Iterative Optimization in the Polyhedral Model: One-Dimensional Affine Schedules

Louis-Noël Pouchet, Cédric Bastoul and Albert Cohen

ALCHEMY, LRI - INRIA Futurs
October 17, 2006
(1) Introduction

- Motivation
- The Polyhedral Model
- Polyhedral Representation of programs
(2) Iterative Optimization in the Polyhedral Model
- One-Dimensional Schedules
- Legal Scheduling Space
(3) Experimental Results
- Exhaustive Scan
- A Transformation Example

4 Conclusion

Iterative Optimization

- Instead of predicting profitability of a transformation, perform it and run the program
- Most of the time, adresses parameters tuning or phase selection
- Alternatively, some works replace the heuristic itself by iterative search

Iterative Optimization

- Instead of predicting profitability of a transformation, perform it and run the program
- Most of the time, adresses parameters tuning or phase selection
- Alternatively, some works replace the heuristic itself by iterative search

Iterative Optimization

- Instead of predicting profitability of a transformation, perform it and run the program
- Most of the time, adresses parameters tuning or phase selection
- Alternatively, some works replace the heuristic itself by iterative search
\rightarrow We focus on Loop Nest Optimization

Iterative Optimization

- Instead of predicting profitability of a transformation, perform it and run the program
- Most of the time, adresses parameters tuning or phase selection
- Alternatively, some works replace the heuristic itself by iterative search
\rightarrow We focus on Loop Nest Optimization

Drawbacks

Limitations:

- The set of combinations of transformations is huge!
- Only a subset of them respects the program semantics

\Rightarrow Can we improve the search space construction: model all sequences of transformations, and model only legal ones?

Drawbacks

Limitations:

- The set of combinations of transformations is huge!
- Only a subset of them respects the program semantics
\rightarrow Only a (very small) subset of transformation sequences is actually tested
The search space is either too restrictive, or too large due to the postponed legality check
> \Rightarrow Can we improve the search space construction: model all sequences of transformations, and model only legal ones?

Drawbacks

Limitations:

- The set of combinations of transformations is huge!
- Only a subset of them respects the program semantics
\rightarrow Only a (very small) subset of transformation sequences is actually tested
\rightarrow The search space is either too restrictive, or too large due to the postponed legality check
\Rightarrow Can we improve the search space construction: model all
sequences of transformations, and model only legal ones?

Drawbacks

Limitations:

- The set of combinations of transformations is huge!
- Only a subset of them respects the program semantics
\rightarrow Only a (very small) subset of transformation sequences is actually tested
\rightarrow The search space is either too restrictive, or too large due to the postponed legality check
\Rightarrow Can we improve the search space construction: model all sequences of transformations, and model only legal ones?

Iterative Optimization in the Polyhedral Model

- Focus on a Static Control program Parts (SCoP)
- Use a polyhedral abstraction to represent program
information
- Use iterative optimization techniques in the constructed search space

In the polyhedral model (Feautrier, 92):

- Compositions of transformations are easily expressed
- Transformation legality is easily checked
- Natural expression of parallelism

Iterative Optimization in the Polyhedral Model

- Focus on a Static Control program Parts (SCoP)
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed search space

Iterative Optimization in the Polyhedral Model

- Focus on a Static Control program Parts (SCoP)
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed search space
\rightarrow In the polyhedral model (Feautrier, 92):
- Compositions of transformations are easily expressed
- Transformation legality is easily checked
- Natural expression of parallelism

Iterative Optimization in the Polyhedral Model

- Focus on a Static Control program Parts (SCoP)
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed search space
\rightarrow In the polyhedral model (Feautrier, 92):
- Compositions of transformations are easily expressed
- Transformation legality is easily checked
- Natural expression of parallelism

A Three-Stage Process

1 Analysis: from code to model

 do i \(=1,3\)
 | do \(j=1\), 3
 | | A(i+j)

