Iterative Optimization in the Polyhedral Model: One-Dimensional Affine Schedules

Louis-Noël Pouchet, Cédric Bastoul and Albert Cohen

ALCHEMY, LRI - INRIA Futurs

October 17, 2006

2nd HiPEAC Industrial Workshop, Eindhoven, NL

Introduction

- Motivation
- The Polyhedral Model
- Polyhedral Representation of programs

Iterative Optimization in the Polyhedral Model

- One-Dimensional Schedules
- Legal Scheduling Space

3 Experimental Results

- Exhaustive Scan
- A Transformation Example

- Instead of predicting profitability of a transformation, perform it and run the program
- Most of the time, adresses parameters tuning or phase selection

• Alternatively, some works replace the heuristic itself by iterative search

 \rightarrow We focus on Loop Nest Optimization

- Instead of predicting profitability of a transformation, perform it and run the program
- Most of the time, adresses parameters tuning or phase selection

• Alternatively, some works replace the heuristic itself by iterative search

 \rightarrow We focus on Loop Nest Optimization

- Instead of predicting profitability of a transformation, perform it and run the program
- Most of the time, adresses parameters tuning or phase selection

Alternatively, some works replace the heuristic itself by iterative search

→ We focus on Loop Nest Optimization

- Instead of predicting profitability of a transformation, perform it and run the program
- Most of the time, adresses parameters tuning or phase selection

Alternatively, some works replace the heuristic itself by iterative search

\rightarrow We focus on Loop Nest Optimization

Limitations:

- The set of combinations of transformations is huge!
- Only a subset of them respects the program semantics
- Only a (very small) subset of transformation sequences is actually tested
- → The search space is either too restrictive, or too large due to the postponed legality check

Limitations:

- The set of combinations of transformations is huge!
- Only a subset of them respects the program semantics
- $\rightarrow\,$ Only a (very small) subset of transformation sequences is actually tested
- → The search space is either too restrictive, or too large due to the postponed legality check

Limitations:

- The set of combinations of transformations is huge!
- Only a subset of them respects the program semantics
- → Only a (very small) subset of transformation sequences is actually tested
- → The search space is either too restrictive, or too large due to the postponed legality check

Limitations:

- The set of combinations of transformations is huge!
- Only a subset of them respects the program semantics
- → Only a (very small) subset of transformation sequences is actually tested
- → The search space is either too restrictive, or too large due to the postponed legality check

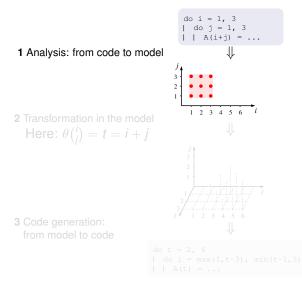
• Focus on a Static Control program Parts (SCoP)

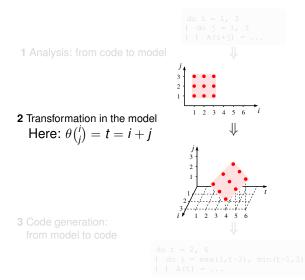
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed search space
- \rightarrow In the polyhedral model (Feautrier, 92):
 - Compositions of transformations are easily expressed
 - Transformation legality is easily checked
 - Natural expression of parallelism

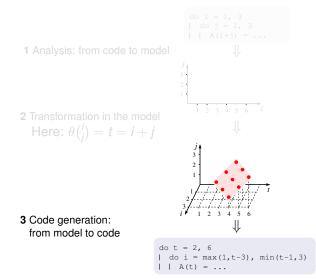
- Focus on a Static Control program Parts (SCoP)
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed search space
- \rightarrow In the polyhedral model (Feautrier, 92):
 - Compositions of transformations are easily expressed
 - Transformation legality is easily checked
 - Natural expression of parallelism

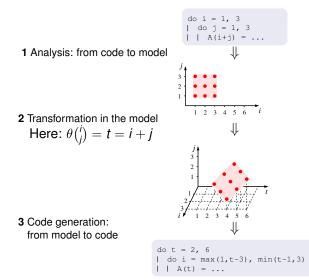
- Focus on a Static Control program Parts (SCoP)
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed search space
- \rightarrow In the polyhedral model (Feautrier, 92):
 - Compositions of transformations are easily expressed
 - Transformation legality is easily checked
 - Natural expression of parallelism

