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Introduction: Motivation 2nd HiPEAC Industrial Workshop

Iterative Optimization

Instead of predicting profitability of a transformation,
perform it and run the program
Most of the time, adresses parameters tuning or phase
selection

Alternatively, some works replace the heuristic itself by
iterative search

→ We focus on Loop Nest Optimization
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Introduction: Motivation 2nd HiPEAC Industrial Workshop

Drawbacks

Limitations:
The set of combinations of transformations is huge!
Only a subset of them respects the program semantics

→ Only a (very small) subset of transformation sequences is
actually tested

→ The search space is either too restrictive, or too large due
to the postponed legality check

⇒ Can we improve the search space construction: model all
sequences of transformations, and model only legal ones?
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Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

Iterative Optimization in the Polyhedral
Model

Focus on a Static Control program Parts (SCoP)
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
search space

→ In the polyhedral model (Feautrier, 92):
Compositions of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

5



Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

Iterative Optimization in the Polyhedral
Model

Focus on a Static Control program Parts (SCoP)
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
search space

→ In the polyhedral model (Feautrier, 92):
Compositions of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

5



Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

Iterative Optimization in the Polyhedral
Model

Focus on a Static Control program Parts (SCoP)
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
search space

→ In the polyhedral model (Feautrier, 92):
Compositions of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

5



Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

Iterative Optimization in the Polyhedral
Model

Focus on a Static Control program Parts (SCoP)
Use a polyhedral abstraction to represent program
information
Use iterative optimization techniques in the constructed
search space

→ In the polyhedral model (Feautrier, 92):
Compositions of transformations are easily expressed
Transformation legality is easily checked
Natural expression of parallelism

5



Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1
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3

3 4 5 6

j

2 Transformation in the model
Here: θ

(i
j

)
= t = i + j ⇓

1
2
3
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3
2 3 4 5 61

j

i

t

3 Code generation:
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

6



Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here: θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation:
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

6



Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here: θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation:
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

6



Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

do i = 1, 3
do j = 1, 3

A(i+j) = ...

1 Analysis: from code to model ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Transformation in the model
Here: θ

(i
j

)
= t = i + j ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation:
from model to code ⇓

do t = 2, 6
do i = max(1,t-3), min(t-1,3)

A(t) = ...

6



Introduction: The Polyhedral Model 2nd HiPEAC Industrial Workshop

A Three-Stage Process

1 Analysis: from code to model
→ Existing prototype tools
→ GCC GRAPHITE branch in development

2 Transformation in the model
→ Build a search space of (legal) transformations

3 Code generation: from model to code
→ Use the CLooG tool for code generation (Bastoul, 04)
→ Produce C compilable code
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Extract the Instance Set

matvect
do i = 0, n

R s(i) = 0
do j = 0, n

S s(i) = s(i) + a(i,j) * x(j)
end do

end do

Iteration domain of R:
iteration vector ~xR = (i)
Exact set of instances of R is DR : {i | 0 ≤ i ≤ n}
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Extract the Instance Set

matvect
do i = 0, n

R s(i) = 0
do j = 0, n

S s(i) = s(i) + a(i,j) * x(j)
end do

end do

Iteration domain of S:
iteration vector ~xS =

(i
j

)
Exact set of instances of S is
DS : {i , j | 0 ≤ i ≤ n, 0 ≤ j ≤ n, }
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Scheduling a Program

Definition (Schedule)
A schedule of a program is a function which associates a
logical date (a timestamp) to each instance of each statement.
It can be written, for a statement S (T is a constant matrix):

θS( ~xS) = T
(

~xS
~n
1

)

Two instances having the same date can be run in parallel
Schedule dimension corresponds to the number of nested
sequential loops
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Program Transformations in the Model

Every composition of loop transformations can be
expressed as affine schedules (Wolf, 92)

⇒ A schedule is the result of an arbitrarily complex
composition of transformation
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A Scheduling Example
Original Schedule
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do i = 1, 2
do j = 1, 3

a(i,j) = a(i,j) * 0.2

do i = 1, 2
do j = 1, 3

a(i,j) = a(i,j) * 0.2
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A Scheduling Example
Another Schedule
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do i = 1, 2
do j = 1, 3

a(i,j) = a(i,j) * 0.2

do j = 1, 3
do i = 1, 2

a(i,j) = a(i,j) * 0.2
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Context
Focus on one-dimensional schedules (T is a constant row
matrix)
One-dimensional schedule can represent compositions of:

Transformation Description
reversal Changes the direction in which a loop

traverses its iteration range
skewing Makes the bounds of a given loop depend on

an outer loop counter
interchange Exchanges two loops in a perfectly nested

loop, a.k.a. permutation
peeling Extracts one iteration of a given loop
shifting Allows to reorder loops
fusion Fuses two loops, a.k.a. jamming

distribution Splits a single loop nest into many,
a.k.a. fission or splitting
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Potential Transformations