2 Transformation in the model Here: $A\left(^{l}\right)=t=i+i$

3 Code generation:
from model to code

A Three-Stage Process

1 Analysis: from code to model

2 Transformation in the model Here: $\theta\binom{i}{j}=t=i+j$

3 Code generation:
from model to code

A Three-Stage Process

1 Analysis: from code to model


```
do t = 2, 6
| do i = max(1,t-3), min(t-1,3)
| | A(t) = ...
```


A Three-Stage Process

1 Analysis: from code to model

2 Transformation in the model Here: $\theta\binom{i}{j}=t=i+j$

3 Code generation:
from model to code


```
do t = 2, 6
| do i = max(1,t-3), min(t-1,3)
```


A Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools
\rightarrow GCC GRAPHITE branch in development

2 Transformation in the model
\rightarrow Build a search snace of (legal) transformations

3 Code generation: from model to code
\rightarrow Use the CLooG tool for code generation (Bastoul, 04)
\rightarrow Produce C compilable code

A Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools
\rightarrow GCC GRAPHITE branch in development

2 Transformation in the model
\rightarrow Build a search space of (legal) transformations

3 Code generation: from model to code
\rightarrow Use the CLooG tool for code generation (Bastoul, 04)
\rightarrow Produce C compilable code

A Three-Stage Process

1 Analysis: from code to model
\rightarrow Existing prototype tools
\rightarrow GCC GRAPHITE branch in development

2 Transformation in the model
\rightarrow Build a search space of (legal) transformations

3 Code generation: from model to code
\rightarrow Use the CLooG tool for code generation (Bastoul, 04)
\rightarrow Produce C compilable code

Extract the Instance Set

matvect

Iteration domain of R :

- iteration vector $\vec{x}_{n}=(i)$
- Exact set of instances of R is $\mathcal{D}_{R}:\{i \mid 0 \leq i \leq n\}$

Extract the Instance Set

matvect

Iteration domain of R :

- iteration vector $\vec{x}_{R}=(i)$
- Exact set of instances of R is $\mathcal{D}_{R}:\{i \mid 0 \leq i \leq n\}$

Extract the Instance Set

matvect

Iteration domain of S :

- iteration vector $\vec{x}_{S}=\binom{\dot{i}}{j}$
- Exact set of instances of S is

$$
\mathcal{D}_{S}:\{i, j \mid 0 \leq i \leq n, 0 \leq j \leq n,\}
$$

Scheduling a Program

Definition (Schedule)

A schedule of a program is a function which associates a logical date (a timestamp) to each instance of each statement. It can be written, for a statement S (T is a constant matrix):

$$
\theta_{S}\left(\overrightarrow{x_{S}}\right)=T\binom{x_{S_{s}}}{1}
$$

- Two instances having the same date can be run in parallel
- Schedule dimension corresponds to the number of nested sequential loops

Scheduling a Program

Definition (Schedule)

A schedule of a program is a function which associates a logical date (a timestamp) to each instance of each statement. It can be written, for a statement S (T is a constant matrix):

$$
\theta_{S}\left(\overrightarrow{X_{S}}\right)=T\binom{\frac{x_{s}}{\substack{5}}}{1}
$$

- Two instances having the same date can be run in parallel
- Schedule dimension corresponds to the number of nested sequential loops

Scheduling a Program

Definition (Schedule)

A schedule of a program is a function which associates a logical date (a timestamp) to each instance of each statement. It can be written, for a statement S (T is a constant matrix):

$$
\theta_{S}\left(\overrightarrow{x_{S}}\right)=T\binom{x_{\mathbf{x}_{S}}^{(}}{1}
$$

- Two instances having the same date can be run in parallel
- Schedule dimension corresponds to the number of nested sequential loops

Program Transformations in the Model

- Every composition of loop transformations can be expressed as affine schedules (Wolf, 92)
\Rightarrow A schedule is the result of an arbitrarily complex composition of transformation