- Focus on a Static Control program Parts (SCoP)
- Use a polyhedral abstraction to represent program information
- Use iterative optimization techniques in the constructed search space
- \rightarrow In the polyhedral model (Feautrier, 92):
 - Compositions of transformations are easily expressed
 - Transformation legality is easily checked
 - Natural expression of parallelism







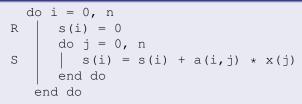


- 1 Analysis: from code to model
 - \rightarrow Existing prototype tools
 - → GCC GRAPHITE branch in development
- 2 Transformation in the model
 - \rightarrow Build a search space of (legal) transformations
- 3 Code generation: from model to code
 - \rightarrow Use the CLooG tool for code generation (Bastoul, 04)
 - → Produce C compilable code

- 1 Analysis: from code to model
 - → Existing prototype tools
 - → GCC GRAPHITE branch in development
- 2 Transformation in the model
 - \rightarrow Build a search space of (legal) transformations
- 3 Code generation: from model to code
 - \rightarrow Use the CLooG tool for code generation (Bastoul, 04)
 - → Produce C compilable code

- 1 Analysis: from code to model
 - → Existing prototype tools
 - → GCC GRAPHITE branch in development
- 2 Transformation in the model
 - \rightarrow Build a search space of (legal) transformations
- 3 Code generation: from model to code
 - \rightarrow Use the CLooG tool for code generation (Bastoul, 04)
 - \rightarrow Produce C compilable code

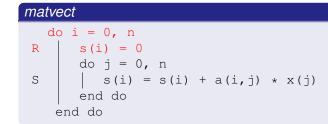
Extract the Instance Set



Iteration domain of *R*:

- *iteration vector* $\vec{x}_R = (i)$
- Exact set of **instances** of *R* is $\mathcal{D}_R : \{i \mid 0 \le i \le n\}$

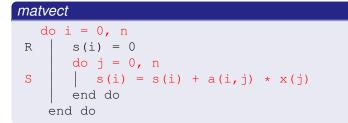
Extract the Instance Set



Iteration domain of *R*:

- iteration vector $\vec{x}_R = (i)$
- Exact set of **instances** of *R* is $\mathcal{D}_R : \{i \mid 0 \le i \le n\}$

Extract the Instance Set



Iteration domain of *S*:

- iteration vector $\vec{x}_{S} = \begin{pmatrix} i \\ j \end{pmatrix}$
- Exact set of instances of S is
 D_S : {i, j | 0 ≤ i ≤ n, 0 ≤ j ≤ n, }

Scheduling a Program

Definition (Schedule)

A schedule of a program is a function which associates a logical date (a timestamp) to each instance of each statement. It can be written, for a statement S(T) is a constant matrix):

$$\theta_{\mathcal{S}}(\vec{x_{\mathcal{S}}}) = T \begin{pmatrix} \vec{x_{\mathcal{S}}} \\ \vec{n} \\ 1 \end{pmatrix}$$

- Two instances having the same date can be run in parallel
- Schedule dimension corresponds to the number of nested sequential loops

Scheduling a Program

Definition (Schedule)

A schedule of a program is a function which associates a logical date (a timestamp) to each instance of each statement. It can be written, for a statement S(T) is a constant matrix):

$$\theta_{\mathcal{S}}(\vec{x_{\mathcal{S}}}) = T \begin{pmatrix} \vec{x_{\mathcal{S}}} \\ \vec{n} \\ 1 \end{pmatrix}$$

- Two instances having the same date can be run in parallel
- Schedule dimension corresponds to the number of nested sequential loops

Scheduling a Program

Definition (Schedule)

A schedule of a program is a function which associates a logical date (a timestamp) to each instance of each statement. It can be written, for a statement S(T) is a constant matrix):

$$\theta_{\mathcal{S}}(\vec{x_{\mathcal{S}}}) = T \begin{pmatrix} \vec{x_{\mathcal{S}}} \\ \vec{n} \\ 1 \end{pmatrix}$$