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i)(j) * x(j)

The two prototype affine schedules for R and S are:

θR(~xR) = t1R .iR + t2R .n + t3R .1
θS(~xS) = t1S .iS + t2S .jS + t3S .n + t4S .1

⇒ For −1 ≤ t ≤ 1, there are 59049 values!

matvect locality matmul gauss crout

Bounds −1, 1 −1, 1 −1, 1 −1, 1 −3, 3
#Sched. 2.1× 103 5.9× 104 1.9× 104 5.9× 104 2.6× 1015
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Objectives

Build the set of all legal program versions (i.e. which
respects all the data dependence of the program)

→ Perform an exact dependence analysis
→ Build the set of all possible values of T

⇒ The resulting space represents all the distinct possible ways
to legally reschedule the program, using arbitrarily complex
sequences of transformations.
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Dependence Expression
Need to represent the exact set of instances in
dependence
Exact computation made possible thanks to the SCoP and
Static reference assumptions (Feautrier, 92)
Use a subset of the Cartesian product of iteration domains:

do i = 1, 3
R s(i) = 0

do j = 1, 3
S s(i) = s(i) + a(i)(j) * x(j)
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i

Iterations of R

DRδS :


1 0 0 0 −1

−1 0 0 0 3
0 1 0 0 −1
0 −1 0 0 3
0 0 1 0 −1
0 0 −1 0 3
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 .

(iR
iS
jS
n
1

)
≥ ~0
= 0
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Formal Definition [1/2]

Legal Schedule

⇒ Assuming RδS, θR( ~xR) and θS( ~xS) are legal iff:

∆R,S = θS( ~xS)− θR( ~xR)− 1

Is non-negative for each point in DRδS.

17
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Formal Definition [2/2]

→ We can express the legality condition as a set of affine
non-negative functions over DRδS

Lemma (Affine form of Farkas lemma)
Let D be a nonempty polyhedron defined by the inequalities
A~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative
everywhere in D iff it is a positive affine combination:

f (~x) = λ0 + ~λT (A~x + ~b), with λ0 ≥ 0 and ~λ ≥ ~0.

λ0 and ~λT are called the Farkas multipliers.

⇒ We can express the set of affine, non-negative functions
over DRδS

18
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An Example

do i = 1, n
R s(i) = 0

do j = 1, n
S s(i) = s(i) + a(i,j) * x(j)

The two prototype affine schedules for R and S are:
θR (~xR ) = t1R

.iR + t2R
.n + t3R

.1
θS(~xS) = t1S

.iS + t2S
.jS + t3S

.n + t4S
.1

The set of instances of R and S in dependence are
represented by:

DRδS :


1 −1 0 0 0
1 0 0 0 0
−1 0 0 1 0

0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0

 .

(iR
iS
jS
n
1

)
= 0

≥ ~0
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An Example

do i = 1, n
R s(i) = 0

do j = 1, n
S s(i) = s(i) + a(i,j) * x(j)

The two prototype affine schedules for R and S are:
θR (~xR ) = t1R

.iR + t2R
.n + t3R

.1
θS(~xS) = t1S

.iS + t2S
.jS + t3S

.n + t4S
.1

1 Express the set of non-negative functions over DRδS
2 Equate the coefficients
3 Solve the system
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.iR + t2R
.n + t3R

.1
θS(~xS) = t1S

.iS + t2S
.jS + t3S

.n + t4S
.1

We get the following system for RδS:


DRδS iR : −t1R
= λD1,1

− λD1,2
+ λD1,7

iS : t1S
= λD1,3

− λD1,4
− λD1,7

jS : t2S
= λD1,5

− λD1,6
n : t3S

− t2R
= λD1,2

+ λD1,4
+ λD1,6

1 : t4S
− t3R

− 1 = λD1,0

⇒ The constraints on t gives the set of possible values to
respect the legality condition
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Construction Algorithm

Need to add the constraints obtained for each dependence
The set of legal transformations can be infinite
→ Need to bound the space

⇒ To each (integral) point in Dt corresponds a different version
of the original program where the semantics is preserved.

20
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Legal Search Space

Multiple orders of magnitude reduction in the size of the
search space compared to state-of-the-art techniques

Benchmark Bounds #Sched #Legal Time
matvect −1, 1 2.1× 103 129 0.024
locality −1, 1 5.9× 104 6561 0.022
matmul −1, 1 1.9× 104 912 0.029
gauss −1, 1 5.9× 104 506 0.047
crout −3, 3 2.6× 1015 798 0.046

21



Experimental Results: 2nd HiPEAC Industrial Workshop

Experimental Protocol

We provide a source-to-source framework. Given an input
program:

1 Use LetSee to generate a CLooG formatted file per legal
transformation.

2 Generate the target code with CLooG.
3 Compile and launch the whole set of transformed (C) code,

and sort the results regarding cycle count.