Program Transformations in the Model

- Every composition of loop transformations can be expressed as affine schedules (Wolf, 92)
\Rightarrow A schedule is the result of an arbitrarily complex composition of transformation

A Scheduling Example

Original Schedule

$$
\theta_{R}\binom{\mathbf{i}}{\mathbf{j}}=\binom{\mathbf{i}}{\mathbf{j}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\binom{i}{j}
$$

```
do i= 1,2
    do j=1,3
    a(i,j) = a(i,j) * 0.2
```

```
do i=1,2
    do j=1,3
    a(i,j) = a(i,j) * 0.2
```


A Scheduling Example

Another Schedule

$$
\theta_{R}\binom{\mathbf{i}}{\mathbf{j}}=\binom{\mathbf{j}}{\mathbf{i}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\binom{i}{j}
$$

```
do i=1,2
    do j= 1, 3
    a(i,j) = a(i,j) * 0.2
```

```
do \(\mathrm{j}=1,3\)
    do \(i=1,2\)
\(a(i, j)=a(i, j) * 0.2\)
```


Context

- Focus on one-dimensional schedules (T is a constant row matrix)

Transformation	Description
reversal	Changes the direction in which a loop traverses its iteration range
skewing	Makes the bounds of a given loop depend on an outer loop counter
interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation
peeling	Extracts one iteration of a given loop
shifting	Allows to reorder loops
fusion	Fuses two loops, a.k.a. jamming
distribution	Splits a single loop nest into many, a.k.a. fission or splitting

Context

- Focus on one-dimensional schedules (T is a constant row matrix)
- One-dimensional schedule can represent compositions of:

Transformation	Description
reversal	Changes the direction in which a loop traverses its iteration range
skewing	Makes the bounds of a given loop depend on an outer loop counter
interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation
peeling	Extracts one iteration of a given loop
shifting	Allows to reorder loops
fusion	Fuses two loops, a.k.a. jamming
distribution	Splits a single loop nest into many, a.k.a. fission or splitting

Potential Transformations

The two prototype affine schedules for R and S are:

$$
\begin{aligned}
\theta_{R}\left(\vec{x}_{R}\right) & =\mathbf{t}_{1_{\mathrm{R}}} \cdot i_{R}+\mathbf{t}_{2_{\mathrm{R}}} \cdot n+\mathbf{t}_{3_{\mathrm{R}}} \cdot 1 \\
\theta_{S}\left(\vec{x}_{S}\right) & =\mathbf{t}_{1_{\mathrm{S}}} \cdot i_{S}+\mathbf{t}_{2_{\mathrm{S}}} \cdot j_{S}+\mathbf{t}_{3_{\mathrm{S}}} \cdot n+\mathbf{t}_{4_{\mathrm{s}}} \cdot 1
\end{aligned}
$$

Potential Transformations

The two prototype affine schedules for R and S are:

$$
\begin{aligned}
\theta_{R}\left(\vec{x}_{R}\right) & =\mathbf{t}_{1_{\mathrm{R}}} \cdot i_{R}+\mathbf{t}_{2_{\mathrm{R}}} \cdot n+\mathbf{t}_{3_{\mathrm{R}}} \cdot 1 \\
\theta_{S}\left(\vec{x}_{S}\right) & =\mathbf{t}_{1_{\mathrm{s}}} \cdot i_{S}+\mathbf{t}_{2_{\mathrm{S}}} \cdot j_{S}+\mathbf{t}_{3_{\mathrm{S}}} \cdot n+\mathbf{t}_{4_{\mathrm{s}}} \cdot 1
\end{aligned}
$$

\Rightarrow For $-1 \leq t \leq 1$, there are 59049 values!