- Two instances having the same date can be run in parallel
- Schedule dimension corresponds to the number of nested sequential loops

Program Transformations in the Model

 Every composition of loop transformations can be expressed as affine schedules (Wolf, 92)

 \Rightarrow A schedule is the result of an **arbitrarily complex composition** of transformation

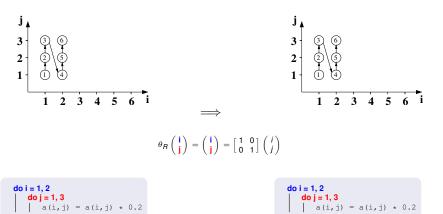
Program Transformations in the Model

 Every composition of loop transformations can be expressed as affine schedules (Wolf, 92)

 \Rightarrow A schedule is the result of an **arbitrarily complex** composition of transformation

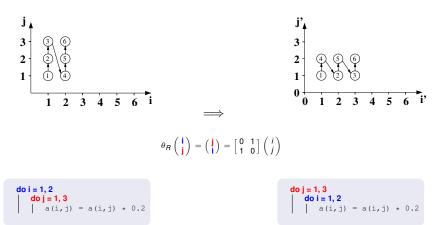
A Scheduling Example

Original Schedule



A Scheduling Example

Another Schedule



Context

- Focus on one-dimensional schedules (*T* is a constant row matrix)
- One-dimensional schedule can represent compositions of:

Transformation	Description
	Changes the direction in which a loop
	traverses its iteration range
	Makes the bounds of a given loop depend on
	an outer loop counter
	Exchanges two loops in a perfectly nested
	loop, a.k.a. permutation
	Extracts one iteration of a given loop
	Allows to reorder loops
	Fuses two loops, a.k.a. jamming
	Splits a single loop nest into many,
	a.k.a. fission or splitting

Context

- Focus on one-dimensional schedules (T is a constant row matrix)
- One-dimensional schedule can represent compositions of:

Transformation	Description			
reversal	Changes the direction in which a loop			
	traverses its iteration range			
skewing	Makes the bounds of a given loop depend on			
	an outer loop counter			
interchange	Exchanges two loops in a perfectly nested			
	loop, a.k.a. permutation			
peeling	Extracts one iteration of a given loop			
shifting	Allows to reorder loops			
fusion	Fuses two loops, a.k.a. jamming			
distribution	Splits a single loop nest into many,			
	a.k.a. fission or splitting			

Potential Transformations

$$\begin{array}{c} do \ i = 1, \ 3 \\ R \\ do \ j = 0 \\ do \ j = 1, \ 3 \\ S \\ | \ s(i) = s(i) = s(i) + a(i)(j) + x(j) \end{array}$$

The two prototype affine schedules for *R* and *S* are:

$$\begin{array}{rcl} \theta_{R}(\vec{x}_{R}) & = & \mathbf{t_{1_{R}}}.i_{R} + \mathbf{t_{2_{R}}}.n + \mathbf{t_{3_{R}}}.1 \\ \theta_{S}(\vec{x}_{S}) & = & \mathbf{t_{1_{S}}}.i_{S} + \mathbf{t_{2_{S}}}.j_{S} + \mathbf{t_{3_{S}}}.n + \mathbf{t_{4_{S}}}.1 \end{array}$$

 \Rightarrow For $-1 \le t \le 1$, there are **59049** values!

		locality			
Bounds	-1, 1	-1,1	-1, 1	-1, 1	-3,3
#Sched.	2.1×10^{3}	$5.9 imes10^4$	$1.9 imes 10^{4}$	$5.9 imes10^4$	$2.6 imes 10^{15}$

Potential Transformations

```
do i = 1, 3

R | s(i) = 0

do j = 1, 3

S | s(i) = s(i) + a(i)(j) * x(j)
```

The two prototype affine schedules for *R* and *S* are:

$$\begin{array}{lll} \theta_{R}(\vec{x}_{R}) &=& \mathbf{t_{1_{R}}}.i_{R} + \mathbf{t_{2_{R}}}.n + \mathbf{t_{3_{R}}}.1\\ \theta_{S}(\vec{x}_{S}) &=& \mathbf{t_{1_{S}}}.i_{S} + \mathbf{t_{2_{S}}}.j_{S} + \mathbf{t_{3_{S}}}.n + \mathbf{t_{4_{S}}}.1 \end{array}$$

