
Iterative Optimization in the Polyhedral Model:
One-Dimensional Affine Schedules

Louis-Noël Pouchet, Cédric Bastoul and Albert Cohen

ALCHEMY, LRI - INRIA Futurs

October 17, 2006

2nd HiPEAC Industrial Workshop, Eindhoven, NL

Outline: 2nd HiPEAC Industrial Workshop

1 Introduction
Motivation
The Polyhedral Model
Polyhedral Representation of programs

2 Iterative Optimization in the Polyhedral Model
One-Dimensional Schedules
Legal Scheduling Space

3 Experimental Results
Exhaustive Scan
A Transformation Example

4 Conclusion

2

Introduction: Motivation 2nd HiPEAC Industrial Workshop

Iterative Optimization

Instead of predicting profitability of a transformation,
perform it and run the program
Most of the time, adresses parameters tuning or phase
selection

Alternatively, some works replace the heuristic itself by
iterative search

→ We focus on Loop Nest Optimization

3

Introduction: Motivation 2nd HiPEAC Industrial Workshop

Iterative Optimization

Instead of predicting profitability of a transformation,
perform it and run the program
Most of the time, adresses parameters tuning or phase
selection

Alternatively, some works replace the heuristic itself by
iterative search

→ We focus on Loop Nest Optimization

3

Introduction: Motivation 2nd HiPEAC Industrial Workshop

Iterative Optimization

Instead of predicting profitability of a transformation,
perform it and run the program
Most of the time, adresses parameters tuning or phase
selection

Alternatively, some works replace the heuristic itself by
iterative search

→ We focus on Loop Nest Optimization

3

Introduction: Motivation 2nd HiPEAC Industrial Workshop

Iterative Optimization

Instead of predicting profitability of a transformation,
perform it and run the program
Most of the time, adresses parameters tuning or phase
selection

Alternatively, some works replace the heuristic itself by
iterative search

→ We focus on Loop Nest Optimization

3

Introduction: Motivation 2nd HiPEAC Industrial Workshop

Drawbacks

Limitations:
The set of combinations of transformations is huge!
Only a subset of them respects the program semantics

→ Only a (very small) subset of transformation sequences is
actually tested

→ The search space is either too restrictive, or too large due
to the postponed legality check

⇒ Can we improve the search space construction: model all
sequences of transformations, and model only legal ones?

4

Introduction: Motivation 2nd HiPEAC Industrial Workshop

Drawbacks

Limitations:
The set of combinations of transformations is huge!
Only a subset of them respects the program semantics

→ Only a (very small) subset of transformation sequences is
actually tested

→ The search space is either too restrictive, or too large due
to the postponed legality check

⇒ Can we improve the search space construction: model all
sequences of transformations, and model only legal ones?

4

Introduction: Motivation 2nd HiPEAC Industrial Workshop

Drawbacks

Limitations:
The set of combinations of transformations is huge!
Only a subset of them respects the program semantics

→ Only a (very small) subset of transformation sequences is
actually tested

→ The search space is either too restrictive, or too large due
to the postponed legality check

⇒ Can we improve the search space construction: model all
sequences of transformations, and model only legal ones?

4

Introduction: Motivation 2nd HiPEAC Industrial Workshop

Drawbacks

Limitations:
The set of combinations of transformations is huge!
Only a subset of them respects the program semantics

→ Only a (very small) subset of transformation sequences is
actually tested

→ The search space is either too restrictive, or too large due
to the postponed legality check

⇒ Can we improve the search space construction: model all
sequences of transformations, and model only legal ones?

4

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

Iterative Optimization in the Polyhedral
Model

Focus on a Static Control program Parts (SCoP)
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
search space

→ In the polyhedral model (Feautrier, 92):
Compositions of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

5

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

Iterative Optimization in the Polyhedral
Model

Focus on a Static Control program Parts (SCoP)
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
search space

→ In the polyhedral model (Feautrier, 92):
Compositions of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

5

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

Iterative Optimization in the Polyhedral
Model

Focus on a Static Control program Parts (SCoP)
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
search space

→ In the polyhedral model (Feautrier, 92):
Compositions of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

5

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

Iterative Optimization in the Polyhedral
Model

Focus on a Static Control program Parts (SCoP)
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
search space