Potential Transformations

The two prototype affine schedules for R and S are:

$$
\begin{aligned}
\theta_{R}\left(\vec{x}_{R}\right) & =\mathbf{t}_{1_{\mathrm{R}}} \cdot i_{R}+\mathbf{t}_{2_{\mathrm{R}}} \cdot n+\mathbf{t}_{3_{\mathrm{R}}} \cdot 1 \\
\theta_{S}\left(\vec{x}_{S}\right) & =\mathbf{t}_{1_{\mathrm{S}}} \cdot i_{S}+\mathbf{t}_{2_{\mathrm{S}}} \cdot j_{S}+\mathbf{t}_{3_{\mathrm{S}}} \cdot n+\mathbf{t}_{4_{\mathrm{s}}} \cdot 1
\end{aligned}
$$

\Rightarrow For $-1 \leq t \leq 1$, there are 59049 values!

	matvect	locality	matmul	gauss	crout
Bounds	$-1,1$	$-1,1$	$-1,1$	$-1,1$	$-3,3$
\#Sched.	2.1×10^{3}	5.9×10^{4}	1.9×10^{4}	5.9×10^{4}	2.6×10^{15}

Objectives

- Build the set of all legal program versions (i.e. which respects all the data dependence of the program)

Objectives

- Build the set of all legal program versions (i.e. which respects all the data dependence of the program)
\rightarrow Perform an exact dependence analysis
\rightarrow Build the set of all possible values of T
\Rightarrow The resulting space represents all the distinct possible ways to legally reschedule the program, using arbitrarily complex sequences of transformations.

Objectives

- Build the set of all legal program versions (i.e. which respects all the data dependence of the program)
\rightarrow Perform an exact dependence analysis
\rightarrow Build the set of all possible values of T
\Rightarrow The resulting space represents all the distinct possible ways to legally reschedule the program, using arbitrarily complex sequences of transformations.

Dependence Expression

- Need to represent the exact set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Feautrier, 92)
- Use a subset of the Cartesian product of iteration domains:

Dependence Expression

- Need to represent the exact set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Feautrier, 92)
- Use a subset of the Cartesian product of iteration domains:

$$
\mathcal{D}_{R \delta S}:\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & -\mathbf{1} \\
-1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & -1 & 0 & 3 \\
\hline 1 & -1 & 0 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
i_{\mathbf{R}} \\
i_{S} \\
j_{S} \\
\mathbf{n} \\
1
\end{array}\right) \geq \overrightarrow{0}
$$

Dependence Expression

- Need to represent the exact set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Feautrier, 92)
- Use a subset of the Cartesian product of iteration domains:

Dependence Expression

- Need to represent the exact set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Feautrier, 92)
- Use a subset of the Cartesian product of iteration domains:

```
Ro i=1, 3
```


$$
\mathcal{D}_{R \delta S}:\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & -1 & 0 & 3 \\
\hline 1 & -1 & 0 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
i_{R} \\
i_{S} \\
j_{S} \\
n \\
1
\end{array}\right) \xrightarrow{\geq 0}
$$

Formal Definition [1/2]

Legal Schedule

\Rightarrow Assuming $R \delta S, \theta_{R}\left(\overrightarrow{x_{R}}\right)$ and $\theta_{S}\left(\overrightarrow{x_{S}}\right)$ are legal iff:

$$
\Delta_{R, S}=\theta_{S}\left(\overrightarrow{x_{S}}\right)-\theta_{R}\left(\overrightarrow{x_{R}}\right)-1
$$

Is non-negative for each point in $\mathcal{D}_{R \delta S}$.

