optimizations applied would be required to avoid this potential
issue, but we have not addressed this problem in the present work. We also highlight
in Section 3 that indeed the optimal high-level transformation we generate must be
compiler specific. Our approach considers the back-end compiler as part of the target
machine, and we focus exclusively on driving the optimization process via high-level
source-to-source polyhedral transformations.
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2.2 Polyhedral Model

Sequences of (possibly imperfectly nested) loops amenable to polyhedral optimiza-
tion are called static control parts (SCoP) [23,28] roughly defined as a set of (possibly
imperfectly nested) consecutive statements such that all loop bounds and conditionals
are affine functions of the surrounding loop iterators and global variables (constants
that are unknown at compile time but invariant in the loop nest). Relaxation of these
constraints to arbitrary side-effect free programs has recently been proposed [7], and
our optimization scheme is fully compatible with this extended polyhedral model.

Polyhedral program optimization involves the analysis of the input program to
extract its polyhedral representation, including dependence information and array
access patterns. These are defined at the granularity of the statement instance, that is,
an executed occurrence of a syntactic statement.

A program transformation is represented by an affine multidimensional sched-
ule. This schedule specifies the order in which each statement instance is executed.
A schedule captures in a single step what may typically correspond to a sequence
of loop transformations [28]. Arbitrary compositions of affine loop transformations
(e.g., skewing, interchange, multi-level distribution, fusion, peeling and shifting) are
embedded in a single affine schedule for the program. Every static control program
has a multidimensional affine schedule [23], and tiling can be applied by extending
the iteration domain of the statements with additional tile loop dimensions, in con-
junction with suitable modifications of the schedule [28].

Finally, syntactic code is regenerated from the polyhedral representation on which
the optimization has been applied. We use the state-of-the art code generator CLOOG
[5] to perform this task.

We used the open-source polyhedral compiler PoCC1 for this paper, and we have
extended it for the purposes of enabling more effective model-based program trans-
formations.

2.3 Loop Tiling

Tiling is a crucial loop transformation for parallelism and locality. It partitions the
computation into rectangular blocks that can be executed atomically. When tiling is
applied on a program, we rely on the Tiling Hyperplane method [9] to compute a
sequence of enabling loop transformations to make tiling legal on the generated loop
nests.

Two important performance factors must be considered for the profitability of
tiling. First, tiling may be detrimental as it may introduce complex loop structure
and the computation overhead may not be compensated by the locality improvement.
This is particularly the case for computations where data locality is not the perfor-
mance bottleneck. Second, the size of the tiles could have a dramatic impact on the
performance of the generated code. To obtain good performance with tiling, the data
footprint of a tile should typically reside in the L1 cache. The problem of selecting
the optimal tile size is known to be difficult and empirical search is often used for

1 http://pocc.sourceforge.net
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high-performance codes [55, 58, 60]. To limit the search space while preserving sig-
nificant expressiveness, we allow the specification of a limited number of tile sizes
to be considered for each tiled loop. In our experiments, we use only two possible
sizes for a tile dimension: either 1 (i.e., no tiling along this loop level) or 32. The
total number of possibilities is a function of the depth of the loop nest to be tiled: for
instance, for a doubly-nested loop we test rectangular tiles of size 1× 1 (no tiling),
1×32, 32×1 and 32×32.

2.4 Loop Fusion/Distribution

In the framework used in the present paper, there is an equivalence between (i) maxi-
mally fusing statements, (ii) maximizing the number of tilable loop levels, (iii) max-
imizing locality and (iv) minimizing communications. In this seminal formulation,
Bondhugula proposed to find a transformation that maximizes the number of fused
statements on the whole program using an Integer Linear Program (ILP) encoding
of the problem [8]. However, maximally fusing statements may prevent paralleliza-
tion and vectorization, and the trade-off between improving locality despite reducing
parallelization possibilities is not captured. Secondly, fusion may interfere with hard-
ware prefetching. Also, after fusion, too many data spaces may contend for use of
the same cache, reducing the effective cache capacity for each statement. Conflict
misses are also likely to increase. Obviously, systematically distributing all loops is
generally not a better solution as it may be detrimental to locality.

The best approach clearly depends on the target architecture, and the performance
variability of an optimizing transformation across different architectures creates a
burden in devising portable optimization schemes. Pouchet et al. showed that itera-
tive search among the possible fusion structures can provide significant performance
improvement [46, 47]. However, to control the size of the search space we rely on
three specific fusion / distribution schemes that proved to be effective for a wide va-
riety of programs. The three high-level fusion schemes we consider in this paper are:
(1) no-fuse, where we do not fuse at all; (2) smart-fuse, where we only fuse together
statements that carry data reuse and of similar loop nesting depth; and (3) max-fuse,
where we maximally fuse statements. These three cases are easily implemented in
the polyhedral framework, simply by restricting the cost function of the Tiling Hy-
perplane method to operate only on a given (possibly empty) set of statements.

Interaction with tiling. The scope of application of tiling directly depends on the
fusion scheme applied on the program. Only statements under a common outer loop
may be grouped in a single tile. Maximal fusion results in tiles performing more
computations, while smart fusion may result in more tiles to be executed, but with
fewer operations in them. The cache pressure is thus directly driven by the fusion and
tiling scheme.
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2.5 Wavefronting

When a loop nest is tiled, it is always possible to execute the tiles either in parallel
or in a pipeline-parallel fashion. Wavefronting is the transformation creating a valid,
pipeline-parallel schedule for the tiled execution. It is useful only to expose coarse-
grain parallelism between tiles, when the outer-most tile loop is not already sync-
free parallel. When wavefronting is turned on, the tile loops are modified to expose
parallelism at the expense of increasing the distance between reused elements. So,
there is a trade-off to the application of this transformation, and as such is part of our
high-level optimization choices. Additionally, we remark that wavefronting will not
be useful for a program where thread-level parallelism is not also useful.

2.5.1 Pre-vectorization

The tiling hyperplane method finds a loop transformation that pushes dependences to
the inner loop levels, naturally exposing coarse-grain parallelism. Nevertheless, for
effective SIMD execution it is desirable to expose at least one level of inner paral-
lelism. The pre-vectorization stage modifies the affine schedule of the program (that
is, the transformation to be applied) so that the inner-most parallel loop dimension is
sunk into the inner-most loop dimension.

This approach can guarantee that the inner-most loop(s) of a program are sync-
free parallel, when the dependence permits. It has the advantage of enforcing the
parallelism of all loops at a given depth in the generated loop nest, for the entire
program. However this simple model shows significant limitations: no information
is taken into account regarding the contiguity of data accesses, a critical concern for
effective SIMD execution. Also, it works as a pre-pass before the code is transformed,
i.e., it does not take into account the changes in the loop structure that is going to be
generated by CLooG (our polyhedral code generator). Nevertheless, this model has
shown potential to increase the success of the new SIMD-level parallelization pass
that we have implemented in PoCC (detailed next).

2.5.2 SIMD-level parallelization

Our approach to vectorization extends recent analytical modeling results by Tri-
funovic et al. [54]. We take advantage of the polyhedral representation to restruc-
ture imperfectly nested programs allowing us to expose vectorization opportunities
in inner loops. The most important part of the transformation to enable vectorization
comes from the selection of which parallel loop is moved to the innermost position.
The cost model selects a synchronization-free loop that minimizes the memory stride
of the data accessed by two contiguous iterations of the loop [54]. This is a more
SIMD-friendly approach than simple pre-vectorization. We note however that this in-
terchange may not always lead to the optimal vectorization because of the limitations
of the model or may simply be useless for a machine which does not support SIMD
instructions. In addition, we have implemented this vectorization transformation pass
on the generated code after applying the tiling hyperplane method. Our algorithm
operates on individual loop nests generated after the separation phase of CLooG and
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does not require to have all loops at a given depth in the program to be vectorized in
a similar fashion. To achieve this, we benefit from the fact that programs generated
by CLooG are also polyhedral programs, that is we can re-analyze the transformed
code and extract a polyhedral representation from it. When SIMD vectorization is
turned on, we mark the vectorizable loops with ivdep and vector always pragmas
to facilitate the task of the compiler auto-vectorization.

2.5.3 Thread-level parallelization

Thread-level parallelism is not always beneficial, e.g., with small kernels that execute
few iterations or when it prevents vectorization. It is thus critical to be able to disable
thread-level parallelism in some instances. We have designed a specific optimization
pass in PoCC that analyzes the generated code, in a similar fashion to SIMD-level
parallelization. It finds the outer-most parallel loop in each loop nest in the gener-
ated code using automated scalar privatization techniques. When this optimization
is turned on, we use OpenMP to generate parallel code and insert a #pragma omp
parallel for above the outer-most parallel loop that was found.

2.5.4 Register Tiling

Loop unrolling is known to help expose instruction-level parallelism. Tuning the
unrolling factor can influence register pressure in a manner that is compiler and
machine-dependent. Register tiling, or unroll-and-jam, combines the power of un-
rolling multiple permutable loops in the inner loop body. In our framework, register
tiling is performed as a post-pass considering only the inner-most two loops in a loop
nest, if they are permutable. We expose four different sizes for the unroll factor, which
is the same for both loops to be unroll-and-jammed: 1 (no unrolling), 2, 4 and 8.

2.6 Putting it all Together

A sequence of high-level optimizations is encoded as a fixed-length vector of bits,
referred to as T . To each distinct value of T corresponds a distinct combination of the
above primitives. Technically, on/off primitives (e.g., SIMD-level parallelization and
thread-Level parallelization) are encoded using a single bit.

Non-binary optimizations such as the unroll factor or the tile sizes are encoded
using a “thermometer” scale. As an illustration, to model unroll-and-jam factors we
use three binary variables (x,y,z). The pair (0,0,0) denotes no unroll-and-jam, an
unroll factor of 2 is denoted by (0,0,1), an unroll factor of 4 is denoted by (0,1,1),
and unroll factor of 8 by (1,1,1). Different tile sizes are encoded in a similar fashion.
In our experiments, we only model the tile size on the first three dimensions (leading
to 9 possibilities), and use a constant size for T . Thus, for programs where the tiles
have a lower dimensionality, some bits in T have no impact on the transformation.

To generate the polyhedral transformation corresponding to a specific value of T ,
we proceed as follows.
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1. Partition the set of statements according to the fusion choice (one in no-fuse,
smart-fuse or max-fuse);

2. Apply the Tiling Hyperplane method [9] locally on each partition to obtain a
schedule for the program that (a) implements the fusion choice, (b) maximizes the
number of parallel loops, and (c) maximizes the number of tilable dimensions [8]
on each individual partition;

3. Modify the schedule according to the pre-vectorization model, if pre-vector is set,
to expose inner parallel loops;

4. Modify the schedule to generate a wavefront parallel schedule, if wavefronting is
set.

5. Tile all tilable loop nests, if any, if tile is set. The tile sizes to be used are encoded
in T .

6. Extract the polyhedral representation of the generated code, for subsequent anal-
ysis.

7. Apply the per loop nest SIMD-level parallelization pass, if set.
8. Apply the per loop nest thread-level parallelization pass, if set.
9. Perform register tiling, if register-tiling is set. The unroll factors to be used are

encoded in T .

Candidate Search Space. The final search space we consider depends on the program.
For instance, not all programs exhibit coarse-grain parallelism or are tilable. For cases
where an optimization has no effect on the final program because of semantic consid-
erations, multiple values of T lead to the same candidate code version. Nevertheless,
the applicability of those optimizations directly derives from the expressiveness of
the polyhedral model, which significantly improves over other existing frameworks.

The search space, considering only values of T leading to distinct transformed
programs, ranges from 91 to 432 in our experiments, out of 1152 possible combina-
tions that can be encoded in T .