 \Rightarrow For $-1 \le t \le 1$, there are **59049** values!

		locality			
Bounds	-1, 1	-1,1	-1, 1	-1, 1	-3,3
#Sched.	2.1×10^{3}	$5.9 imes10^4$	$1.9 imes 10^{4}$	$5.9 imes10^4$	$2.6 imes 10^{15}$

Potential Transformations

$$\begin{array}{c|c} do \ i = 1, \ 3 \\ S \ (i) = 0 \\ do \ j = 1, \ 3 \\ S \ (i) = s(i) + a(i)(j) \, \star x(j) \end{array}$$

The two prototype affine schedules for *R* and *S* are:

$$\begin{array}{lll} \theta_{R}(\vec{x}_{R}) & = & \mathbf{t_{1_{R}}}.i_{R} + \mathbf{t_{2_{R}}}.n + \mathbf{t_{3_{R}}}.1 \\ \theta_{S}(\vec{x}_{S}) & = & \mathbf{t_{1_{S}}}.i_{S} + \mathbf{t_{2_{S}}}.j_{S} + \mathbf{t_{3_{S}}}.n + \mathbf{t_{4_{S}}}.1 \end{array}$$

 \Rightarrow For $-1 \le t \le 1$, there are **59049** values!

	matvect	locality	matmul	gauss	crout
Bounds	-1,1	-1,1	-1,1	-1,1	-3,3
#Sched.	$2.1 imes 10^{3}$	$5.9 imes10^4$	$1.9 imes 10^{4}$	$5.9 imes10^4$	$2.6 imes 10^{15}$

Objectives

• Build the set of all *legal* program versions (i.e. which respects all the data dependence of the program)

 \rightarrow Perform an exact dependence analysis \rightarrow Build the set of all possible values of T

 \Rightarrow The resulting space represents all the distinct possible ways to **legally reschedule** the program, using arbitrarily complex sequences of transformations.

Objectives

• Build the set of all *legal* program versions (i.e. which respects all the data dependence of the program)

 \rightarrow Perform an exact dependence analysis \rightarrow Build the set of all possible values of T

⇒ The resulting space represents all the distinct possible ways to **legally reschedule** the program, using arbitrarily complex sequences of transformations.

Objectives

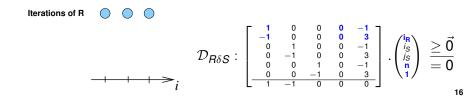
• Build the set of all *legal* program versions (i.e. which respects all the data dependence of the program)

- \rightarrow Perform an exact dependence analysis
- \rightarrow Build the set of all possible values of T

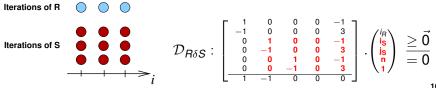
 \Rightarrow The resulting space represents all the distinct possible ways to **legally reschedule** the program, using arbitrarily complex sequences of transformations.

- Need to represent the *exact* set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Feautrier, 92)
- Use a subset of the Cartesian product of iteration domains:

- Need to represent the *exact* set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Feautrier, 92)
- Use a subset of the Cartesian product of iteration domains:

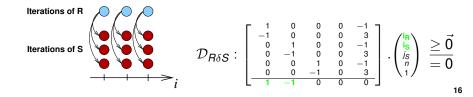


- Need to represent the *exact* set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Feautrier, 92)
- Use a subset of the Cartesian product of iteration domains:



- Need to represent the *exact* set of instances in dependence
- Exact computation made possible thanks to the SCoP and Static reference assumptions (Feautrier, 92)
- Use a subset of the Cartesian product of iteration domains:

$$\begin{array}{c|c} do \ i = 1, \ 3 \\ R & s(i) = 0 \\ do \ j = 1, \ 3 \\ S & s(i) = s(i) + a(i)(j) \, \star \, x(j) \end{array}$$



Formal Definition [1/2]

Legal Schedule

 \Rightarrow Assuming $R\delta S$, $\theta_R(\vec{x_R})$ and $\theta_S(\vec{x_S})$ are legal iff:

$$\Delta_{R,S} = \theta_S(\vec{x_S}) - \theta_R(\vec{x_R}) - 1$$

Is non-negative for each point in $\mathcal{D}_{R\delta S}$.