Formal Definition [2/2]

\rightarrow We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R \delta S}$

\Rightarrow We can express the set of affine, non-negative functions
over $\mathcal{D}_{\text {R } \delta}$

Formal Definition [2/2]

\rightarrow We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R \delta S}$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A \vec{x}+\vec{b} \geq \overrightarrow{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$
f(\vec{x})=\lambda_{0}+\vec{\lambda}^{\top}(A \vec{x}+\vec{b}) \text {, with } \lambda_{0} \geq 0 \text { and } \vec{\lambda} \geq \overrightarrow{0} .
$$

λ_{0} and $\overrightarrow{\lambda^{T}}$ are called the Farkas multipliers.
\Rightarrow We can express the set of affine, non-negative functions

Formal Definition [2/2]

\rightarrow We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R \delta S}$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A \vec{x}+\vec{b} \geq \overrightarrow{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$
f(\vec{x})=\lambda_{0}+\vec{\lambda}^{T}(A \vec{x}+\vec{b}), \text { with } \lambda_{0} \geq 0 \text { and } \vec{\lambda} \geq \overrightarrow{0}
$$

λ_{0} and $\overrightarrow{\lambda^{T}}$ are called the Farkas multipliers.
\Rightarrow We can express the set of affine, non-negative functions over $\mathcal{D}_{\text {R } \delta S}$

An Example

The two prototype affine schedules for R and S are:

$$
\begin{aligned}
\theta_{R}\left(\vec{x}_{R}\right) & =t_{1_{R}} \cdot \cdot \dot{i}_{\mathbf{R}}+t_{2_{R}} \cdot \mathbf{n}+t_{3_{R}} \cdot \mathbf{1} \\
\theta_{S}\left(\vec{x}_{S}\right) & =t_{1} \cdot \dot{i}_{S}+t_{2_{S}} \cdot \dot{j}_{S}+t_{3_{S}} \cdot \mathbf{n}+t_{4} \cdot 1
\end{aligned}
$$

The set of instances of R and S in dependence are represented by:

$$
\mathcal{D}_{R \delta S}:\left[\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right] \cdot\left(\begin{array}{l}
\mathbf{i}_{R} \\
i_{S} \\
\mathbf{j}_{\mathrm{S}} \\
\mathrm{n} \\
1
\end{array}\right) \geq \overrightarrow{0}
$$

An Example

The two prototype affine schedules for R and S are:

$$
\begin{aligned}
\theta_{R}\left(\vec{x}_{R}\right) & =t_{1_{R}} \cdot \mathbf{i}_{\mathbf{R}}+t_{2_{R}} \cdot \mathbf{n}+t_{3_{R}} \cdot \mathbf{1} \\
\theta_{S}\left(\vec{x}_{S}\right) & =t_{1} \cdot \dot{i}_{S}+t_{2_{S}} \cdot \mathbf{j}_{S}+t_{3_{S}} \cdot \mathbf{n}+t_{4} \cdot 1
\end{aligned}
$$

(1) Express the set of non-negative functions over $\mathcal{D}_{R \delta S}$
(2) Equate the coefficients
(3) Solve the system

An Example

```
    R do i=1,n
```

The two prototype affine schedules for R and S are:

$$
\begin{aligned}
\theta_{R}\left(\vec{x}_{R}\right) & =t_{1_{R}} \cdot \cdot \dot{i}_{\mathbf{R}}+t_{2_{R}} \cdot \mathbf{n}+t_{3_{R}} \cdot \mathbf{1} \\
\theta_{S}\left(\vec{x}_{S}\right) & =t_{1} \cdot \dot{i}_{S}+t_{2_{S}} \cdot \dot{j}_{S}+t_{3_{S}} \cdot \mathbf{n}+t_{4} \cdot 1
\end{aligned}
$$