3 Analysis of the Performance Distribution

We now present an extensive quantitative analysis of the performance distribution of
the search space of polyhedral transformations that we have built. Section 3.1 presents
the machines and benchmarks we experimented with. We then extensively discuss the
performance distribution for numerous benchmarks, machines and compilers, provid-
ing experimental evidence of the specificity of the optimal transformation to each of
these three aspects.

3.1 Experimental Setup

We provide experimental results on two multi-core systems: Nehalem, a 2-socket 4-
core Intel Xeon 5620 (16 H/W threads) with 16 GB of memory, and Q9650, a single
socket 4-core Intel Quad Q9650 with 8 GB of memory. The back-end compilers used
for the baseline and all candidate polyhedral optimizations are Intel ICC with option
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-fast and GCC with option -O3. ICC version 11.1 and GCC version 4.5 were used
for Nehalem, and ICC version 10.1 and GCC version 4.5 were used for Q9650. Thus,
we present results for four different machine-compiler configurations: (1) Nehalem-
ICC11.1 (2) Nehalem-GCC4.5 (3) Q9650-ICC10.1 and (4) Q9650-GCC4.5.

Our benchmark suite is PolyBench v2.1 [30] composed of 30 different kernels
and applications containing static control parts. The list of programs in PolyBench is
shown in Table 2. We used the reference datasets [30].

Prog. Name Description

2mm 2 Matrix Multiplications (D=A×B; E=C×D)
3mm 3 Matrix Multiplications (E=A×B; F=C×D; G=E×F)
adi Alternating Direction Implicit solver
atax Matrix Transpose and Vector Multiplication
bicg BiCG Sub Kernel of BiCGStab Linear Solver
cholesky Cholesky Decomposition
correlation Correlation Computation
covariance Covariance Computation
doitgen Multiresolution analysis kernel (MADNESS)
durbin Toeplitz system solver
dynprog Dynamic programming (2D)
fdtd-2d 2-D Finite Different Time Domain Kernel
fdtd-apml FDTD using Anisotropic Perfectly Matched Layer
gauss-filter Gaussian Filter
gemm Matrix-multiply C = αA×B + βC
gemver Vector Multiplication and Matrix Addition
gesummv Scalar, Vector and Matrix Multiplication
gramschmidt Gram-Schmidt decomposition
jacobi-1D 1-D Jacobi stencil computation
jacobi-2D 2-D Jacobi stencil computation
lu LU decomposition
ludcmp LU decomposition
mvt Matrix Vector Product and Transpose
reg-detect 2-D Image processing
seidel 2-D Seidel stencil computation
symm Symmetric matrix-multiply
syr2k Symmetric rank−2k operations
syrk Symmetric rank−k operations
trisolv Triangular solver
trmm Triangular matrix-multiply

Table 2 The 30 programs in PolyBench V2.1 were used for our training and testing of each prediction
model. They are set of programs including computations used in data mining, image processing, and linear
algebra solvers and kernels

3.2 Overview of the Performance Distribution

We first propose to quantify the performance distribution, from the perspective of
determining the fraction of the search space that achieves better performance than
the original code, and the fraction that achieves a nearly optimal performance in the
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considered space. Figure 1 plots, for all considered architectures and compilers, the
relative speedup (compared to the original program) achieved by each variants, for
the covariance benchmark. Figure 2 shows a similar plot for the fdtd-2d benchmark.
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Fig. 2 Performance distribution for fdtd-2d

First, we observe that the fraction of the search space which improves perfor-
mance is dependent upon the benchmark. covariance and fdtd-2d are two represen-
tative benchmarks. For covariance the majority of the search space improves perfor-
mance, for both architectures and compilers. This means that a simple random ap-
proach is likely to succeed in improving performance for this benchmark. For fdtd-2d
and the Nehalem architecture, the opposite pattern is observed where only a marginal
fraction of the space improves performance. This latter benchmark corresponds to
the majority of benchmarks, where usually a significant fraction of the space de-
grades performance. Indeed, this result confirms that the search space we consider is
very expressive and that many of the high-level optimizations shown in Table 1 can
actually decrease performance if not parameterized properly.
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More importantly, we observe for all cases that the fraction of the space which
achieves nearly optimal performance is extremely small, usually below 1% of the
space. This pattern was observed for all benchmarks. This severely limits the ability
of any naive statistical model to discover the best performance in this space, thus
motivating our use of the powerful machine learning algorithms instead.

3.3 Variability Across Compilers

We now provide observations about the relative performance of similar transforma-
tions when used for the same machine and benchmark, but with two different compil-
ers. Figure 3 and Figure 4 plots, for the two machines, the performance distribution
for gemm and seidel using GCC and ICC, but sorted by increasing performance for
GCC.
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 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  50  100  150  200  250  300  350

S
p
e
e
d
u
p
 v

s
. 
O

ri
g
in

a
l

Unique program variants (sorted by speedup for GCC 4.5)

gemm (Core 2 Q9650)

GCC 4.5
ICC 10.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100

S
p
e
e
d
u
p
 v

s
. 
O

ri
g
in

a
l

Unique program variants (sorted by speedup for GCC 4.5)

seidel (Core 2 Q9650)

GCC 4.5
ICC 10.1

Fig. 4 Performance distribution for gemm and seidel for the Q-9650 machine

The most prominent feature of these plots is that the best performing optimized
variants for GCC (on the far right of the plots) are not the best performing variants
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for ICC, and conversely. That is, the sequences of high-level optimizations achieving
the best performance differ for each compiler. This is particularly shown in Figure 3
for gemm or in Figure 4 for seidel. This pattern is not systematic for all benchmarks,
but is dominant in our test suite. This can for instance be observed also in Figure 1
and Figure 2. One of the main reason for these differences comes from the very
fragile optimization heuristics implemented in each compiler. The benefit of using
our tool-chain to generate potentially effective transformations (e.g., tiling or reg-
ister tiling) can break the application of high-performance scalar optimizations by
the native compiler. This is because the transformed code to be compiled becomes
syntactically more complex, and fragile optimization cost models in the native com-
piler can be challenged by its structure. Another reason comes naturally from the
differences in optimizations being implemented in each compiler and when they are
applied. For instance, we have manually observed instances where the cost model of
GCC applies register tiling more aggressively than ICC, thus making useless (if not
detrimental) the application of register tiling in our framework.

3.4 Variability Across Machines

We now present experimental evidence of the sensitivity of transformation sequences
to the target machine. In Figure 5 we plot, for the same benchmark and the same
compiler, the performance distribution for both machines sorted by ascending perfor-
mance for Nehalem.
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Fig. 5 Performance distribution for adi and syr2k using GCC 4.5

It is extremely interesting to observe that for both a stencil (adi) and a simple lin-
ear kernel (syr2k), the best performing variant for one processor has significantly
lower performance on the other. We remark that despite being two Intel x86 64
bits processors, they significantly differ in design. The Q9650 is a Yorkfield dual-
die quad-core design based on the Core 2 duo microarchitecture, with 12MB of L2
cache. The E5620 is a Westmere processor using the Nehalem microarchitecture,
with hyper-threading and 12MB of L3 cache. This machine has two processors, and
thus has a total of 16 H/W threads instead of 4 for the Q9650. And most notably,
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Intel made significant changes on the E5620 adding a second-level branch predictor
and translation lookaside buffer and using the Intel QuickPath Interconnect for data
transfers in place of the slower Front Side Bus.

As a consequence, the relative impact of transformations such as vectorization,
parallelism, or data locality is significantly changed. For instance, when there is a
trade-off between data locality and parallelization, a better and faster data cache hier-
archy in the Nehalem diminishes the need for our framework to focus on data locality
improvement (e.g., tiling), but more available threads makes the need to perform ef-
fective parallelization for the Nehalem critical.

3.5 Sensitivity to Different Datasets

The best set of optimizations often depends on the program data, in particular when
the input data can significantly change the instructions executed by the program.
For instance, the sparsity of a matrix affects the number of floating point operations
in a sparse-matrix computation. Previous work investigated the use of standardized
datasets for arbitrary programs [14, 26], and their impact on compiler optimization.

The present work focuses exclusively on static control programs, where the con-
trol flow (and therefore the program instructions to be executed) can be fully deter-
mined at compile-time. That is, SCoPs are not sensitive to the dataset content: for a
given input dataset size, the best optimization will be the same for any value of the
elements of this dataset. This is a strong benefit of focusing exclusively on SCoPs, as
we are not required to fine-tune the optimization sequence for different sets of inputs
of identical size.

Dataset size

Despite a lack of sensitivity to the input data content, the total number of instructions
the program will execute still heavily depends on the dataset size, that is the number
of input data elements. We distinguish two features immediately depending on the
dataset size: (1) the ability to keep (most of) the data in cache, for smaller datasets;
and (2) the profitability of parallelization, when the cost of spawning threads is to be
compared with the total number of instructions to be executed.

We illustrate the following with a matrix-multiply example. For the first case, we
multiply matrices of size 8×8. The total dataset size for the three matrices (double)
is 1.5kB, and the total number of floating point operations is 1024. The data fits fully
in L1 data cache, and 512 SSE3 SIMD operations are required to execute the vector
operations corresponding to the complete computation. In this case, program trans-
formations such as tiling (for locality) and thread-level parallelization will clearly
not improve the performance, because they address performance issues that are not
seen for this program. Considering now the same program, but operating on matrices
of size 1024× 1024. The dataset size is now 25MB, and does not fit in the on-chip
data cache. The overhead of spawning threads is negligible in comparison of the to-
tal number of operations to be executed. Therefore, optimizations such as tiling and
thread-level parallelization become highly profitable.
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The results presented in the current Section are limited to a single dataset size,
the reference one for PolyBench 2.1 [30]. Depending on the benchmarks, the dataset
size can be L2 resident, L3 resident, or most of the time larger than L3. That is,
the benchmark set we have used spans most of the typical dataset size cases that
can arise. The workload also differs vastly from benchmark to benchmark, as shown
in Section 3.6 where for several benchmarks thread-level parallelization is not the
optimal transformation.

We also remark that the machine learning techniques described in Section 4 use
a hardware counters characterization of the input program to select the best trans-
formation. Variation in the dataset size, and its implication in terms of data footprint
and total workload to be executed are fully captured by hardware counters. Our ap-
proach to determine the best transformation is therefore robust to different dataset
sizes, provided we use a training set that correctly spans the various key problem
sizes associated with the profitability of each optimization. We remark that in the
present work, we have limited our study to only one problem size per benchmark,
focusing exclusively on out-of-L1 dataset sizes. These dataset sizes are representa-
tive of program which may benefit from agressive loop transformations, the target
of the present article. Complementary techniques such as versioning can be used to
find the optimal transformation for a few typical dataset sizes such as L1-resident,
L2-resident, L3-resident and larger than L3. Such technique has been successfully
used in ATLAS for instance [57] and is compatible with our approach.

3.6 Analysis of the Optimal Transformations

We conclude our analysis of the search space we consider by reporting, for both ma-
chines, the high-level optimizations that are used for the best performing optimized
program variant obtained. Table 3 reports, for each benchmark and compiler, the op-
timizations turned on for the best performance on Nehalem. Table 4 shows the same
data for the Q9650.

We observe interesting correlations between transformations. For instance, pre-
transformations for vectorization is always beneficial (or at least, not detrimental)
when using the SIMD-level parallelization pass. Wavefronting is useful for some
stencils which are tiled, but not all. For instance, wavefronting is not beneficial on
Nehalem for fdtd-apml. In contrast, wavefronting is always used in the best optimiza-
tion for stencils on the Q9650 machine, together with tiling.