⇒ Exhaustive scan is achievable on small kernels
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Performance Distribution [1/2]
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Figure: Performance distribution for matmul, locality, mvt and
crout
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Performance Distribution [2/2]
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(b) ICC -fast

Figure: The effect of the compiler
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Some Speedups

Benchmark Compiler Options Parameters ID best Speedup

h264 PathCC -Ofast N=8 352 36.1%
h264 GCC -O2 N=8 234 13.3%
h264 GCC -O3 N=8 250 25.0%
h264 ICC -O2 N=8 290 12.9%
h264 ICC -fast N=8 N/A 0%

fir PathCC -Ofast N=150000 72 6.0%
fir GCC -O2 N=150000 192 15.2%
fir GCC -O3 N=150000 289 13.2%
fir ICC -O2 N=150000 242 18.4%
fir ICC -fast N=150000 392 3.4%

MVT PathCC -Ofast N=2000 4934 27.4%
MVT GCC -O2 N=2000 13301 18.0%
MVT GCC -O3 N=2000 13320 21.2%
MVT ICC -O2 N=2000 14093 24.0%
MVT ICC -fast N=2000 4879 29.1%

matmul PathCC -Ofast N=250 283 308.1%
matmul GCC -O2 N=250 573 243.6%
matmul GCC -O3 N=250 143 248.7%
matmul ICC -O2 N=250 311 356.6%
matmul ICC -fast N=250 641 645.4%
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The mvt Kernel

for (i = 0; i <= M; i++) {
S1 x1[i] = 0;
S2 x2[i] = 0;

for (j = 0; j <= M; j++) {
S3 x1[i] += a[i][j] * y1[j];
S4 x2[i] += a[j][i] * y2[j];

}
}

Compiler Option Original Best Schedule Speedup

GCC 4.1.1 -O3 6.9 5.1

θS1(~xS1) = −i − n − 1
θS2(~xS2) = −1
θS1(~xS1) = j + 1
θS2(~xS2) = i + j + n + 1

35.3%

ICC 9.0.1 -fast 6.1 4.9

θS1(~xS1) = n − 1
θS2(~xS2) = −n − 1
θS1(~xS1) = j + n + 1
θS2(~xS2) = j − n

24.5%

PathCC 2.5 -Ofast 7.3 5.9

θS1(~xS1) = −i − n − 1
θS2(~xS2) = −i − n
θS1(~xS1) = −i + j + n + 1
θS2(~xS2) = −i + j + 1

23.8%
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Generated Code

Optimal Transformation for mvt, GCC 4 -O3, P4 Xeon
S1: x1[i] = 0
S2: x2[i] = 0
S3: x1[i] += a[i][j] * y1[j]
S4: x2[i] += a[j][i] * y2[j]

for (i = 0; i <= M; i++) {
S1(i);
S2(i);
for (j = 0; j <= M; j++) {
S3(i,j);
S4(i,j);

}
}

for (i = 0; i <= M; i++)
S2(i);

for (c1 = 1; c1 <= M-1; c1++)
for (i = 0; i <= M; i++) {
S4(i,c1-1);

}

for (i = 0; i <= M; i++) {
S1(i);
S4(i,M-1);

}

S3(0,0);
S4(0,M);
for (i = 1 ; i <= M; i++)
S4(i,M);

for (c1 = M+2; c1 <= 3*M+1; c1++)
for (i = max(c1-2*M-1,0); i <= min(M,c1-M-1); i++) {
S3(i,c1-i-M-1);

}
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Heuristic Scan
Propose a decoupling heuristic:

The general “form” of the schedule is embedded in the
iterator coefficients
Parameters and constant coefficients can be seen as a
refinement

→ On some distributions a random heuristic may converge
faster

Figure: Heuristic convergence

Benchmark #Schedules Heuristic. #Runs %Speedup

locality 6561 Rand 125 96.1%
DH 123 98.3%

matmul 912 Rand 170 99.9%
DH 170 99.8%

mvt 16641 Rand 30 93.3%
DH 31 99.0%
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Conclusion

→ Iterative Compilation Framework independent of the
compiler and the architecture

→ Optimizing and / or Enabling transformation process
→ Leads to encouraging speedups
→ On small kernels, exhaustive scan is achievable

Future work:
→ Develop new exploration heuristics
→ Deal with multidimensional schedules
→ Integrate in GCC GRAPHITE branch
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