→ In the polyhedral model (Feautrier, 92):
Compositions of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

5

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here: θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation:
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

6

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here: θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation:
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

6

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here: θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation:
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

6

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here: θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation:
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

6

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

1 Analysis: from code to model
→ Existing prototype tools
→ GCC GRAPHITE branch in development

2 Transformation in the model
→ Build a search space of (legal) transformations

3 Code generation: from model to code
→ Use the CLooG tool for code generation (Bastoul, 04)
→ Produce C compilable code

7

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

1 Analysis: from code to model
→ Existing prototype tools
→ GCC GRAPHITE branch in development

2 Transformation in the model
→ Build a search space of (legal) transformations

3 Code generation: from model to code
→ Use the CLooG tool for code generation (Bastoul, 04)
→ Produce C compilable code

7

Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

1 Analysis: from code to model
→ Existing prototype tools
→ GCC GRAPHITE branch in development

2 Transformation in the model
→ Build a search space of (legal) transformations

3 Code generation: from model to code
→ Use the CLooG tool for code generation (Bastoul, 04)
→ Produce C compilable code

7

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

Extract the Instance Set

matvect
do i = 0, n

R s(i) = 0
do j = 0, n

S s(i) = s(i) + a(i,j) * x(j)
end do

end do

Iteration domain of R:
iteration vector ~xR = (i)
Exact set of instances of R is DR : {i | 0 ≤ i ≤ n}

8

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

Extract the Instance Set

matvect
do i = 0, n

R s(i) = 0
do j = 0, n

S s(i) = s(i) + a(i,j) * x(j)
end do

end do

Iteration domain of R:
iteration vector ~xR = (i)
Exact set of instances of R is DR : {i | 0 ≤ i ≤ n}

8

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

Extract the Instance Set

matvect
do i = 0, n

R s(i) = 0
do j = 0, n

S s(i) = s(i) + a(i,j) * x(j)
end do

end do

Iteration domain of S:
iteration vector ~xS =

(i
j

)
Exact set of instances of S is
DS : {i , j | 0 ≤ i ≤ n, 0 ≤ j ≤ n, }

8

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

Scheduling a Program

Definition (Schedule)
A schedule of a program is a function which associates a
logical date (a timestamp) to each instance of each statement.
It can be written, for a statement S (T is a constant matrix):

θS(~xS) = T
(

~xS
~n
1

)

Two instances having the same date can be run in parallel
Schedule dimension corresponds to the number of nested
sequential loops

9

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

Scheduling a Program

Definition (Schedule)
A schedule of a program is a function which associates a
logical date (a timestamp) to each instance of each statement.
It can be written, for a statement S (T is a constant matrix):

θS(~xS) = T
(

~xS
~n
1

)

Two instances having the same date can be run in parallel
Schedule dimension corresponds to the number of nested
sequential loops

9

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

Scheduling a Program

Definition (Schedule)
A schedule of a program is a function which associates a
logical date (a timestamp) to each instance of each statement.
It can be written, for a statement S (T is a constant matrix):

θS(~xS) = T
(

~xS
~n
1

)

Two instances having the same date can be run in parallel
Schedule dimension corresponds to the number of nested
sequential loops

9

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

Program Transformations in the Model

Every composition of loop transformations can be
expressed as affine schedules (Wolf, 92)

⇒ A schedule is the result of an arbitrarily complex
composition of transformation

10

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

Program Transformations in the Model

Every composition of loop transformations can be
expressed as affine schedules (Wolf, 92)

⇒ A schedule is the result of an arbitrarily complex
composition of transformation

10

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

A Scheduling Example
Original Schedule

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

=⇒

θR

(
i
j

)
=

(
i
j

)
=

[1 0
0 1

] (
i
j

)

do i = 1, 2
do j = 1, 3

a(i,j) = a(i,j) * 0.2

do i = 1, 2
do j = 1, 3

a(i,j) = a(i,j) * 0.2

11

Introduction: Polyhedral Representation of programs 2nd HiPEAC Industrial Workshop

A Scheduling Example
Another Schedule

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’0
1
2
3

j’