The benefit of rectangular tiling is demonstrated in numerous benchmarks, such
as adi and dynprog for Q9650 or correlation and covariance for Nehalem. We observe
that contrary to what is expected, tiling all loops which carry data reuse does not
necessarily lead to the best performance. For instance, jacobi-1d-imper is not tiled,
and for Nehalem, strip-mining the inner loop is the best choice for correlation and
covariance. This result is counter-intuitive, and its observation is a contribution of
our extensive analysis.

Building cost models for tiling is challenging, as illustrated by the difference in
dimensions to be tiled between compilers and between architectures. On the other
hand, as expected for Nehalem and for all but two benchmarks, thread-level paral-
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Fusion Tiling Parallelism SIMD Unroll-and-jam
M S N T1 T2 T3 W TLP Pre SLP 2 4 8

2mm g g g g g/i g g
3mm g/i g g g g/i g g
adi g g g g g/i
atax g g g g/i g
bicg g g g g/i g
cholesky g i g/i g
correlation i g g g/i g/i g/i
covariance g/i g g/i g/i g/i
doitgen g/i g/i g/i g/i
durbin g/i g/i
dynprog g/i
fdtd-2d g/i i
fdtd-apml g/i g g/i i
gauss-filter g/i g/i
gemm g/i g g g g/i g g
gemver g g/i g/i g/i g g g
gesummv g/i g/i g g/i
gramschmidt g/i g/i g/i g
jacobi-1d-imper g/i g/i g/i g/i g/i g
jacobi-2d-imper g/i
lu g/i
ludcmp i g g/i g
mvt g g g g/i g
reg detect g g/i i i g i
seidel g/i g g g g/i i i g
symm g i g g/i g/i
syr2k g/i g/i g
syrk g g/i g
trisolv g/i g/i g/i g/i g/i g/i i
trmm i i g

Table 3 Summary of the high-level optimizations used to achieve the best performance on Intel E-5620,
when using GCC 4.5 (g) or ICC 11.1 (i). For fusion, M corresponds to max-fuse, S to smart-fuse, and N
to no-fuse. For tiling, T1 corresponds to tiling the first dimension by 32, T2 the second by 32, and T3 the
third by 32. For parallelism, W corresponds to wavefronting and TLP to thread-level parallelization. For
SIMD Pre corresponds to pre-vectorization and SLP to SIMD-level parallelization. For unroll-and-jam, 2,
4 and 8 correspond to the unrolling factors used.

lelization is part of the optimal transformation, and a naive heuristic could simply
always apply this optimization. This was expected as the number of available threads
on Nehalem is large (16 total), thus making coarse-grain parallelization a critical op-
timization for performance. Looking at Q9650 shows a very different trend, where for
7 out 30 benchmarks, thread-level parallelization is not optimal when using GCC. In
addition, GCC 4.5 does not have automatic OpenMP parallelization features turned
on in -O3, so it is clear that the compiler did not parallelize outer loops. This also con-
firms our hypothesis that on Q9650, data locality and instruction-level parallelism are
more critical performance factors.
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Fusion Tiling Parallelism SIMD Unroll-and-jam
M S N T1 T2 T3 W TLP Pre SLP 2 4 8

2mm g g g g/i g g
3mm g/i g/i g g
adi i i i i g/i i
atax i i g
bicg i i g
cholesky g g/i g
correlation i g i i i g g g
covariance g i i g/i g g g
doitgen g/i g i i g/i g/i g/i
durbin i g/i i
dynprog i g i i i i
fdtd-2d g g/i g/i g/i g/i g
fdtd-apml g/i g i g g/i
gauss-filter i g i
gemm g/i g g/i g g/i g g
gemver g/i g/i g/i g/i g
gesummv i g/i g
gramschmidt i g g/i g/i
jacobi-1d-imper i i g
jacobi-2d-imper g/i g g g/i g/i g/i
lu g g g g g/i g g
ludcmp g/i g g/i g
mvt g i g g/i g/i g
reg detect i g g g g/i g i
seidel g/i g g/i g/i g/i i i g
symm g/i
syr2k g/i g g g g/i
syrk g/i g g g g/i
trisolv i i i g/i
trmm i i g

Table 4 Summary of the high-level optimizations used to achieve the best performance on Intel Q9650,
when using GCC 4.5 (g) or ICC 10.1 (i). The descriptions of the column headings can be found in the
caption of Table 3.

4 Selecting Effective Transformations

In this paper, we focus on the search of polyhedral optimizations with the highest
impact as described in Section 2. When considering a space of semantics-preserving
polyhedral optimizations, the optimization space can lead to a very large set of possi-
ble optimized versions of a program [44]. We achieved a tremendous reduction in the
search space size using expert pruning when compared to these methods, but we still
have hundreds of sequences to consider. In this paper, we propose to formulate the
selection of the best sequence as a learning problem, and use off-line training to build
predictors that compute the best sequence(s) of polyhedral optimizations to apply to
a new program.
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4.1 Characterization of Input Programs

In this work, we characterize the dynamic behavior of programs, by means of hard-
ware performance counters. Using performance counters abstracts away the specifics
of the machine, and overcomes the lack of precision and information of static char-
acteristics. Also, models using performance counter characteristics of programs have
been shown to out-perform models that use only static features of program [12].

A given program is represented by a feature vector of performance counters col-
lected by running the program on the particular target machine. We use the PAPI
library [38] to gather information about memory management, vectorization, and
processor activity. In particular, for all cache and TLB levels, we collect the total
number of accesses and misses, the total number of stall cycles, the total number of
vector instructions, and the total number of issued instructions. All counter values are
normalized using the total number of instructions issued.

Category of PCs List of PCs selected

Cache Line Access CA-CLN, CA-ITV, CA-SHR

Level 1 Cache L1-DCA, L1-DCH, L1-DCM, L1-ICA, L1-ICH,
L1-ICM, L1-LDM, L1-STM, L1-TCA, L1-TCM

Level 2 & 3 Cache L2-DCA, L2-DCM, L2-DCR, L2-DCW, L2-ICA, L2-ICH, L2-ICM, L2-LDM,
L2-STM, L2-TCA, L2-TCH, L2-TCM, L2-TCR, L2-TCW, L3-TCA, L3-TCM

Branch Related BR-CN, BR-INS, BR-MSP, BR-NTK, BR-PRC, BR-TKN, BR-UCN
Floating Point DP-OPS, FDV-INS, FML-INS, FP-INS, FP-OPS, SP-OPS
Interrupt/Stall HW-INT, RES-STL
TLB TLB-DM, TLB-IM, TLB-SD, TLB-TL
Total Cycle or Instruction TOT-CYC, TOT-IIS, TOT-INS
Load/Store Instruction LD-INS, SR-INS
SIMD Instruction VEC-DP, VEC-INS, VEC-SP

Table 5 Performance counters (PC): We collected 56 different performance counters available using PAPI
library to characterize a program.

4.2 Speedup Prediction Model

A general formulation of the optimization problem is to construct a function that
takes as input features of a program being optimized and generates as output one or
more optimization sequences predicted to perform well on that program. Previous
work [12, 21] has proposed to model the optimization problem by characterizing a
program using performance counters. We use a prediction model originally proposed
by Cavazos et al. [11, 20], but slightly adapted to support polyhedral optimizations
instead. We refer to it as a speedup predictor model.

This model takes as an input a tuple (F,T ) where F is the feature vector of all
hardware counters collected when running the original program and T is one of the
possible sequence of polyhedral primitives. Its output is a prediction of the speedup
T should achieve relative to the performance of the original code. Figure 6 illustrates
the speedup prediction model.
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Performance Counters (F) Primitive Sequence (T)

Output: predicted speedup of a given sequence T over baseline

... ...

Fig. 6 Our speedup prediction model takes in two inputs. The first input is a characterization of the pro-
gram consisting of a feature vector F of performance counters. The second input is a set of possible
optimizations from the polyhedral optimization space. The target value for this predictor is the speedup of
a specific optimization set T over baseline.

We implemented the speedup prediction model by using six different machine
learning algorithms shown in Table 6 using Weka V3.6.2 [10]. For each machine
learning algorithm, we used the default settings, except for support vector machines
(SVM) and linear regression (LR). For the SVM and LR algorithms, we conducted
experiments to tune parameters of those algorithms.

Name Description

LR Linear Regression
SVM Support Vector Machine (Regression using Normalized Polynomial Kernel)
IBk Instance-based Learning using K-Nearest Neighbor and Euclidean Distance
K* Instance-based Learning using Entropic Distance
M5P M5 Model Tree Based Learning
MLP Multi-Layer Perceptron

Table 6 The six machine learning algorithms we evaluated in this paper.

The regression-based model demonstrates the relationship between dependent
and independent variables, and we can use this model to observe the dependent vari-
ables according to the change of given independent variables. We used linear regres-
sion to fit a predictive model to a dependent variable which is speedup of programs,
and independent variables which are performance counters and the polyhedral opti-
mization sequence. Support vector machines (SVM) is a supervised machine learning
algorithm, used for both classification and regression, and it can apply linear tech-
niques to non-linear problems. First, an SVM algorithm transforms the training data
into a linear space by using kernel functions, and then it uses a linear classifier to sep-
arate data with a hyperplane. SVMs not only finds a hyperplane to separate data, but
it also finds the best hyperplane, i.e., the maximum margin hyperplane, that gives the
largest separation of the data in the training examples from the set of all hyperplanes.
IBk and K* are instance-based learning algorithms that predict the classification of
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new instances based on instances already classified in the memory. These types of
algorithms assume that similar instances belong to a similar class. IBk first selects
the K-nearest neighbors of a new instance, then selects the class of the neighbor that
is closest amongst them [2]. We used Euclidean distance function of all the features
to find the nearest neighbors, but other distance functions can also be used, e.g., Man-
hattan distance. K* also selects from instances already classified. It then chooses the
class of the predominant instance, but uses entropic distance. Entropic distance is
defined as the complexity of transforming one instance into another one [15]. M5P
generates M5 model trees, which look like conventional decision trees, but have lin-
ear regression functions at the leaf nodes. MLP (MultiLayer Perceptron) is neural
network classifier, and we used back propagation to train the network.

4.3 Model Generation and Evaluation

We train a specific model for each target architecture, as the specifics of a machine
(e.g., cache miss cost, number of cores, etc.) significantly influence what transfor-
mations are effective for it. In addition, to evaluate the quality of machine learning
algorithms used, we train one specific model for machine.

A model is trained as follows. For a given program P in the training set, (1) we
compute its execution time E and collect its performance counters F ; (2) for all pos-
sible sequences of polyhedral optimizations Ti, we apply the transformation to P and
execute the transformed program on the target machine, this gives an execution time
ETi , and the associated speedup STi = E/ETi ; (3) we train the model with the entry
(F,Ti) = STi . This is repeated for all programs in the training set. This is illustrated in
Figure 7.

For a new input program, we first collect a feature vector of performance coun-
ters from several runs of the program. Then, we use the model to predict the expected
speedup of each set of optimizations Ti. By predicting the performance of each possi-
ble set, it is possible to rank them according to their expected speedup and select the
set(s) with the greatest speedup. This is illustrated in Figure 8.

Each of our models must predict optimizations to apply to unseen programs that
were not used in training the model. To do this, we need to feed as input to our
models a characterization of the unseen program. We then ask the model to predict
the speedup of each possible optimization set Ti in our polyhedral optimization space,
given the characteristics of the unseen program. We order the predicted speedups to
determine which optimization set is predicted best, and we apply the predicted best
optimization set(s) to the unseen program.

Note in the experiments presented below, we use a leave-one-benchmark-out
cross-validation procedure for evaluating our models. That is, the six models (LR,
SVM, IBk, K*, M5P, or MLP) are trained on all program variants of each of the
N−1 benchmarks and evaluated on the program variants of the benchmark that was
left out. This procedure is repeated for each benchmark to be evaluated, that is, we
construct a different model for each program in our training set.
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Fig. 7 To train the model, we collect performance counters F from each program in training set. We
also collect the speedup for each optimization set Ti. We build the prediction model with F, Ti, and the
associated speedup over baseline for Ti.