Formal Definition [2/2]

 \rightarrow We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R\delta S}$

_emma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A\vec{x} + \vec{b} \ge \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

 $f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$

 λ_0 and $\lambda^{\tilde{T}}$ are called the Farkas multipliers.

 \Rightarrow We can express the set of affine, non-negative functions over $\mathcal{D}_{R\delta S}$

Formal Definition [2/2]

 \to We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R\delta S}$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A\vec{x} + \vec{b} \ge \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$$

 λ_0 and $\vec{\lambda^T}$ are called the Farkas multipliers.

 \Rightarrow We can express the set of affine, non-negative functions over $\mathcal{D}_{R\delta S}$

Formal Definition [2/2]

 \to We can express the legality condition as a set of affine non-negative functions over $\mathcal{D}_{R\delta S}$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by the inequalities $A\vec{x} + \vec{b} \ge \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$$

 λ_0 and $\vec{\lambda^T}$ are called the Farkas multipliers.

 \Rightarrow We can express the set of affine, non-negative functions over $\mathcal{D}_{R\delta S}$

$$\begin{array}{c|c} do \ i = 1, \ n \\ R & (i) = 0 \\ do \ j = 1, \ n \\ S & | \ s(i) = s(i) + a(i,j) \ \star \ x(j) \end{array}$$

The two prototype affine schedules for *R* and *S* are:

The set of instances of *R* and *S* in dependence are represented by:

$$\mathcal{D}_{R\delta S}: \begin{bmatrix} \frac{1}{1} & -1 & 0 & 0 & 0 \\ \frac{1}{1} & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \end{bmatrix} \cdot \begin{pmatrix} i_{R} \\ i_{S} \\ i_{S} \\ 1 \end{pmatrix} \stackrel{= 0}{\geq \vec{0}}$$

```
 \begin{array}{c} do \ i = 1, \ n \\ R & s(i) = 0 \\ do \ j = 1, \ n \\ S & s(i) = s(i) + a(i,j) \, \star \, x(j) \end{array}
```

The two prototype affine schedules for *R* and *S* are:

- Express the set of non-negative functions over $\mathcal{D}_{R\delta S}$
- 2 Equate the coefficients
- Solve the system

$$\begin{array}{c} \text{do i} = 1, \text{ n} \\ \text{s(i)} = 0 \\ \text{do j} = 1, \text{ n} \\ \text{s(i)} = s(i) + a(i,j) \, \star \, x(j) \end{array}$$

The two prototype affine schedules for *R* and *S* are:

We get the following system for $R\delta S$:

$$\left\{ \begin{array}{ccccccc} D_{R\delta S} & \mathbf{i}_{R} & : & -t_{1_{R}} & = & \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,7}} \\ \mathbf{i}_{S} & : & t_{1_{S}} & = & \lambda_{D_{1,3}} - \lambda_{D_{1,4}} - \lambda_{D_{1,7}} \\ \mathbf{j}_{S} & : & t_{2_{S}} & = & \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\ \mathbf{n} & : & t_{3_{S}} - t_{2_{R}} & = & \lambda_{D_{1,2}} + \lambda_{D_{1,6}} \\ \mathbf{1} & : & t_{4_{S}} - t_{3_{R}} - \mathbf{1} & = & \lambda_{D_{1,0}} \end{array} \right.$$

 \Rightarrow The constraints on *t* gives the set of possible values to respect the legality condition

$$\begin{array}{c} \text{do i} = 1, \text{ n} \\ \text{s(i)} = 0 \\ \text{do j} = 1, \text{ n} \\ \text{s(i)} = s(i) + a(i,j) \, \star \, x(j) \end{array}$$

The two prototype affine schedules for *R* and *S* are:

We get the following system for $R\delta S$:

$$\left\{ \begin{array}{cccccccc} D_{R\delta S} & \mathbf{i_R} & : & -t_{1_R} & = & \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,7}} \\ & \mathbf{i_S} & : & t_{1_S} & = & \lambda_{D_{1,3}} - \lambda_{D_{1,4}} - \lambda_{D_{1,7}} \\ & \mathbf{j_S} & : & t_{2_S} & = & \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\ & \mathbf{n} & : & t_{3_S} - t_{2_R} & = & \lambda_{D_{1,2}} + \lambda_{D_{1,6}} \\ & \mathbf{1} & : & t_{4_S} - t_{3_R} - \mathbf{1} & = & \lambda_{D_{1,0}} \end{array} \right.$$

 \Rightarrow The constraints on *t* gives the set of possible values to respect the legality condition

Construction Algorithm

Need to add the constraints obtained for each dependence

- The set of legal transformations can be infinite
 - \rightarrow Need to bound the space

 \Rightarrow To each (integral) point in \mathcal{D}_t corresponds a different version of the original program where the semantics is preserved.

Construction Algorithm

- Need to add the constraints obtained for each dependence
- The set of legal transformations can be infinite
 - \rightarrow Need to bound the space

 \Rightarrow To each (integral) point in \mathcal{D}_t corresponds a different version of the original program where the semantics is preserved.

Construction Algorithm

- Need to add the constraints obtained for each dependence
- The set of legal transformations can be infinite
 - \rightarrow Need to bound the space

 \Rightarrow To each (integral) point in \mathcal{D}_t corresponds a different version of the original program where the semantics is preserved.

Legal Search Space

 Multiple orders of magnitude reduction in the size of the search space compared to state-of-the-art techniques

Benchmark	Bounds	#Sched	#Legal	Time
matvect	-1,1	$2.1 imes 10^{3}$	129	0.024
locality	-1,1	$5.9 imes10^4$	6561	0.022
matmul	-1,1	$1.9 imes 10^{4}$	912	0.029
gauss	-1,1	$5.9 imes10^4$	506	0.047
crout	-3,3	$2.6 imes 10^{15}$	798	0.046

Experimental Protocol

We provide a **source-to-source framework**. Given an input program:

- Use LetSee to generate a CLOOG formatted file per legal transformation.
- **Output** Generate the target code with CLOOG.
- Compile and launch the whole set of transformed (C) code, and sort the results regarding cycle count.

 \Rightarrow Exhaustive scan is achievable on small kernels

Experimental Protocol

We provide a **source-to-source framework**. Given an input program:

- Use LetSee to generate a CLOOG formatted file per legal transformation.
- **Output** Generate the target code with CLOOG.
- Compile and launch the whole set of transformed (C) code, and sort the results regarding cycle count.

 \Rightarrow Exhaustive scan is achievable on small kernels

Performance Distribution [1/2]

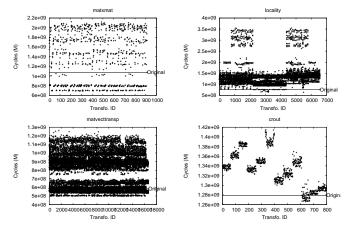


Figure: Performance distribution for matmul, locality, mvt and crout

Performance Distribution [2/2]

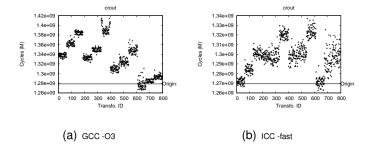


Figure: The effect of the compiler

Some Speedups

Benchmark	Compiler	Options	Parameters	ID best	Speedup
h264	PathCC	-Ofast	N=8	352	36.1%
h264	GCC	-02	N=8	234	13.3%
h264	GCC	-03	N=8	250	25.0%
h264	ICC	-02	N=8	290	12.9%
h264	ICC	-fast	N=8	N/A	0%
fir	PathCC	-Ofast	N=150000	72	6.0%
fir	GCC	-02	N=150000	192	15.2%
fir	GCC	-03	N=150000	289	13.2%
fir	ICC	-02	N=150000	242	18.4%
fir	ICC	-fast	N=150000	392	3.4%
MVT	PathCC	-Ofast	N=2000	4934	27.4%
MVT	GCC	-02	N=2000	13301	18.0%
MVT	GCC	-03	N=2000	13320	21.2%
MVT	ICC	-02	N=2000	14093	24.0%
MVT	ICC	-fast	N=2000	4879	29.1%
matmul	PathCC	-Ofast	N=250	283	308.1%
matmul	GCC	-02	N=250	573	243.6%
matmul	GCC	-03	N=250	143	248.7%
matmul	ICC	-02	N=250	311	356.6%
matmul	ICC	-fast	N=250	641	645.4%