=⇒

θR

(
i
j

)
=

(
j
i

)
=

[0 1
1 0

] (
i
j

)

do i = 1, 2
do j = 1, 3

a(i,j) = a(i,j) * 0.2

do j = 1, 3
do i = 1, 2

a(i,j) = a(i,j) * 0.2

12

Iterative Optimization in the Polyhedral Model: One-Dimensional Schedules 2nd HiPEAC Industrial Workshop

Context
Focus on one-dimensional schedules (T is a constant row
matrix)
One-dimensional schedule can represent compositions of:

Transformation Description
reversal Changes the direction in which a loop

traverses its iteration range
skewing Makes the bounds of a given loop depend on

an outer loop counter
interchange Exchanges two loops in a perfectly nested

loop, a.k.a. permutation
peeling Extracts one iteration of a given loop
shifting Allows to reorder loops
fusion Fuses two loops, a.k.a. jamming

distribution Splits a single loop nest into many,
a.k.a. fission or splitting

13

Iterative Optimization in the Polyhedral Model: One-Dimensional Schedules 2nd HiPEAC Industrial Workshop

Context
Focus on one-dimensional schedules (T is a constant row
matrix)
One-dimensional schedule can represent compositions of:

Transformation Description
reversal Changes the direction in which a loop

traverses its iteration range
skewing Makes the bounds of a given loop depend on

an outer loop counter
interchange Exchanges two loops in a perfectly nested

loop, a.k.a. permutation
peeling Extracts one iteration of a given loop
shifting Allows to reorder loops
fusion Fuses two loops, a.k.a. jamming

distribution Splits a single loop nest into many,
a.k.a. fission or splitting

13

Iterative Optimization in the Polyhedral Model: One-Dimensional Schedules 2nd HiPEAC Industrial Workshop

Potential Transformations

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i)(j) * x(j)

The two prototype affine schedules for R and S are:

θR(~xR) = t1R .iR + t2R .n + t3R .1
θS(~xS) = t1S .iS + t2S .jS + t3S .n + t4S .1

⇒ For −1 ≤ t ≤ 1, there are 59049 values!

matvect locality matmul gauss crout

Bounds −1, 1 −1, 1 −1, 1 −1, 1 −3, 3
#Sched. 2.1× 103 5.9× 104 1.9× 104 5.9× 104 2.6× 1015

14

Iterative Optimization in the Polyhedral Model: One-Dimensional Schedules 2nd HiPEAC Industrial Workshop

Potential Transformations

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i)(j) * x(j)

The two prototype affine schedules for R and S are:

θR(~xR) = t1R .iR + t2R .n + t3R .1
θS(~xS) = t1S .iS + t2S .jS + t3S .n + t4S .1

⇒ For −1 ≤ t ≤ 1, there are 59049 values!

matvect locality matmul gauss crout

Bounds −1, 1 −1, 1 −1, 1 −1, 1 −3, 3
#Sched. 2.1× 103 5.9× 104 1.9× 104 5.9× 104 2.6× 1015

14

Iterative Optimization in the Polyhedral Model: One-Dimensional Schedules 2nd HiPEAC Industrial Workshop

Potential Transformations

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i)(j) * x(j)

The two prototype affine schedules for R and S are:

θR(~xR) = t1R .iR + t2R .n + t3R .1
θS(~xS) = t1S .iS + t2S .jS + t3S .n + t4S .1

⇒ For −1 ≤ t ≤ 1, there are 59049 values!

matvect locality matmul gauss crout

Bounds −1, 1 −1, 1 −1, 1 −1, 1 −3, 3
#Sched. 2.1× 103 5.9× 104 1.9× 104 5.9× 104 2.6× 1015

14

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Objectives

Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)

→ Perform an exact dependence analysis
→ Build the set of all possible values of T

⇒ The resulting space represents all the distinct possible ways
to legally reschedule the program, using arbitrarily complex
sequences of transformations.

15

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Objectives

Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)

→ Perform an exact dependence analysis
→ Build the set of all possible values of T

⇒ The resulting space represents all the distinct possible ways
to legally reschedule the program, using arbitrarily complex
sequences of transformations.

15

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Objectives

Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)

→ Perform an exact dependence analysis
→ Build the set of all possible values of T

⇒ The resulting space represents all the distinct possible ways
to legally reschedule the program, using arbitrarily complex
sequences of transformations.