4.4 1-shot and Multi-model Evaluation

The models presented above output a single optimization sequence for an unseen
program. For the rest of the paper, we refer to this approach as a 1-shot model.

It is worth considering an empirical evaluation of several candidate optimization
sets, since a given model may not correctly predict the actual best optimization set
for a program. A typical source of misprediction comes from the back-end compiler:
depending on the input source code, the back-end compiler may perform different
optimizations. For example, we observed in our experiments that for the benchmark
2mm (computing two matrix multiplications tmp = A.B;out put = tmp.C), the best
performance when using Intel ICC 11.1 is achieved when no tiling is applied by our
polyhedral compiler. We suspect this is because ICC performs specific optimizations
on this particular computation (matrix-multiply), since in this setup tiling 2mm to
make it L1-resident decreases the performance. However, another program with sim-
ilar hardware counter features may be compiled entirely differently by ICC, and as
shown by our experiments even the same program is handled differently by ICC 11.1
and ICC 10.1 on two different machines.
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Fig. 8 To use the model, we collect performance counters F for a given new program. We give F and an
optimization set T as input to model. The models produces a predicted speedup for each optimization set
Ti. This prediction can be used in both an non-iterative and iterative scenario.

We propose to also evaluate an approach that combines the output of multiple
individual models. In contrast to the 1-shot model, which does not require to run
the transformed variant on the machine, we propose to resort to a small number of
iterative compilation steps. We call this second scheme multi-model, since we use
each optimization set that was predicted best by each individual 1-shot model. The
optimization set which has the best observed performance is retained as the output of
the compilation process.

5 Experimental Results

We now present extensive experimental results, using the platforms and benchmarks
detailed in Section 3.

5.1 Training and Testing Time

We report in Table 7 the training and testing time for the 6 ML algorithms we have
used. We recall that we have used Weka V3.6.2 [10], running on a Core2 Duo. The
Training operates on all the program variants generated for a set of N−1 benchmarks,
out of N benchmarks in our test suite. The Testing is done on all the variants of the
benchmark which was left out during training. Because of different numbers of vari-
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ants for each benchmark, we report the time range taken by the training and testing
in Table 7.

LR SVM IBk K* M5P MLP

Training 3-10 mins 20-25 hours 10-20 mins 14-16 mins 13-15 mins 45-60 mins
Testing 1-4 secs 30-80 secs 5-10 secs 10-16 secs 1-12 secs 2-10 secs

Table 7 Weka V3.6.2 Training and Testing time, for the various ML algorithms we have used.

5.2 Evaluation of the Machine Learning Models on Nehalem

We show in Tables 8 and 9 the performance of the six different machine learning
models we have evaluated using the 1-shot approach on the Nehalem machine. For
each benchmark, we report the maximal performance improvement over the original
code in the search space (Opt column). This improvement is relative to the perfor-
mance obtained by running the native compiler on the original code. We also report
the improvement obtained by a simple random method of generating an optimization
set (averaging the performance of 100 distinct random draws). (Random column). Fi-
nally, we report the performance improvement achieved by the optimization set in our
search space that is predicted best by each model (columns LR to MLP). The fraction
(in percentage) of the optimal improvement is also reported.

Analysis

We observe that a very important performance improvement can be achieved with
the polyhedral optimization sets we consider, on average a speedup of 9× for GCC
and 5.6× for ICC, with peaks up to 28×. The range of the performance improvement
is wide: with GCC (ICC) as the back-end compiler, 7 (12) benchmarks shows an
improvement below 2×, while 10 (7) shows an improvement above 10×. We also
observe that for all benchmarks, there exists at least a polyhedral optimization set
that improves the performance.

Note that we have shown in Section 3 that for many benchmarks a vast major-
ity of optimization sets can decrease performance. This is confirmed using Random
where, choosing optimization sets randomly, we decrease performance compared to
the original code for 11 benchmarks when using GCC (17 for ICC) as the backend
compiler. Still, a simple random strategy increases performance on average by up
to 2.5× using GCC. This is explained by the very large performance improvement
that can be obtained for some benchmarks where the majority of transformed vari-
ants provide a solid improvement, such as 2mm or 3mm. Nevertheless, the fraction of
possible improvement achieved by a simple strategy such as Random remains very
low, i.e., around 25% for both compilers.

We observe that each of the six machine learning models we evaluated outperform
Random, with K* reaching up to almost 7× performance improvement on average



Predictive Modeling in a Polyhedral Optimization Space 25

Benchmark Opt Random LR SVM IBk K* M5P MLP

2mm 25.05× 5.84×(23%) 25.05×(100%) 25.05×(100%) 25.05×(100%) 25.05×(100%) 25.05×(100%) 25.05×(100%)
3mm 28.00× 5.25×(18%) 20.60×(73%) 28.00×(100%) 27.06×(96%) 28.00×(100%) 25.09×(89%) 19.40×(69%)
adi 3.45× 1.04×(30%) 2.94×(85%) 0.35×(10%) 2.22×(64%) 1.00×(29%) 2.22×(64%) 3.29×(95%)
atax 2.17× 0.41×(18%) 1.87×(86%) 0.12×(5%) 1.13×(51%) 0.18×(8%) 1.78×(81%) 0.91×(42%)
bicg 2.07× 0.48×(23%) 1.89×(91%) 0.95×(46%) 1.19×(57%) 1.17×(56%) 0.95×(45%) 0.95×(46%)
cholesky 1.14× 1.08×(94%) 1.14×(99%) 1.13×(99%) 1.14×(99%) 1.14×(99%) 1.14×(99%) 1.13×(99%)
correlation 19.25× 5.27×(27%) 10.03×(52%) 18.82×(97%) 18.96×(98%) 19.25×(100%) 18.11×(94%) 2.79×(14%)
covariance 20.98× 4.64×(22%) 10.22×(48%) 19.97×(95%) 20.01×(95%) 20.01×(95%) 15.15×(72%) 15.93×(75%)
doitgen 20.94× 5.06×(24%) 6.72×(32%) 18.23×(87%) 7.96×(38%) 5.85×(28%) 2.50×(11%) 7.96×(38%)
durbin 1.00× 0.99×(99%) 0.99×(99%) 0.98×(98%) 0.99×(99%) 0.99×(98%) 1.00×(99%) 0.99×(99%)
dynprog 0.94× 0.55×(58%) 0.84×(89%) 0.44×(47%) 0.58×(61%) 0.68×(72%) 0.69×(73%) 0.55×(58%)
fdtd-2d 5.17× 0.64×(12%) 0.80×(15%) 0.69×(13%) 5.10×(98%) 5.17×(100%) 5.10×(98%) 1.16×(22%)
fdtd-apml 8.21× 2.18×(26%) 3.48×(42%) 7.34×(89%) 6.74×(82%) 6.75×(82%) 7.36×(89%) 7.39×(90%)
gauss-filter 3.45× 1.04×(30%) 1.69×(49%) 2.15×(62%) 1.06×(30%) 1.05×(30%) 2.15×(62%) 2.14×(62%)
gemm 27.76× 10.21×(36%) 19.45×(70%) 17.95×(64%) 26.52×(95%) 26.52×(95%) 10.03×(36%) 26.52×(95%)
gemver 7.77× 1.92×(24%) 6.57×(84%) 6.57×(84%) 6.58×(84%) 6.58×(84%) 7.58×(97%) 7.77×(100%)
gesummv 2.31× 1.03×(44%) 1.59×(68%) 2.10×(90%) 2.16×(93%) 1.58×(68%) 2.18×(94%) 2.04×(88%)
gramschmidt 25.42× 9.74×(38%) 25.04×(98%) 6.83×(26%) 1.00×(3%) 6.80×(26%) 25.04×(98%) 21.47×(84%)
jacobi-1d 2.99× 0.53×(17%) 2.66×(88%) 1.00×(33%) 1.00×(33%) 0.46×(15%) 2.66×(88%) 0.07×(2%)
jacobi-2d 6.49× 1.06×(16%) 0.58×(8%) 1.91×(29%) 1.91×(29%) 6.49×(100%) 1.69×(26%) 2.78×(42%)
lu 6.20× 0.91×(14%) 0.92×(14%) 0.12×(1%) 6.20×(100%) 6.20×(100%) 3.81×(61%) 3.81×(61%)
ludcmp 1.10× 1.06×(96%) 1.04×(94%) 1.00×(91%) 1.10×(99%) 1.10×(99%) 1.10×(99%) 1.05×(96%)
mvt 13.10× 3.42×(26%) 11.38×(86%) 11.29×(86%) 11.33×(86%) 11.34×(86%) 6.66×(50%) 1.02×(7%)
reg-detect 1.91× 0.82×(42%) 0.59×(30%) 1.00×(52%) 0.24×(12%) 0.24×(12%) 0.58×(30%) 0.40×(21%)
seidel 7.10× 1.62×(22%) 0.82×(11%) 1.00×(14%) 1.00×(14%) 0.81×(11%) 0.92×(13%) 0.85×(12%)
symm 1.01× 1.00×(99%) 1.01×(99%) 1.00×(99%) 1.00×(99%) 1.00×(99%) 1.00×(99%) 1.00×(99%)
syr2k 9.96× 1.99×(20%) 4.22×(42%) 1.76×(17%) 9.92×(99%) 9.94×(99%) 9.94×(99%) 1.00×(10%)
syrk 13.54× 2.83×(20%) 3.83×(28%) 0.76×(5%) 13.29×(98%) 13.42×(99%) 3.21×(23%) 1.29×(9%)
trisolv 2.01× 0.66×(32%) 1.89×(94%) 0.12×(5%) 1.20×(59%) 0.12×(6%) 1.20×(59%) 1.21×(60%)
trmm 1.35× 0.65×(48%) 0.78×(57%) 1.30×(96%) 1.35×(100%) 0.53×(39%) 1.35×(100%) 1.27×(94%)

Average 9.06× 2.46×(27%) 5.69×(62%) 6.00×(66%) 6.83×(75%) 6.98×(77%) 6.24×(68%) 5.44×(60%)

Table 8 This table shows performance improvement on the Intel Xeon E5620 (baseline: GCC 4.5 -O3) for
the 1-shot model. Each of six machine learning models outperforms Random for each of the benchmarks.
We achieved up to 77% of Opt on average by using the K* model. We also observe that there is no one
machine learning algorithm that is the best for all benchmarks. For example, although K* gives the best
performance improvements for most benchmarks, MLP produces the best model for adi and SVM produces
the best model for doitgen.

with GCC and with IBk reaching to 3.73× with ICC. On average, both K* and IBk are
top two best models for both compilers. A very interesting observation is that none
of the models, including K*, performs consistently best for all benchmarks. Table 9
shows the ability of each model to successfully predict the best optimization set for
at least some benchmarks, while other models fail. That is, each model produces
the best improvement on at least one benchmark. As an illustration, K* using GCC
on gramschmidth does not provide an improvement, while LR produces an almost
optimal variant reaching 25.04× improvement (98% of the maximal improvement
possible for this benchmark). Even MLP, the worst-performing model on average
for GCC, succeeds in finding the optimal variant for gemver, while all other models
fail at doing so. The effectiveness of the models on average differs depending on
the backend compiler used. For example, MLP using ICC performs well (it is the
third best model on average), while it is the worst model for GCC. Nevertheless LR
and SVM perform on average consistently worse than IBk and M5P, and K* performs
consistently best. We conclude this analysis by observing that for both compilers,
no model is able to guarantee, in one shot, to not decrease the performance of the
original code. K* significantly decreases the performance for 5 benchmarks for GCC
and 6 for ICC, while SVM decreases the performance for 11 benchmarks for both
compilers.
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Benchmark Opt Random LR SVM IBk K* M5P MLP