We get the following system for $R \delta S$:

$$
\left\{\begin{array}{rccrl}
D_{R \delta S} S & \mathbf{i}_{\mathbf{R}} & : & -t_{1} R & =\lambda_{D_{1,1}}-\lambda_{D_{1,2}}+\lambda_{D_{1,7}} \\
& \mathbf{i}_{\mathbf{S}} & : & t_{1} S & =\lambda_{D_{1,3}}-\lambda_{D_{1,4}}-\lambda_{D_{1,7}} \\
& \mathrm{j}_{\mathbf{S}} & : & t_{t_{S} S} & =\lambda_{D_{1,5}}-\lambda_{D_{1,6}} \\
& \mathbf{n} & : & t_{3 S}-t_{2_{R}} & =\lambda_{D_{1,2}}+\lambda_{D_{1,4}}+\lambda_{D_{1,6}} \\
& \mathbf{1} & : & t_{4} S-t_{3_{R}}-1 & =\lambda_{D_{1,0}}
\end{array}\right.
$$

\Rightarrow The constraints on t gives the set of possible values to respect the legality condition

An Example

The two prototype affine schedules for R and S are:

$$
\begin{aligned}
\theta_{R}\left(\vec{x}_{R}\right) & =t_{1} \cdot \cdot \mathbf{i}_{\mathbf{R}}+t_{2_{R}} \cdot \mathbf{n}+t_{3_{R}} \cdot \mathbf{1} \\
\theta_{S}\left(\vec{x}_{S}\right) & =t_{1} \cdot \mathrm{i}_{S}+t_{2_{S}} \cdot \mathbf{j}_{S}+t_{3_{S}} \cdot \mathbf{n}+t_{4} \cdot 1
\end{aligned}
$$

We get the following system for $R \delta S$:

$$
\left\{\begin{array}{rcrrl}
D_{R \delta S} S & \mathrm{i}_{\mathrm{R}} & : & -t_{1_{1}} & =\lambda_{D_{1,1}}-\lambda_{D_{1,2}}+\lambda_{D_{1,7}} \\
& \mathrm{i}_{\mathbf{S}} & : & t_{1} S & =\lambda_{D_{1,3}}-\lambda_{D_{1,4}}-\lambda_{D_{1,7}} \\
& \mathrm{j}_{\mathbf{S}} & : & t_{2_{S}} & =\lambda_{D_{1,5}}-\lambda_{D_{1,6}} \\
& \mathbf{n} & : & t_{3_{S}}-t_{2_{R}} & =\lambda_{D_{1,2}}+\lambda_{D_{1,4}}+\lambda_{D_{1,6}} \\
& \mathbf{1} & : & t_{4 S}-t_{3_{R}}-1 & =\lambda_{D_{1,0}}
\end{array}\right.
$$

\Rightarrow The constraints on t gives the set of possible values to respect the legality condition

Construction Algorithm

- Need to add the constraints obtained for each dependence
- The set of legal transformations can be infinite \rightarrow Need to bound the space

\Rightarrow To each (integral) point in \mathcal{D}_{t} corresponds a different version of the original program where the semantics is preserved.

Construction Algorithm

- Need to add the constraints obtained for each dependence
- The set of legal transformations can be infinite
\rightarrow Need to bound the space
\Rightarrow To each (integral) point in \mathcal{D}_{t} corresponds a different version of the original program where the semantics is preserved.

Construction Algorithm

- Need to add the constraints obtained for each dependence
- The set of legal transformations can be infinite
\rightarrow Need to bound the space
\Rightarrow To each (integral) point in \mathcal{D}_{t} corresponds a different version of the original program where the semantics is preserved.

Legal Search Space

- Multiple orders of magnitude reduction in the size of the search space compared to state-of-the-art techniques

Benchmark	Bounds	\#Sched	\#Legal	Time
matvect	$-1,1$	2.1×10^{3}	129	0.024
locality	$-1,1$	5.9×10^{4}	6561	0.022
matmul	$-1,1$	1.9×10^{4}	912	0.029
gauss	$-1,1$	5.9×10^{4}	506	0.047
crout	$-3,3$	2.6×10^{15}	798	0.046

Experimental Protocol

We provide a source-to-source framework. Given an input program:
(1) Use LetSee to generate a CLoog formatted file per legal transformation.
(2) Generate the target code with CLoog.
(3) Compile and launch the whole set of transformed (C) code, and sort the results regarding cycle count.
\Rightarrow Exhaustive scan is achievable on small kernels