15

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Dependence Expression
Need to represent the exact set of instances in
dependence
Exact computation made possible thanks to the SCoP and
Static reference assumptions (Feautrier, 92)
Use a subset of the Cartesian product of iteration domains:

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i)(j) * x(j)

16

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Dependence Expression
Need to represent the exact set of instances in
dependence
Exact computation made possible thanks to the SCoP and
Static reference assumptions (Feautrier, 92)
Use a subset of the Cartesian product of iteration domains:

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i)(j) * x(j)

i

Iterations of R

DRδS :

1 0 0 0 −1

−1 0 0 0 3
0 1 0 0 −1
0 −1 0 0 3
0 0 1 0 −1
0 0 −1 0 3
1 −1 0 0 0

 .

(iR
iS
jS
n
1

)
≥ ~0
= 0

16

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Dependence Expression
Need to represent the exact set of instances in
dependence
Exact computation made possible thanks to the SCoP and
Static reference assumptions (Feautrier, 92)
Use a subset of the Cartesian product of iteration domains:

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i)(j) * x(j)

i

Iterations of S

Iterations of R

DRδS :

1 0 0 0 −1
−1 0 0 0 3

0 1 0 0 −1
0 −1 0 0 3
0 0 1 0 −1
0 0 −1 0 3
1 −1 0 0 0

 .

(iR
iS
jS
n
1

)
≥ ~0
= 0

16

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Dependence Expression
Need to represent the exact set of instances in
dependence
Exact computation made possible thanks to the SCoP and
Static reference assumptions (Feautrier, 92)
Use a subset of the Cartesian product of iteration domains:

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i)(j) * x(j)

i

Iterations of R

Iterations of S DRδS :

1 0 0 0 −1

−1 0 0 0 3
0 1 0 0 −1
0 −1 0 0 3
0 0 1 0 −1
0 0 −1 0 3
1 −1 0 0 0

 .

(iR
iS
jS
n
1

)
≥ ~0
= 0

16

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Formal Definition [1/2]

Legal Schedule

⇒ Assuming RδS, θR(~xR) and θS(~xS) are legal iff:

∆R,S = θS(~xS)− θR(~xR)− 1

Is non-negative for each point in DRδS.

17

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Formal Definition [2/2]

→ We can express the legality condition as a set of affine
non-negative functions over DRδS

Lemma (Affine form of Farkas lemma)
Let D be a nonempty polyhedron defined by the inequalities
A~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative
everywhere in D iff it is a positive affine combination:

f (~x) = λ0 + ~λT (A~x + ~b), with λ0 ≥ 0 and ~λ ≥ ~0.

λ0 and ~λT are called the Farkas multipliers.

⇒ We can express the set of affine, non-negative functions
over DRδS

18

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Formal Definition [2/2]

→ We can express the legality condition as a set of affine
non-negative functions over DRδS

Lemma (Affine form of Farkas lemma)
Let D be a nonempty polyhedron defined by the inequalities
A~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative
everywhere in D iff it is a positive affine combination:

f (~x) = λ0 + ~λT (A~x + ~b), with λ0 ≥ 0 and ~λ ≥ ~0.

λ0 and ~λT are called the Farkas multipliers.

⇒ We can express the set of affine, non-negative functions
over DRδS

18

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Formal Definition [2/2]

→ We can express the legality condition as a set of affine
non-negative functions over DRδS

Lemma (Affine form of Farkas lemma)
Let D be a nonempty polyhedron defined by the inequalities
A~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative
everywhere in D iff it is a positive affine combination:

f (~x) = λ0 + ~λT (A~x + ~b), with λ0 ≥ 0 and ~λ ≥ ~0.

λ0 and ~λT are called the Farkas multipliers.

⇒ We can express the set of affine, non-negative functions
over DRδS

18

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

An Example

do i = 1, n
R s(i) = 0

do j = 1, n
S s(i) = s(i) + a(i,j) * x(j)

The two prototype affine schedules for R and S are:
θR (~xR) = t1R

.iR + t2R
.n + t3R

.1
θS(~xS) = t1S

.iS + t2S
.jS + t3S

.n + t4S
.1

The set of instances of R and S in dependence are
represented by:

DRδS :

1 −1 0 0 0
1 0 0 0 0
−1 0 0 1 0

0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0

 .