2mm 13.37× 1.42×(10%) 6.43×(48%) 4.44×(33%) 12.84×(96%) 13.37×(100%) 7.80×(58%) 12.84×(96%)
3mm 13.38× 1.07×(8%) 3.98×(29%) 4.33×(32%) 13.04×(97%) 13.35×(99%) 7.63×(57%) 13.38×(100%)
adi 3.80× 0.69×(18%) 2.56×(67%) 2.57×(67%) 1.09×(28%) 2.60×(68%) 2.60×(68%) 2.60×(68%)
atax 2.57× 0.63×(24%) 1.95×(76%) 2.56×(99%) 2.18×(84%) 2.56×(99%) 1.17×(45%) 1.17×(45%)
bicg 1.71× 0.50×(29%) 1.30×(76%) 1.45×(85%) 1.45×(85%) 1.45×(85%) 0.51×(29%) 1.30×(76%)
cholesky 1.04× 0.67×(64%) 1.04×(99%) 0.59×(57%) 1.01×(97%) 1.02×(97%) 0.58×(55%) 1.01×(97%)
correlation 8.47× 1.99×(23%) 4.88×(57%) 7.91×(93%) 8.47×(100%) 8.29×(97%) 1.99×(23%) 8.29×(97%)
covariance 9.03× 1.96×(21%) 4.99×(55%) 9.03×(100%) 8.87×(98%) 9.03×(100%) 8.87×(98%) 8.78×(97%)
doitgen 12.89× 2.99×(23%) 3.32×(25%) 0.91×(7%) 12.58×(97%) 12.58×(97%) 10.27×(79%) 3.26×(25%)
durbin 1.00× 0.99×(98%) 1.00×(99%) 1.00×(99%) 1.00×(99%) 1.00×(99%) 1.00×(99%) 0.99×(98%)
dynprog 1.14× 0.70×(61%) 0.98×(86%) 0.70×(61%) 0.45×(39%) 0.54×(47%) 0.62×(54%) 0.54×(47%)
fdtd-2d 1.03× 0.09×(9%) 0.18×(17%) 0.02×(2%) 1.01×(98%) 0.13×(12%) 0.21×(20%) 0.13×(12%)
fdtd-apml 5.96× 1.62×(27%) 1.58×(26%) 0.90×(15%) 5.83×(97%) 1.58×(26%) 1.57×(26%) 1.76×(29%)
gauss-filter 8.48× 2.63×(31%) 3.69×(43%) 4.41×(52%) 3.40×(40%) 3.40×(40%) 4.41×(52%) 4.18×(49%)
gemm 13.14× 2.42×(18%) 4.28×(32%) 2.31×(17%) 7.49×(57%) 11.31×(86%) 4.35×(33%) 0.88×(6%)
gemver 1.74× 0.68×(39%) 1.47×(84%) 0.80×(45%) 1.74×(100%) 0.71×(41%) 0.85×(48%) 0.79×(45%)
gesummv 1.05× 0.52×(49%) 0.85×(81%) 0.99×(94%) 0.99×(94%) 0.99×(94%) 0.83×(79%) 0.99×(94%)
gramschmidt 22.27× 7.77×(34%) 1.76×(7%) 7.18×(32%) 17.77×(79%) 7.05×(31%) 22.27×(100%) 21.59×(96%)
jacobi-1d 9.07× 1.13×(12%) 9.07×(100%) 0.98×(10%) 0.98×(10%) 0.98×(10%) 0.98×(10%) 0.98×(10%)
jacobi-2d 4.18× 0.62×(14%) 0.42×(10%) 0.60×(14%) 0.42×(10%) 0.52×(12%) 0.52×(12%) 0.40×(9%)
lu 4.72× 0.94×(20%) 0.85×(18%) 0.37×(7%) 0.13×(2%) 0.23×(4%) 0.13×(2%) 4.00×(84%)
ludcmp 1.03× 1.00×(96%) 1.03×(99%) 1.03×(100%) 1.01×(98%) 1.03×(99%) 1.01×(98%) 1.01×(98%)
mvt 2.06× 0.72×(35%) 1.54×(74%) 0.76×(36%) 2.06×(100%) 2.06×(100%) 1.54×(74%) 0.69×(33%)
reg-detect 1.42× 0.66×(46%) 0.49×(34%) 0.35×(24%) 1.03×(72%) 0.98×(69%) 0.91×(64%) 0.38×(26%)
seidel 12.34× 2.45×(19%) 1.05×(8%) 8.48×(68%) 1.00×(8%) 1.00×(8%) 1.21×(9%) 1.01×(8%)
symm 1.01× 1.00×(99%) 1.00×(98%) 1.01×(100%) 1.01×(100%) 1.01×(100%) 1.01×(100%) 1.00×(98%)
syr2k 1.00× 0.20×(20%) 0.42×(42%) 1.00×(99%) 1.00×(100%) 1.00×(100%) 1.00×(99%) 0.75×(74%)
syrk 1.05× 0.19×(17%) 0.19×(18%) 1.05×(100%) 1.05×(99%) 1.05×(100%) 0.16×(15%) 1.05×(99%)
trisolv 2.74× 0.67×(24%) 0.67×(24%) 0.67×(24%) 0.16×(5%) 0.67×(24%) 2.72×(99%) 0.59×(21%)
trmm 5.38× 0.94×(17%) 0.81×(15%) 1.01×(18%) 0.71×(13%) 1.01×(18%) 1.01×(18%) 0.81×(15%)

Average 5.60× 1.33×(23%) 2.13×(38%) 2.31×(41%) 3.73×(66%) 3.42×(61%) 2.99×(53%) 3.24×(57%)

Table 9 This table shows performance improvement on the Intel Xeon E5620 (baseline: ICC 11.1 -fast)
for the 1-shot model. This table shows similar results to Table 8. Each of six machine learning algorithms
outperforms Random, reaching up to 3.7× speedup with IBk model. Interestingly, we notice that the MLP
model performs well for ICC while it was the worst model for GCC.

This motivates an approach we call the multi-model approach evaluated in Sec-
tion 5.4, which combines the predictions of multiple models to select a transforma-
tion. We show in Section 5.4 that our multi-model approach decreases the perfor-
mance for only one benchmark on Nehalem, for both compiler, while providing sub-
stantial performance improvements for the other benchmarks.

5.3 Evaluation of the Machine Learning Models on Core 2 Quad

Tables 10 and 11 report, for all benchmarks, the performance of the models we have
evaluated in a similar fashion as in the previous section, but for the Q9650 machine.

Analysis

Similarly to the Nehalem machine, we observe that for most benchmarks and com-
pilers there exists at least one polyhedral transformation that achieves a performance
significantly better to the original code. Nevertheless the average maximal perfor-
mance improvement in our search space is lower with the Q9650 machine than on the
Nehalem. The Q9650 has a lower number of computing units available (less cores),
and thus the maximal improvement obtained by exploiting parallelism is reduced.
Still, a significant improvement is observed, from 3.7× on average for GCC to 4.6×
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Benchmark Opt Random LR SVM IBk K* M5P MLP

2mm 5.82× 2.14×(36%) 5.24×(90%) 0.50×(8%) 1.97×(33%) 1.98×(34%) 1.98×(34%) 1.97×(33%)
3mm 10.55× 1.93×(18%) 8.06×(76%) 8.02×(76%) 9.36×(88%) 7.60×(72%) 1.94×(18%) 4.01×(38%)
adi 1.37× 0.40×(29%) 0.80×(58%) 1.00×(72%) 1.05×(76%) 1.27×(92%) 0.80×(58%) 1.05×(76%)
atax 1.02× 0.33×(32%) 0.48×(47%) 0.25×(24%) 1.00×(97%) 1.00×(97%) 0.17×(17%) 0.58×(57%)
bicg 1.04× 0.24×(23%) 0.39×(37%) 1.00×(96%) 0.39×(37%) 1.00×(96%) 0.55×(52%) 0.35×(33%)
cholesky 1.05× 1.03×(97%) 1.02×(97%) 1.01×(96%) 1.02×(97%) 1.02×(97%) 1.02×(97%) 1.02×(97%)
correlation 14.37× 4.03×(28%) 7.37×(51%) 0.88×(6%) 13.91×(96%) 13.10×(91%) 13.91×(96%) 7.17×(49%)
covariance 15.43× 6.36×(41%) 7.76×(50%) 14.44×(93%) 8.03×(52%) 7.38×(47%) 14.44×(93%) 14.44×(93%)
doitgen 5.75× 2.27×(39%) 4.58×(79%) 4.50×(78%) 4.50×(78%) 0.66×(11%) 2.05×(35%) 4.16×(72%)
durbin 1.00× 0.97×(97%) 0.96×(95%) 0.95×(95%) 0.99×(98%) 0.99×(98%) 0.98×(98%) 0.97×(97%)
dynprog 0.99× 0.55×(55%) 0.28×(28%) 0.36×(36%) 0.80×(80%) 0.22×(21%) 0.46×(46%) 0.19×(19%)
fdtd-2d 3.78× 1.62×(42%) 1.86×(49%) 2.98×(78%) 2.98×(78%) 1.07×(28%) 1.51×(39%) 3.78×(100%)
fdtd-apml 3.53× 1.66×(46%) 2.05×(58%) 2.97×(84%) 0.76×(21%) 2.71×(76%) 2.54×(72%) 1.11×(31%)
gauss-filter 1.44× 0.58×(40%) 0.84×(58%) 0.46×(32%) 1.41×(98%) 0.46×(31%) 0.83×(57%) 0.58×(40%)
gemm 4.21× 1.96×(46%) 3.94×(93%) 3.94×(93%) 3.89×(92%) 3.84×(91%) 3.21×(76%) 3.87×(92%)
gemver 2.21× 1.01×(45%) 1.66×(75%) 0.20×(9%) 1.74×(78%) 1.74×(78%) 1.36×(61%) 1.60×(72%)
gesummv 1.88× 0.78×(41%) 1.02×(54%) 1.08×(57%) 1.08×(57%) 1.39×(74%) 1.42×(75%) 1.41×(75%)
gramschmidt 7.95× 2.39×(30%) 5.24×(66%) 2.89×(36%) 1.00×(12%) 1.19×(14%) 5.79×(72%) 5.85×(73%)
jacobi-1d 1.02× 0.19×(18%) 0.17×(16%) 0.07×(7%) 0.32×(31%) 0.19×(18%) 0.19×(18%) 0.17×(17%)
jacobi-2d 2.89× 1.21×(41%) 1.46×(50%) 2.28×(78%) 1.35×(46%) 1.53×(52%) 1.32×(45%) 1.29×(44%)
lu 3.37× 0.30×(9%) 1.12×(33%) 0.17×(5%) 1.16×(34%) 1.16×(34%) 3.36×(99%) 0.16×(4%)
ludcmp 1.01× 1.00×(99%) 1.00×(99%) 0.99×(97%) 1.00×(98%) 1.01×(99%) 1.00×(98%) 1.00×(98%)
mvt 2.34× 1.32×(56%) 2.01×(86%) 0.62×(26%) 2.19×(93%) 1.77×(76%) 2.01×(86%) 2.01×(86%)
reg-detect 2.50× 0.98×(39%) 1.10×(44%) 0.22×(8%) 0.22×(8%) 1.12×(44%) 1.12×(44%) 0.34×(13%)
seidel 2.83× 1.11×(39%) 0.85×(30%) 0.84×(29%) 1.00×(35%) 2.38×(83%) 0.69×(24%) 0.85×(30%)
symm 1.01× 0.99×(98%) 1.00×(99%) 0.99×(98%) 1.00×(99%) 1.00×(99%) 1.00×(99%) 1.00×(99%)
syr2k 4.14× 1.29×(31%) 2.00×(48%) 1.66×(40%) 2.22×(53%) 2.08×(50%) 1.01×(24%) 2.13×(51%)
syrk 3.58× 1.35×(37%) 1.97×(55%) 2.71×(75%) 1.24×(34%) 2.86×(79%) 1.22×(34%) 1.24×(34%)
trisolv 1.00× 0.57×(57%) 0.45×(45%) 1.00×(99%) 0.46×(46%) 0.86×(85%) 0.99×(99%) 0.64×(63%)
trmm 1.02× 0.59×(57%) 0.60×(59%) 0.63×(61%) 0.62×(60%) 0.65×(63%) 0.65×(63%) 0.59×(57%)

Average 3.67× 1.37×(37%) 2.24×(61%) 1.99×(54%) 2.29×(62%) 2.17×(59%) 2.32×(63%) 2.18×(59%)

Table 10 The table describes the performance improvement for the Intel Quad Q9650 (baseline: GCC
4.4 -O3) for our 1-Shot model. We observe that each of machine learning models outperforms Random.
Unlike the Nehalem results, we observe that the K* model is not the best model. Although the K* model
still gives good performance overall, IBk and M5P outperforms K* on average while reaching a speedup of
up to 2.3×.

for ICC, with peaks up to 23×. The number of benchmarks for which there is lit-
tle to no improvement increased from Nehalem with up to 13 benchmarks having a
speedup lower than 2× for GCC.