Experimental Protocol

We provide a source-to-source framework. Given an input program:
(1) Use LetSee to generate a CLoog formatted file per legal transformation.
(2) Generate the target code with CLoog.
(3) Compile and launch the whole set of transformed (C) code, and sort the results regarding cycle count.
\Rightarrow Exhaustive scan is achievable on small kernels

Performance Distribution [1/2]

Figure: Performance distribution for matmul, locality, mvt and crout

Performance Distribution [2/2]

Figure: The effect of the compiler

Some Speedups

Benchmark	Compiler	Options	Parameters	ID best	Speedup
h264	PathCC	-Ofast	$\mathrm{N}=8$	352	36.1\%
h264	GCC	-02	$\mathrm{N}=8$	234	13.3\%
h264	GCC	-03	$\mathrm{N}=8$	250	25.0\%
h264	ICC	-02	$\mathrm{N}=8$	290	12.9\%
h264	ICC	-fast	$\mathrm{N}=8$	N/A	0\%
fir	PathCC	-Ofast	$\mathrm{N}=150000$	72	6.0\%
fir	GCC	-02	$\mathrm{N}=150000$	192	15.2\%
fir	GCC	-03	$\mathrm{N}=150000$	289	13.2\%
fir	ICC	-02	$\mathrm{N}=150000$	242	18.4\%
fir	ICC	-fast	$\mathrm{N}=150000$	392	3.4\%
MVT	PathCC	-Ofast	$\mathrm{N}=2000$	4934	27.4\%
MVT	GCC	-02	$\mathrm{N}=2000$	13301	18.0\%
MVT	GCC	-03	$\mathrm{N}=2000$	13320	21.2\%
MVT	ICC	-02	$\mathrm{N}=2000$	14093	24.0\%
MVT	ICC	-fast	$\mathrm{N}=2000$	4879	29.1\%
matmul	PathCC	-Ofast	$\mathrm{N}=250$	283	308.1\%
matmul	GCC	-02	$\mathrm{N}=250$	573	243.6\%
matmul	GCC	-03	$\mathrm{N}=250$	143	248.7\%
matmul	ICC	-02	$\mathrm{N}=250$	311	356.6\%
matmul	ICC	-fast	$\mathrm{N}=250$	641	645.4\%

The mvt Kernel

```
for (i = 0; i <= M; i++)
```

for (i = 0; i <= M; i++)
x1[i] = 0;
x1[i] = 0;
x2[i] = 0;
x2[i] = 0;
for (j = 0; j <= M; j++) {
for (j = 0; j <= M; j++) {
x1[i] += a[i][j] * y1[j];
x1[i] += a[i][j] * y1[j];
S4 x2[i] += a[j][i] * y2[j];

```
S4 x2[i] += a[j][i] * y2[j];
```


Generated Code

```
Optimal Transformation for mvt, GCC 4-O3, P4 Xeon
```

```
S1: x1[i] = 0
```

S1: x1[i] = 0
S2: x2[i] = 0
S2: x2[i] = 0
S3: x1[i] += a[i][j] * y1[j]
S3: x1[i] += a[i][j] * y1[j]
S4: x2[i] += a[j][i] * y2[j]
S4: x2[i] += a[j][i] * y2[j]
for (i = 0; i <= M; i++) {
for (i = 0; i <= M; i++) {
S1(i);
S1(i);
S2(i);
S2(i);
for (j = 0; j <= M; j++)
for (j = 0; j <= M; j++)
S3(i,j);
S3(i,j);
S4(i,j);
S4(i,j);
}
}
}

```
}
```

```
for (i = 0; i <= M; i++)
```