(iR
iS
jS
n
1

)
= 0

≥ ~0

19

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

An Example

do i = 1, n
R s(i) = 0

do j = 1, n
S s(i) = s(i) + a(i,j) * x(j)

The two prototype affine schedules for R and S are:
θR (~xR) = t1R

.iR + t2R
.n + t3R

.1
θS(~xS) = t1S

.iS + t2S
.jS + t3S

.n + t4S
.1

1 Express the set of non-negative functions over DRδS
2 Equate the coefficients
3 Solve the system

19

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

An Example

do i = 1, n
R s(i) = 0

do j = 1, n
S s(i) = s(i) + a(i,j) * x(j)

The two prototype affine schedules for R and S are:
θR (~xR) = t1R

.iR + t2R
.n + t3R

.1
θS(~xS) = t1S

.iS + t2S
.jS + t3S

.n + t4S
.1

We get the following system for RδS:

DRδS iR : −t1R
= λD1,1

− λD1,2
+ λD1,7

iS : t1S
= λD1,3

− λD1,4
− λD1,7

jS : t2S
= λD1,5

− λD1,6
n : t3S

− t2R
= λD1,2

+ λD1,4
+ λD1,6

1 : t4S
− t3R

− 1 = λD1,0

⇒ The constraints on t gives the set of possible values to
respect the legality condition

19

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

An Example

do i = 1, n
R s(i) = 0

do j = 1, n
S s(i) = s(i) + a(i,j) * x(j)

The two prototype affine schedules for R and S are:
θR (~xR) = t1R

.iR + t2R
.n + t3R

.1
θS(~xS) = t1S

.iS + t2S
.jS + t3S

.n + t4S
.1

We get the following system for RδS:

DRδS iR : −t1R
= λD1,1

− λD1,2
+ λD1,7

iS : t1S
= λD1,3

− λD1,4
− λD1,7

jS : t2S
= λD1,5

− λD1,6
n : t3S

− t2R
= λD1,2

+ λD1,4
+ λD1,6

1 : t4S
− t3R

− 1 = λD1,0

⇒ The constraints on t gives the set of possible values to
respect the legality condition

19

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Construction Algorithm

Need to add the constraints obtained for each dependence
The set of legal transformations can be infinite
→ Need to bound the space

⇒ To each (integral) point in Dt corresponds a different version
of the original program where the semantics is preserved.

20

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Construction Algorithm

Need to add the constraints obtained for each dependence
The set of legal transformations can be infinite
→ Need to bound the space

⇒ To each (integral) point in Dt corresponds a different version
of the original program where the semantics is preserved.

20

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Construction Algorithm

Need to add the constraints obtained for each dependence
The set of legal transformations can be infinite
→ Need to bound the space

⇒ To each (integral) point in Dt corresponds a different version
of the original program where the semantics is preserved.

20

Iterative Optimization in the Polyhedral Model: Legal Scheduling Space 2nd HiPEAC Industrial Workshop

Legal Search Space

Multiple orders of magnitude reduction in the size of the
search space compared to state-of-the-art techniques

Benchmark Bounds #Sched #Legal Time
matvect −1, 1 2.1× 103 129 0.024
locality −1, 1 5.9× 104 6561 0.022
matmul −1, 1 1.9× 104 912 0.029
gauss −1, 1 5.9× 104 506 0.047
crout −3, 3 2.6× 1015 798 0.046

21

Experimental Results: 2nd HiPEAC Industrial Workshop

Experimental Protocol

We provide a source-to-source framework. Given an input
program:

1 Use LetSee to generate a CLooG formatted file per legal
transformation.

2 Generate the target code with CLooG.
3 Compile and launch the whole set of transformed (C) code,

and sort the results regarding cycle count.

⇒ Exhaustive scan is achievable on small kernels

22

Experimental Results: 2nd HiPEAC Industrial Workshop

Experimental Protocol

We provide a source-to-source framework. Given an input
program:

1 Use LetSee to generate a CLooG formatted file per legal
transformation.

2 Generate the target code with CLooG.
3 Compile and launch the whole set of transformed (C) code,

and sort the results regarding cycle count.