Interestingly, comparing to the Nehalem, K* is not the best performing model on
average for the Q9650. M5P and IBk perform consistently better on average, and they
also reduce the number of benchmarks for which the performance is decreased by the
selected transformation. We also notice for the Q9650 that each model performs well
on a specific benchmark while the other models fail for that benchmark. For exam-
ple, LR chooses an optimization set that reaches 90% of the maximal improvement for
2mm, while all other models fail to discover more than 34% of the maximal improve-
ment for GCC. Similarly, MLP is the only model that finds the optimal optimization
set for fdtd-2d. This pattern is observed for several benchmarks.

We conclude this analysis by observing that similarly to the Nehalem results, the
models can decrease the performance of several benchmarks relative to not optimiz-
ing the benchmarks with PoCC. For example, M5P decreases the performance for
seven benchmarks for both compilers. In contrast, the multi-model approach (dis-
cussed next) significantly reduces the number of benchmarks it obtains worse perfor-
mance on than not using PoCC.
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Benchmark Opt Random LR SVM IBk K* M5P MLP

2mm 19.51× 2.14×(11%) 8.65×(44%) 8.69×(44%) 19.51×(100%) 8.84×(45%) 7.73×(39%) 8.56×(43%)
3mm 24.75× 1.93×(7%) 11.31×(45%) 8.85×(35%) 24.68×(99%) 24.68×(99%) 24.75×(100%) 24.75×(100%)
adi 1.89× 0.40×(21%) 1.32×(69%) 0.31×(16%) 0.94×(49%) 0.23×(12%) 0.60×(32%) 0.27×(14%)
atax 2.55× 0.33×(13%) 1.32×(51%) 1.28×(50%) 2.10×(82%) 1.79×(70%) 1.00×(39%) 1.83×(71%)
bicg 1.57× 0.24×(15%) 0.79×(50%) 0.79×(50%) 1.02×(64%) 1.57×(100%) 1.12×(70%) 1.52×(96%)
cholesky 1.10× 1.03×(93%) 1.09×(99%) 1.10×(99%) 1.10×(100%) 0.61×(56%) 1.09×(99%) 1.02×(92%)
correlation 6.63× 4.03×(60%) 4.10×(61%) 5.86×(88%) 6.63×(100%) 2.67×(40%) 6.63×(100%) 4.92×(74%)
covariance 5.24× 6.36×(121%) 3.28×(62%) 3.69×(70%) 4.22×(80%) 5.24×(100%) 3.58×(68%) 2.92×(55%)
doitgen 2.86× 2.27×(79%) 0.80×(27%) 2.05×(71%) 2.05×(71%) 0.80×(28%) 2.09×(73%) 1.19×(41%)
durbin 1.06× 0.97×(91%) 0.77×(72%) 1.01×(95%) 1.00×(94%) 1.00×(94%) 1.04×(98%) 0.77×(72%)
dynprog 1.76× 0.55×(31%) 0.15×(8%) 0.21×(12%) 0.18×(10%) 0.20×(11%) 0.23×(13%) 0.18×(10%)
fdtd-2d 3.17× 1.62×(51%) 2.56×(81%) 0.80×(25%) 1.03×(32%) 0.81×(25%) 1.08×(34%) 0.81×(25%)
fdtd-apml 2.69× 1.66×(61%) 0.53×(19%) 2.63×(98%) 2.63×(98%) 1.36×(50%) 0.35×(13%) 0.59×(21%)
gauss-filter 4.55× 0.58×(12%) 2.01×(44%) 1.30×(28%) 2.20×(48%) 1.22×(26%) 2.85×(62%) 2.05×(45%)
gemm 2.82× 1.96×(69%) 1.40×(49%) 1.11×(39%) 2.50×(88%) 2.53×(89%) 2.53×(89%) 1.62×(57%)
gemver 1.47× 1.01×(68%) 1.22×(83%) 1.22×(83%) 0.79×(53%) 0.79×(53%) 0.91×(61%) 0.94×(63%)
gesummv 1.75× 0.78×(44%) 0.66×(38%) 0.80×(45%) 1.37×(78%) 1.43×(82%) 0.66×(38%) 0.80×(45%)
gramschmidt 22.94× 2.39×(10%) 12.09×(52%) 4.89×(21%) 1.01×(4%) 1.01×(4%) 7.35×(32%) 4.79×(20%)
jacobi-1d 4.71× 0.19×(4%) 2.87×(60%) 3.18×(67%) 0.87×(18%) 2.81×(59%) 3.18×(67%) 2.81×(59%)
jacobi-2d 6.23× 1.21×(19%) 5.44×(87%) 4.02×(64%) 1.25×(20%) 3.02×(48%) 2.72×(43%) 2.72×(43%)
lu 3.50× 0.30×(8%) 0.23×(6%) 3.50×(100%) 0.84×(24%) 0.72×(20%) 0.84×(24%) 0.84×(24%)
ludcmp 0.98× 1.00×(102%) 0.98×(99%) 0.96×(97%) 0.98×(99%) 0.98×(99%) 0.98×(99%) 0.96×(97%)
mvt 1.92× 1.32×(68%) 1.31×(68%) 1.02×(52%) 1.56×(81%) 1.56×(81%) 1.18×(61%) 0.88×(45%)
reg-detect 1.12× 0.98×(87%) 1.03×(91%) 0.92×(82%) 0.61×(54%) 0.82×(73%) 0.62×(55%) 0.98×(87%)
seidel 2.37× 1.11×(47%) 0.95×(39%) 1.63×(68%) 1.00×(42%) 1.18×(49%) 1.05×(44%) 1.00×(42%)
symm 1.02× 0.99×(96%) 1.02×(99%) 1.02×(99%) 1.01×(99%) 1.00×(98%) 1.00×(98%) 1.02×(99%)
syr2k 1.03× 1.29×(125%) 0.03×(2%) 1.01×(98%) 1.01×(98%) 0.19×(18%) 0.11×(11%) 0.28×(27%)
syrk 1.08× 1.35×(124%) 0.18×(16%) 0.86×(79%) 0.86×(79%) 0.97×(89%) 0.97×(89%) 0.84×(77%)
trisolv 3.15× 0.57×(18%) 0.52×(16%) 1.30×(41%) 1.00×(31%) 0.51×(16%) 0.49×(15%) 1.00×(31%)
trmm 1.56× 0.59×(37%) 1.56×(100%) 0.99×(63%) 0.99×(63%) 0.67×(42%) 0.78×(49%) 0.99×(63%)

Average 4.57× 1.37×(30%) 2.34×(51%) 2.23×(48%) 2.90×(63%) 2.37×(52%) 2.65×(58%) 2.46×(53%)

Table 11 The table describes the performance improvement for the Intel Quad Q9650 (baseline: ICC 10.1
-fast) for our 1-Shot model. We see similar results as in Table 10. Random is not able to outperform any
of the six machine learning models. The M5P, IBk, and MLP models give performance improvements for
most programs reaching up to 2.9×. Also, contrary to the results on the Nehalem architecture, the M5P or
IBk model is the best model on the Q9650 architecture.

5.4 Multi-model Evaluation

Table 12 reports the performance achieved by the multi-model approach for each
benchmark on each architecture/compiler pair. In contrast to the 1-shot approach,
which is a compile-time only approach, our multi-model approach requires six op-
timized variants of the code to be executed on the target machine, corresponding
to the predicted optimization configurations from each of the six individual models.
That is, we optimize a benchmark with the optimization configuration predicted to
give the best speedup from each machine learning model. Then, we evaluate each of
these optimized variants of the benchmark and return the variant that gives the best
speedup.

Analysis

We observe in Table 12 that our multi-model approach significantly outperforms the
1-shot approach, for all architecture/ compiler pairs we experimented with. In terms
of average performance improvement, the multi-model consistently discovers more
than 70% of the optimal improvement, a jump from 58% for ICC on Q9650. More
importantly, for the majority of the benchmarks for Nehalem, the optimal (or close to
optimal) variant is discovered by the multi-model. For the Q9650, the optimal variant
is discovered by the multi-model approach for more than a third of the benchmarks.
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Benchmark Nehalem-gcc Nehalem-icc Q9650-gcc Q9650-icc

2mm 25.05× (100.00%) 13.37× (100.00%) 5.24× (90.00%) 14.36× (73.00%)
3mm 28.00× (100.00%) 13.38× (100.00%) 9.32× (88.00%) 24.75× (100.00%)
adi 3.45× (100.00%) 2.60× (68.00%) 1.27× (92.00%) 1.32× (69.00%)
atax 1.87× (86.00%) 2.57× (100.00%) 1.00× (98.00%) 2.55× (100.00%)
bicg 1.89× (91.00%) 1.45× (84.00%) 1.04× (100.00%) 1.57× (100.00%)
cholesky 1.14× (100.00%) 1.04× (100.00%) 1.03× (98.00%) 1.10× (100.00%)
correlation 19.25× (100.00%) 8.29× (97.00%) 13.91× (96.00%) 6.63× (100.00%)
covariance 20.98× (100.00%) 9.03× (100.00%) 14.44× (93.00%) 5.24× (100.00%)
doitgen 18.23× (87.00%) 12.58× (97.00%) 4.69× (81.00%) 2.09× (73.00%)
durbin 1.00× (100.00%) 1.00× (100.00%) 0.99× (99.00%) 1.04× (98.00%)
dynprog 0.84× (89.00%) 0.98× (85.00%) 0.86× (86.00%) 0.23× (13.00%)
fdtd-2d 5.17× (100.00%) 0.21× (20.00%) 3.15× (83.00%) 2.56× (80.00%)
fdtd-apml 7.36× (89.00%) 1.76× (29.00%) 3.32× (94.00%) 2.63× (97.00%)
gauss-filter 2.15× (62.00%) 4.41× (52.00%) 1.43× (99.00%) 2.85× (62.00%)
gemm 27.62× (99.00%) 11.31× (86.00%) 3.94× (93.00%) 2.53× (89.00%)
gemver 7.77× (100.00%) 1.47× (84.00%) 1.74× (78.00%) 1.25× (85.00%)
gesummv 2.18× (94.00%) 0.99× (94.00%) 1.42× (75.00%) 1.43× (81.00%)
gramschmidt 25.04× (98.00%) 22.27× (100.00%) 5.80× (72.00%) 12.09× (52.00%)
jacobi-1d 2.66× (88.00%) 9.07× (100.00%) 1.02× (100.00%) 3.68× (78.00%)
jacobi-2d 6.49× (100.00%) 1.58× (37.00%) 2.28× (78.00%) 5.44× (87.00%)
lu 6.20× (100.00%) 4.72× (100.00%) 3.36× (99.00%) 3.50× (100.00%)
ludcmp 1.10× (100.00%) 1.03× (100.00%) 1.01× (100.00%) 0.98× (100.00%)
mvt 11.38× (86.00%) 2.06× (100.00%) 2.19× (93.00%) 1.56× (81.00%)
reg-detect 1.33× (69.00%) 0.98× (69.00%) 1.59× (63.00%) 1.03× (91.00%)
seidel 5.16× (72.00%) 10.14× (82.00%) 2.38× (84.00%) 1.63× (68.00%)
symm 1.01× (100.00%) 1.01× (100.00%) 1.00× (99.00%) 1.02× (100.00%)
syr2k 9.94× (99.00%) 1.00× (100.00%) 2.15× (51.00%) 1.01× (98.00%)
syrk 13.44× (99.00%) 1.05× (100.00%) 2.93× (81.00%) 0.97× (89.00%)
trisolv 1.89× (94.00%) 2.72× (99.00%) 1.00× (100.00%) 1.86× (59.00%)
trmm 1.35× (100.00%) 1.01× (18.00%) 0.65× (63.00%) 1.56× (100.00%)

Average 8.70× (93.61%) 4.84× (83.64%) 3.20× (87.94%) 3.68× (84.42%)

Table 12 This table shows the performance improvement of using the multi-model approach for all con-
figurations. The multi-model compiles the program using the predicted best optimization configuration
from each individual model and keeps the best performing one. Thus, six optimized program variants on
the machine are evaluated in total.