for (i = 0; i <= M; i++)
S2(i);
S2(i);
for (c1 = 1; c1 <= M-1; c1++)
for (c1 = 1; c1 <= M-1; c1++)
for (i = 0; i <= M; i++) {
for (i = 0; i <= M; i++) {
S4(i,c1-1);
S4(i,c1-1);
}
}
for (i = 0; i <= M; i++) {
for (i = 0; i <= M; i++) {
S1(i);
S1(i);
S4(i,M-1);
S4(i,M-1);
}
}
S3(0,0);
S3(0,0);
S4 (0,M);
S4 (0,M);
for (i = 1 ; i <= M; i++)
for (i = 1 ; i <= M; i++)
S4(i,M);
S4(i,M);
for (c1 = M+2; c1 <= 3*M+1; c1++)
for (c1 = M+2; c1 <= 3*M+1; c1++)
for (i = max(c1-2*M-1,0); i <= min(M,c1-M-1); i++) {
for (i = max(c1-2*M-1,0); i <= min(M,c1-M-1); i++) {
S3(i,c1-i-M-1);
S3(i,c1-i-M-1);
}

```
    }
```


Heuristic Scan

Propose a decoupling heuristic:

- The general "form" of the schedule is embedded in the iterator coefficients
- Parameters and constant coefficients can be seen as a refinement
\rightarrow On some distributions a random heuristic may converge faster

Figure: Heuristic convergence

Benchmark	\#Schedules	Heuristic.	\#Runs	\%Speedup
locality	6561	Rand	125	96.1%
		DH	123	98.3%
matmul	912	Rand	170	99.9%
		DH	170	99.8%
mvt	6641	Rand	30	93.3%
		DH	31	99.0%

Conclusion

\rightarrow Iterative Compilation Framework independent of the compiler and the architecture
> \rightarrow Optimizing and / or Enabling transformation process
> Leads to encouraging speedups
> On small kernels, exhaustive scar is achievable

Conclusion

\rightarrow Iterative Compilation Framework independent of the compiler and the architecture
\rightarrow Optimizing and / or Enabling transformation process
\rightarrow Leads to encouraging speedups
\rightarrow On small kernels, exhaustive scan is achievable

Future work:

Conclusion

\rightarrow Iterative Compilation Framework independent of the compiler and the architecture
\rightarrow Optimizing and / or Enabling transformation process
\rightarrow Leads to encouraging speedups
\rightarrow On small kernels, exhaustive scan is achievable

Future work:

Conclusion

\rightarrow Iterative Compilation Framework independent of the compiler and the architecture
\rightarrow Optimizing and / or Enabling transformation process
\rightarrow Leads to encouraging speedups
\rightarrow On small kernels, exhaustive scan is achievable

Conclusion

\rightarrow Iterative Compilation Framework independent of the compiler and the architecture
\rightarrow Optimizing and / or Enabling transformation process
\rightarrow Leads to encouraging speedups
\rightarrow On small kernels, exhaustive scan is achievable

Future work:
\rightarrow Develop new exploration heuristics
\rightarrow Deal with multidimensional schedules
\rightarrow Integrate in GCC GRAPHITE branch

Conclusion

\rightarrow Iterative Compilation Framework independent of the compiler and the architecture
\rightarrow Optimizing and / or Enabling transformation process
\rightarrow Leads to encouraging speedups
\rightarrow On small kernels, exhaustive scan is achievable

Future work:
\rightarrow Develop new exploration heuristics
\rightarrow Deal with multidimensional schedules
\rightarrow Integrate in GCC GRAPHITE branch

Conclusion

\rightarrow Iterative Compilation Framework independent of the compiler and the architecture
\rightarrow Optimizing and / or Enabling transformation process
\rightarrow Leads to encouraging speedups
\rightarrow On small kernels, exhaustive scan is achievable

Future work:
\rightarrow Develop new exploration heuristics
\rightarrow Deal with multidimensional schedules
\rightarrow Integrate in GCC GRAPHITE branch