⇒ Exhaustive scan is achievable on small kernels

22

Experimental Results: Exhaustive Scan 2nd HiPEAC Industrial Workshop

Performance Distribution [1/2]

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 2.2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

(M
)

Transfo. ID

matxmat

Original

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

(M
)

Transfo. ID

locality

Original

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 1.2e+09

 1.3e+09

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
yc

le
s

(M
)

Transfo. ID

matvecttransp

Original

 1.26e+09

 1.28e+09

 1.3e+09

 1.32e+09

 1.34e+09

 1.36e+09

 1.38e+09

 1.4e+09

 1.42e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

(M
)

Transfo. ID

crout

Original

Figure: Performance distribution for matmul, locality, mvt and
crout

23

Experimental Results: Exhaustive Scan 2nd HiPEAC Industrial Workshop

Performance Distribution [2/2]

 1.26e+09

 1.28e+09

 1.3e+09

 1.32e+09

 1.34e+09

 1.36e+09

 1.38e+09

 1.4e+09

 1.42e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

(M
)

Transfo. ID

crout

Original

(a) GCC -O3

 1.26e+09

 1.27e+09

 1.28e+09

 1.29e+09

 1.3e+09

 1.31e+09

 1.32e+09

 1.33e+09

 1.34e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

(M
)

Transfo. ID

crout

Original

(b) ICC -fast

Figure: The effect of the compiler

24

Experimental Results: Exhaustive Scan 2nd HiPEAC Industrial Workshop

Some Speedups

Benchmark Compiler Options Parameters ID best Speedup

h264 PathCC -Ofast N=8 352 36.1%
h264 GCC -O2 N=8 234 13.3%
h264 GCC -O3 N=8 250 25.0%
h264 ICC -O2 N=8 290 12.9%
h264 ICC -fast N=8 N/A 0%

fir PathCC -Ofast N=150000 72 6.0%
fir GCC -O2 N=150000 192 15.2%
fir GCC -O3 N=150000 289 13.2%
fir ICC -O2 N=150000 242 18.4%
fir ICC -fast N=150000 392 3.4%

MVT PathCC -Ofast N=2000 4934 27.4%
MVT GCC -O2 N=2000 13301 18.0%
MVT GCC -O3 N=2000 13320 21.2%
MVT ICC -O2 N=2000 14093 24.0%
MVT ICC -fast N=2000 4879 29.1%

matmul PathCC -Ofast N=250 283 308.1%
matmul GCC -O2 N=250 573 243.6%
matmul GCC -O3 N=250 143 248.7%
matmul ICC -O2 N=250 311 356.6%
matmul ICC -fast N=250 641 645.4%

25

Experimental Results: A Transformation Example 2nd HiPEAC Industrial Workshop

The mvt Kernel

for (i = 0; i <= M; i++) {
S1 x1[i] = 0;
S2 x2[i] = 0;

for (j = 0; j <= M; j++) {
S3 x1[i] += a[i][j] * y1[j];
S4 x2[i] += a[j][i] * y2[j];

}
}

Compiler Option Original Best Schedule Speedup

GCC 4.1.1 -O3 6.9 5.1

θS1(~xS1) = −i − n − 1
θS2(~xS2) = −1
θS1(~xS1) = j + 1
θS2(~xS2) = i + j + n + 1

35.3%

ICC 9.0.1 -fast 6.1 4.9

θS1(~xS1) = n − 1
θS2(~xS2) = −n − 1
θS1(~xS1) = j + n + 1
θS2(~xS2) = j − n

24.5%

PathCC 2.5 -Ofast 7.3 5.9

θS1(~xS1) = −i − n − 1
θS2(~xS2) = −i − n
θS1(~xS1) = −i + j + n + 1
θS2(~xS2) = −i + j + 1

23.8%

26

Experimental Results: A Transformation Example 2nd HiPEAC Industrial Workshop

Generated Code

Optimal Transformation for mvt, GCC 4 -O3, P4 Xeon
S1: x1[i] = 0
S2: x2[i] = 0
S3: x1[i] += a[i][j] * y1[j]
S4: x2[i] += a[j][i] * y2[j]

for (i = 0; i <= M; i++) {
S1(i);
S2(i);
for (j = 0; j <= M; j++) {
S3(i,j);
S4(i,j);

}
}

for (i = 0; i <= M; i++)
S2(i);

for (c1 = 1; c1 <= M-1; c1++)
for (i = 0; i <= M; i++) {
S4(i,c1-1);