The multi-model approach also achieves very significant improvements in terms
performance guarantees: for all architecture/compiler pairs, the multi-model approach
selects a variant that does not degrade performance for all but two benchmarks at
most. However, there are still some benchmarks that see a degradation in performance
with the multi-model approach. For example, dynprog sees its performance consis-
tently degraded for all architecture/compiler pairs. This is a benchmark for which
there is very little performance improvement to be discovered in the search space.
We also see a degradation for trmm on the Q9650 using GCC.

In addition, we observe that our multi-model approach on Nehalem using ICC
fails to discover good performance for fdtd-2d, but also to a lesser extent with jacobi-
2d. This is consistent with the 1-shot results shown before. We suspect this is because
for these two stencil codes, in contrast to other benchmarks, tiling is not part of the
optimal transformation (shown in Table 3). So it is likely that the models output a
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tiled variant, which for this very specific architecture/compiler configuration does
not lead to the best performance.

Algorithms Nehalem-gcc Nehalem-icc Q9650-gcc Q9650-icc

LR (6-shot) 6.00× (68.5%) 2.48× (54.7%) 2.38× (66.0%) 2.61× (62.1%)
SVM (6-shot) 6.49× (64.4%) 3.48× (65.8%) 2.26× (64.0%) 2.97× (68.4%)
IBk (6-shot) 7.08× (76.3%) 4.08× (75.7%) 2.51× (70.0%) 3.03× (72.1%)
K* (6-shot) 7.56× (83.4%) 4.05× (70.4%) 2.68× (77.0%) 2.64× (63.4%)
M5P (6-shot) 6.45× (75.2%) 3.06× (57.6%) 2.58× (72.1%) 3.06× (70.9%)
MLP (6-shot) 6.35× (68.1%) 3.74× (69.1%) 2.59× (67.2%) 2.79× (69.1%)
Multi-model 8.70× (93.61%) 4.84× (83.64%) 3.20× (87.94%) 3.68× (84.42%)

Table 13 This table shows the average performance improvement of the multi-model approach and the
6-shot models for all configurations. We observe that multi-model approach outperforms any of 6-shot
machine learning models and achieves up to 94% of the maximum available speedup in our search space.

Table 13 shows that average performance improvements with our multi-model
approach can outperform all models using six evaluations, which we term the 6-
shot approach. That is, using our multi-model approach (which uses six predicted
optimization configuration, one from each model), we can achieve better performance
improvements than by using the top six predicted optimization configurations from
any one single model.

5.5 Evaluation of Feature Selection

In this section, we evaluate our models using a subset of performance counters deemed
to be the most predictive. The main benefit of using a subset of counters is that we
can reduce the number of application runs it takes to characterize that application.
Using the full set of performance counters available on an architecture can take a
large number of program executions to collect, especially if multiplexing 2 is not
used. In addition, training time can be reduced if the number of performance coun-
ters collected is reduced. To find an effective subset of performance counters to use,
we analyzed the output of LR models trained using greedy attribution selection mode.
The output of the model lists the performance counters that were most informative in
building the model. For each architecture/compiler configuration, we used the subset
of performance counters that were used to build the LR model. As a result, we used
2 to 5 performance counters depending on the architecture/compiler configuration as
shown in Table 14. Each configuration had a unique subset of important performance
counters, including counters for different cache levels, TLB statistics, and instruction
types.

Using the six different machine learning algorithms we evaluated for this re-
search, we retrained our models with the subset of performance counters deemed
important by the LR model, and we compared these models to using the full set of
performance counters available on each architecture. Table 15 shows results from

2 Note that multiplexing reduces the accuracy of the performance counter information collected.
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Machine-Compiler List of performance counters used for all models
Nehalem GCC4.5 BR-MSP, L1-ICA
Nehalem ICC11.1 L2-ICM, L3-TCM, TLB-IM, TLB-SD
Q9650 GCC4.4 L2-STM, L2-ICA
Q9650 ICC 10.1 BR-CN, BR-NTK, TOT-IIS, SR-INS, VEC-DP

Table 14 This table shows the 2 to 5 performance counters that were picked by the LR model for each
architecture/compiler configuration. Note that the full set of performance counters is 38 for Nehalem and
49 for Q9650.

evaluating each of the models in a 1-shot scenario, and Table 16 shows results for our
multi-model scenario using the subset of performance counters.

Number of PCs LR SVM IBk K* M5P MLP OPT

Intel Xeon E5620 (Baseline: GCC 4.5 -O3)
2 5.69×(62.8%) 4.84×(53.4%) 6.13×(67.7%) 7.35×(81.1%) 6.47×(71.4%) 5.11×(56.4%) 9.06×
38 5.69×(62.8%) 6.00×(66.2%) 6.22×(68.7%) 6.98×(77.0%) 6.24×(68.9%) 5.26×(58.1%) 9.06×

Intel Xeon E5620 (Baseline: ICC 11.1 -fast)
4 2.13×(38.0%) 2.36×(42.1%) 3.40×(60.7%) 3.44×(61.4%) 3.02×(53.9%) 2.83×(50.5%) 5.60×
38 2.13×(38.0%) 2.31×(41.2%) 3.01×(53.8%) 3.42×(61.1%) 2.99×(53.4%) 3.19×(57.0%) 5.60×

Intel Quad Q9650 (Baseline: GCC 4.4 -O3)
2 2.22×(60.5%) 1.74×(47.4%) 1.70×(46.3%) 2.68×(73.0%) 2.70×(73.6%) 1.94×(52.9%) 3.67×
49 2.24×(61.0%) 1.99×(54.2%) 2.33×(63.5%) 2.17×(59.1%) 2.32×(63.2%) 2.09×(56.9%) 3.67×

Intel Quad Q9650 (Baseline: ICC 10.1 -fast)
5 2.34×(51.2%) 2.57×(56.2%) 2.16×(47.3%) 2.27×(49.7%) 1.78×(38.9%) 2.44×(53.4%) 4.57×
49 2.34×(51.2%) 2.23×(48.8%) 2.53×(55.4%) 2.37×(51.9%) 2.65×(58.0%) 2.60×(56.9%) 4.57×

Table 15 This table shows the performance of 1-Shot models using a subset of performance counters.

Machine-Compiler Subset Full Set OPT

Nehalem-GCC 8.53×(92.2%) 8.79×(93.6%) 9.06×
Nehalem-ICC 4.51×(85.6%) 4.84×(83.6%) 5.60×
Q9650-GCC 3.24×(86.8%) 3.20×(87.9%) 3.67×
Q9650-ICC 3.69×(81.0%) 3.68×(84.4%) 4.57×

Table 16 This table shows the performance improvement of Multi-Models using the subset of perfor-
mance counters found when using the LR models. Percentage values shown between parentheses indicates
the average of the percentages of OPT (optimal over our optimization space) over all benchmarks

Analysis

Table 15 shows results of building our models using a subset of performance counters
and used in a 1-shot scenario. For our 1-shot models, we observed that the LR models
give the same performance for both the subset and full set of performance counters,
except for Q9650-GCC. However, even this exceptional case shows only slight degra-
dation, less than 0.05×, when compared to using the full set of counters. We found
that the SVM, IBk, and MLP models trained with our performance counters subset
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gave less improvements than using a full set. However, we noticed that some ar-
chitecture/compiler configurations and machine learning algorithms did achieve im-
provements using the subsets of performance counters. For example, Nehalem-ICC
with IBk achieved 60.7% of the optimization space optimal (OPT), while the same
model trained with the full set of achieved only 53.8%. We also observed that we of-
ten achieve better average performance improvement with K* and M5P models with
the subset of performance counters versus using the full set, especially for the K*
model on the Nehalem-GCC configuration. For those models, we achieved 81.1% of
OPT with the subset of performance counters, while we achieved 77% of OPT with
the full set. Thus, we are able to build a model with better prediction quality using a
smaller set of performance counters than using the full set.

Table 16 shows our results when using our multi-model models with the subset
of performance counters. Using, the subset of counters slightly outperformed models
versus using a full set for the Q9650 architecture. Although, the amount of improve-
ments are not substantial, we can see the potential when using a subset of performance
counters since we are able to build a model that achieves similar performance as when
using the full set. In the case of the Nehalem configurations, we observed the oppo-
site of the Nehalem results. Models that were trained with a full set of performance
counters outperformed those models trained with a subset.

5.6 Evaluation of ML Algorithms Parameters

In this section, we discuss the impact of the various parameters of the machine learn-
ing algorithms we tested, and their relative impact on the quality of the predictors we
build. Table 17 summarizes the results, in terms of average performance, for numer-
ous different parameters values we have tested. We use the Weka option designations,
and we mark with an asterisk the parameter configuration we have selected for the
experiments presented in Section 5.2.

For LR, we evaluated different feature selection methods. S = 0 means we use
the M5′ method, S = 1 means we do not use any feature selection method, and S = 2
means we use a greedy method. The default setting for Weka is S = 0. For all machine-
compiler configurations except Q9650-GCC, we achieved the best prediction results
with greedy method (S = 2). For Q9650-GCC, the prediction model with no feature
selection gives the best prediction results by only a marginal fraction over the greedy
method, and for three out of four configurations the greedy method provides the best
results.

For SVM, we evaluated the GaussianKernel and the NormalizedPolyKernel kernel
functions. We evaluated a range of gamma values (G) for Gaussiankernel, and a range
of of exponent values (E) for NormalizedPolyKernel. For both kernels, we evaluated
a different complexity values (C). We tried G = 0, 0.01(default), 25, 30, 50, 75, C =
1(default), 2, 4, and E = 1, 2(default), 4, 8, 16. The best performance improvement
is achieved with the NormalizedPolyKernel kernel, using C = 1 and E = 8 for all
machine-compiler configurations.

For IBk, we tested with several number of neighbors K = 1(default), 2, 5. The
default value for K is 1 in Weka, but we observe that using K = 5 gives the best
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Algorithm and Parameter Configurations Nehalem-GCC Nehalem-ICC Q9650-GCC Q9650-ICC

LR -S 0 5.55 1.88 2.23 2.25
LR -S 1 4.77 1.96 2.25 2.06
LR -S 2 (*) 5.69 2.13 2.24 2.34
SVM NormalizedPolykernel -C 1.0 -E 8.0 (*) 6.00 2.31 1.99 2.23
SVM RBFKernel -C 2.0 -G 0.0 1.56 1.17 1.37 1.25
SVM RBFkernel -C 2.0 -G 25.0 4.19 2.21 1.65 1.30
SVM RBFKernel -C 2.0 -G 50.0 4.51 2.09 1.30 1.25
SVM RBFKernel -C 2.0 -G 75.0 4.11 2.07 1.25 1.25
SVM RBFKernel -C 4.0 -G 30.0 4.09 2.21 1.32 1.28
SVM RBFKernel -C 6.0 -G 30.0 3.89 2.21 1.42 1.28
SVM RBFKernel -C 0.01 -G 30.0 1.66 1.75 1.26 1.28
SVM RBFKernel -C 4.0 -G 50.0 3.92 2.07 1.30 1.25

IBk -K 1 6.22 3.01 2.33 2.53
IBk -K 2 6.07 2.88 2.13 2.97
IBk -K 5 (*) 6.83 3.49 2.32 2.94

M5P -M 1.0 6.17 2.99 2.21 2.67
M5P -M 2.0 6.17 2.99 2.21 2.67
M5P -M 4.0 (*) 6.24 2.99 2.32 2.65
M5P -M 10.0 5.29 2.83 2.23 2.05
M5P -M 50.0 6.24 2.66 1.89 2.62

K* -B 0 -M a 3.83 2.04 1.30 1.25
K* -B 20 -M a (*) 6.98 3.42 2.17 2.37
K* -B 25 -M a 6.98 3.39 2.23 2.11
K* -B 50 -M a 7.24 3.08 2.01 2.23
k* -B 75 -M a 6.57 3.06 1.98 2.22
K* -B 100 -M a 5.10 2.03 2.25 2.37
K* -B 0 -M n 3.83 2.04 1.30 1.25
K* -B 20 -M n 6.99 3.41 2.23 2.22
K* -B 25 -M n 6.98 3.39 2.23 2.11
K* -B 50 -M n 7.24 3.08 2.01 2.23

MLP -L 0.3 -N 500 -H a 5.26 3.19 2.09 2.60
MLP -L 0.05 -N 500 -H a 6.02 2.51 2.15 2.06
MLP -L 0.1 -N 500 -H a 5.17 3.18 2.24 2.77
MLP -L 0.5 -N 500 -H a 5.50 2.38 2.26 2.53
MLP -L 0.9 -N 500 -H a 3.93 2.54 2.18 2.41
MLP -L 0.4 -N 500 -H a 5.12 2.79 2.00 2.18
MLP -L 0.5 -N 1000 -H a 5.43 2.58 2.25 2.52
MLP -L 0.5 -N 1500 -H a 5.24 2.60 2.24 2.42
MLP -L 0.5 -N 500 -H t (*) 5.44 3.24 2.18 2.46

Table 17 Average Performance Improvement with Different Machine Learning Parameter Configurations
for 1-Shot PC Model

prediction result for both compilers. Although this configuration does not give the
best prediction for Q9650, the prediction result is very close to the best. Thus, we
selected K = 5 for our experiments.

For M5P, we evaluated different values for M which indicates the minimum num-
ber of instances. We tried M = 1, 2, 4(default), 10, 50. M = 4 gives the best result for
three machine-compiler configurations except Q9650-ICC, and M = 2 gives the best
result for Q9650-ICC, but this is only 0.02× higher than the performance improve-
ment with M = 4. We selected M = 4, as the final parameter setting, which is also the
default Weka setting.

For K* algorithm, we tuned B and M, where B is the parameter for global balanc-
ing, and M is the decision on how missing attribute values are handled. We evaluated
B = 0, 20(default), 25, 50, 75, 100, and M = a(default), t where each indicates a dif-
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ferent way to handle missing values (a is to average column entropy curves, and t is
to normalize over the attributes). B = 20, M = a achieves the best prediction for both
machines with ICC compiler, and is fairly close to the best for both machines with
GCC.

For MLP, we tuned three different parameters: the learning rate (L), the number
of iterations (N), and the number of hidden layers (H). We evaluated L = 0.05, 0.1,
0.3(default), 0.4, 0.5, 0.9, N = 500(default), 1000, 1500, and H = a(default) and t.
For H, a is defined as (number of attributes+number of classes)/2, and t is defined
as (number of attributes+number of classes). Each machine-compiler configuration
requires different parameter tuning for the best performance improvement for MLP.
We selected the configuration with L=0.5, N=500, H=t.

6 Related Work

In recent years, considerable research has been performed on iterative compilation,
and its benefits have been reported in several publications [1,17,18,24,29,33]. Itera-
tive compilation has been shown to regularly outperform the most aggressive compi-
lation settings of commercial compilers, and it has often reached performance com-
parable to hand-optimized library functions [25, 48, 56, 57].

Machine learning and search techniques applied to compilation has been stud-
ied in many recent projects [16, 34, 37, 51, 52, 60, 61]. These previous studies have
developed machine learning-based algorithms to enabling efficiently search for the
optimal selection of optimizing transformations, the best values for the transforma-
tion parameters, or the optimal sequences of compiler optimizations. Generally, these
studies customize optimizations for each program or local code segments, some based
on code characteristics.

For example, Monsifrot et al. [37] used decision trees to decide whether to en-
able or disable loop unrolling. This was one of the early efforts on using machine
learning to tune a high-level transformation. They showed an improvement of 3%
over a hand-tuned heuristic and 2.7% over g77’s unrolling strategy on the IA64 and
UltraSPARC, respectively. Stephenson et al. [52] used genetic programming to tune
heuristic priority functions for three compiler optimizations within the Trimaran’s
IMPACT compiler. For one of the optimizations, register allocation, they were only
able to achieve on average a 2% increase over the manually tuned heuristic. The re-
sults in these papers highlight the diminishing results obtained when only controlling
a single optimization. In contrast, the research in this paper controlled numerous op-
timizations available in the PoCC compiler.

Kulkarni et al. [34] introduced a system that used databases to store previously
tested code, thereby reducing running time. They also disabled some optimizations
that did not seem to improve the running time of the kernel. These techniques are
very expensive and therefore only effective when programs are extremely small, such
as those used in embedded domains. Cooper et al. [17] used genetic algorithms to
address the compilation phase-ordering problem. They were concerned with finding
“good” compiler optimization sequences that reduced code size. Their technique was
successful in reducing code size by as much as 40%. However, their technique is



Predictive Modeling in a Polyhedral Optimization Space 35

application-specific, i.e., a genetic algorithm had to be retrained for each new pro-
gram to decide the best optimization sequence for that program.

An innovative approach to iterative compilation was proposed by Parello et al. [41]
where they used performance counters at each stage to propose new optimization se-
quences. An application was run and performance counter information was measured
in order to identify performance anomalies that could be resolved by applying cer-
tain optimizations. The anomalies and proposed optimizations that could be applied
to resolve them were encoded in a manually constructed decision tree. Even though
this was a very systematic approach, the time required to manually construct this
decision tree took weeks for each benchmark and was specific to a certain targeted
architecture. In contrast, our technique does not need to generate performance coun-
ters during each iteration of optimizing the program, but instead a model is produced
that can predict the best optimization sequences for a program. Also, we use ma-
chine learning to automatically construct the models used to predict the optimization
configurations that were used.

Cavazos et al. [12] address the problem of predicting good compiler optimiza-
tions by using performance counters to automatically generate compiler heuristics.
That work was limited to the traditional optimizations found in the PathScale com-
piler. Despite the numerous transformations considered, the complexity is not com-
parable to the restructuring transformations available in state-of-the-art polyhedral
frameworks, such as the one we used in this work.

Park et al. [42] propose a novel program characterization technique, i.e., graph-
based characterization, to use as input to a model that predicts optimizations to apply
to a program. In this work, the authors characterize programs using the program’s
control flow graph (CFG), and they construct prediction models using SVMs with a
shortest path graph kernel. These specialized graph kernels take as input characteri-
zations that preserve the graph-based topology of the program, in contrast to previous
characterization techniques that are represented as fixed-length vectors. The authors
show that this method of characterizing programs is competitive with previous char-
acterization techniques.

Chen et al. [13] developed the CHiLL infrastructure, a polyhedral loop transfor-
mation and code generation framework. Tiwari et al. [53] coupled the Active Har-
mony search engine to CHiLL to automatically tune some high-level transformation
parameters, such as tile sizes. In this paper, we target quite a different search space,
i.e., we balance the trade-off between several possibly contradictory objectives, such
as parallelization, data locality enhancement, and vectorization, demonstrating our
results on a variety of benchmarks and machines.

Bondhugula et al. [8, 9] proposed the first integrated heuristic for parallelization,
fusion, and tiling in the polyhedral model subsuming all the above optimizations into
a single tunable cost-model. Individual objectives such as the degree of fusion or
the application of tiling can be implicitly tuned by minor ad-hoc modifications of
Bondhugula’s cost model. Pouchet et al. [45] performed empirical search to directly
find the coefficients of the affine scheduling matrix in a polyhedral framework. While
these results showed significant improvements on small kernels, the empirical search
needed up to a thousand runs for larger benchmarks [44]. In this work, we have
abstracted the scheduling matrix behind high-level polyhedral primitives and the as-
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sociated cost models for selecting the enabling transformations, reducing the search
space to as little as a few hundred possibilities in place of the billions of possible
schedules. This enabled us achieve on average up to 80% of the optimization space
optimal performance in no more than six runs.

7 Conclusion

The problem of improving performance of applications through compiler optimiza-
tions has been extensively studied, in particular, to improve the portability of the opti-
mization process across a variety of architectures. Iterative compilation and machine
learning techniques have been demonstrated as powerful mechanisms to automati-
cally compute good compiler flags, improving the speed of the generated program
and automatically adapting compilers to each new target architecture.

However, in the multi-core era with increasingly complex hardware, very ad-
vanced high-level transformation mechanisms are required to efficiently map the
program on the target machine. Complex optimization combinations of loop trans-
formations are needed to implement the most effective orchestration of tiling, par-
allelization, and vectorization. While all these optimizations have been studied in-
dependently, in practice, they must be evaluated together to achieve the best perfor-
mance possible.

A modern loop nest optimizer faces the challenge of sometimes contradictory cost
models, simply because there is no single solution that may maximize parallelism,
vectorization, data locality and still achieve the best performance. Very little work has
been done to date in using learning models for selecting high-level transformations,
to drive a loop nest optimizer that operates on a very rich and complex search space.
Our work is the first to propose the use of learning models to compute effective
loop transformations in the polyhedral model, encompassing tiling, parallelization,
vectorization, and data locality improvement.

In this work, we leverage the power of the polyhedral transformation framework
to automatically build very complex sequences of transformations, enabling tiling
and parallelization transformations on a wide range of numerical codes. To select an
effective optimization in this space, we have implemented a speedup predictor model
that correlates the run-time characteristics of a program (modeled with performance
counters) with the speedup expected from a given polyhedral optimization config-
uration. We evaluated our approach using several machine learning algorithms, on
a variety of benchmarks, and two different multi-core machines. For the test suite,
the best points in our optimization search space yield an average 9× speedup (with
peaks of up to 28×) with GCC on an Intel Xeon E5620 and 3.6× on Intel Xeon
Q9650. Using the predictive machine learning models, testing at most six candidate
optimization configurations on the target machine, we achieve an average speedup
of 8.7× on E5620 and 3.2× on Q9650 with GCC as the backend compiler and an
average speedup of 4.8× and 3.6× using Intel ICC as the backend compiler.
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