}

for (i = 0; i <= M; i++) {
S1(i);
S4(i,M-1);

}

S3(0,0);
S4(0,M);
for (i = 1 ; i <= M; i++)
S4(i,M);

for (c1 = M+2; c1 <= 3*M+1; c1++)
for (i = max(c1-2*M-1,0); i <= min(M,c1-M-1); i++) {
S3(i,c1-i-M-1);

}

27

Experimental Results: A Transformation Example 2nd HiPEAC Industrial Workshop

Heuristic Scan
Propose a decoupling heuristic:

The general “form” of the schedule is embedded in the
iterator coefficients
Parameters and constant coefficients can be seen as a
refinement

→ On some distributions a random heuristic may converge
faster

Figure: Heuristic convergence

Benchmark #Schedules Heuristic. #Runs %Speedup

locality 6561 Rand 125 96.1%
DH 123 98.3%

matmul 912 Rand 170 99.9%
DH 170 99.8%

mvt 16641 Rand 30 93.3%
DH 31 99.0%

28

Conclusion: 2nd HiPEAC Industrial Workshop

Conclusion

→ Iterative Compilation Framework independent of the
compiler and the architecture

→ Optimizing and / or Enabling transformation process
→ Leads to encouraging speedups
→ On small kernels, exhaustive scan is achievable

Future work:
→ Develop new exploration heuristics
→ Deal with multidimensional schedules
→ Integrate in GCC GRAPHITE branch

29

Conclusion: 2nd HiPEAC Industrial Workshop

Conclusion

→ Iterative Compilation Framework independent of the
compiler and the architecture

→ Optimizing and / or Enabling transformation process
→ Leads to encouraging speedups
→ On small kernels, exhaustive scan is achievable

Future work:
→ Develop new exploration heuristics
→ Deal with multidimensional schedules
→ Integrate in GCC GRAPHITE branch

29

Conclusion: 2nd HiPEAC Industrial Workshop

Conclusion

→ Iterative Compilation Framework independent of the
compiler and the architecture

→ Optimizing and / or Enabling transformation process
→ Leads to encouraging speedups
→ On small kernels, exhaustive scan is achievable

Future work:
→ Develop new exploration heuristics
→ Deal with multidimensional schedules
→ Integrate in GCC GRAPHITE branch

29

Conclusion: 2nd HiPEAC Industrial Workshop

Conclusion

→ Iterative Compilation Framework independent of the
compiler and the architecture

→ Optimizing and / or Enabling transformation process
→ Leads to encouraging speedups
→ On small kernels, exhaustive scan is achievable

Future work:
→ Develop new exploration heuristics
→ Deal with multidimensional schedules
→ Integrate in GCC GRAPHITE branch

29

Conclusion: 2nd HiPEAC Industrial Workshop

Conclusion

→ Iterative Compilation Framework independent of the
compiler and the architecture

→ Optimizing and / or Enabling transformation process
→ Leads to encouraging speedups
→ On small kernels, exhaustive scan is achievable

Future work:
→ Develop new exploration heuristics
→ Deal with multidimensional schedules
→ Integrate in GCC GRAPHITE branch

29

Conclusion: 2nd HiPEAC Industrial Workshop

Conclusion

→ Iterative Compilation Framework independent of the
compiler and the architecture

→ Optimizing and / or Enabling transformation process
→ Leads to encouraging speedups
→ On small kernels, exhaustive scan is achievable

Future work:
→ Develop new exploration heuristics
→ Deal with multidimensional schedules
→ Integrate in GCC GRAPHITE branch

29

Conclusion: 2nd HiPEAC Industrial Workshop

Conclusion

→ Iterative Compilation Framework independent of the
compiler and the architecture

→ Optimizing and / or Enabling transformation process
→ Leads to encouraging speedups
→ On small kernels, exhaustive scan is achievable

Future work:
→ Develop new exploration heuristics
→ Deal with multidimensional schedules
→ Integrate in GCC GRAPHITE branch

29

	Outline
	Introduction
	Motivation
	The Polyhedral Model
	Polyhedral Representation of programs

	Iterative Optimization in the Polyhedral Model
	One-Dimensional Schedules
	Legal Scheduling Space

	Experimental Results
	Exhaustive Scan
	A Transformation Example

	Conclusion