The mvt Kernel

```
for (i = 0; i <= M; i++) {
S1
x1[i] = 0;
x2[i] = 0;
for (j = 0; j <= M; j++) {
    x1[i] += a[i][j] * y1[j];
    x2[i] += a[j][i] * y2[j];
}</pre>
```

Compiler	Option	Original	Best	Schedule	Speedup
GCC 4.1.1	-03	6.9	5.1	$\begin{array}{rcl} \theta_{S1}(\vec{x}_{S1}) &=& -i - n - 1 \\ \theta_{S2}(\vec{x}_{S2}) &=& -1 \\ \theta_{S1}(\vec{x}_{S1}) &=& j + 1 \\ \theta_{S2}(\vec{x}_{S2}) &=& i + j + n + 1 \end{array}$	35.3%
ICC 9.0.1	-fast	6.1	4.9	$\begin{array}{rcl} \theta_{S1}(\vec{x}_{S1}) &=& n-1\\ \theta_{S2}(\vec{x}_{S2}) &=& -n-1\\ \theta_{S1}(\vec{x}_{S1}) &=& j+n+1\\ \theta_{S2}(\vec{x}_{S2}) &=& j-n \end{array}$	24.5%
PathCC 2.5	-Ofast	7.3	5.9	$\begin{array}{rcl} \theta_{S1}(\vec{x}_{S1}) &=& -i-n-1\\ \theta_{S2}(\vec{x}_{S2}) &=& -i-n\\ \theta_{S1}(\vec{x}_{S1}) &=& -i+j+n+1\\ \theta_{S2}(\vec{x}_{S2}) &=& -i+j+1 \end{array}$	23.8%

Generated Code

Optimal Transformation for mvt, GCC 4 -O3, P4 Xeon

```
S1: x1[i] = 0
                                 for (i = 0; i <= M; i++)
S2: x2[i] = 0
                                   S2(i);
S3: x1[i] += a[i][j] * y1[j]
S4: x2[i] += a[j][i] * v2[j]
                                for (c1 = 1; c1 <= M-1; c1++)
                                   for (i = 0; i \le M; i++) {
                                     S4(i,c1-1);
                                 for (i = 0; i <= M; i++) {
                                  S1(i);
for (i = 0; i <= M; i++) {
                                   S4(i,M-1);
 S1(i);
 S2(i);
 for (j = 0; j \le M; j++) {
                                S3(0,0);
   S3(i,j);
                                S4(0,M);
   S4(i,j);
                                 for (i = 1; i \le M; i++)
                                  S4(i,M);
                                 for (c1 = M+2; c1 <= 3 \times M+1; c1++)
                                   for (i = \max(c1-2*M-1, 0); i \le \min(M, c1-M-1); i++) {
                                     S3(i,c1-i-M-1);
```

Heuristic Scan

Propose a decoupling heuristic:

- The general "form" of the schedule is embedded in the iterator coefficients
- Parameters and constant coefficients can be seen as a refinement
- \rightarrow On some distributions a random heuristic may converge faster

Benchmark	#Schedules	Heuristic.	#Runs	%Speedup
locality	6561	Rand	125	96.1%
		DH	123	98.3%
matmul	912	Rand	170	99.9%
		DH	170	99.8%
mvt	16641	Rand	30	93.3%
		DH	31	99.0%

Figure: Heuristic convergence

→ Iterative Compilation Framework independent of the compiler and the architecture

- → Optimizing and / or Enabling transformation process
- → Leads to encouraging speedups
- → On small kernels, exhaustive scan is achievable

- → Develop new exploration heuristics
- ightarrow Deal with multidimensional schedules
- → Integrate in GCC GRAPHITE branch

- → Iterative Compilation Framework independent of the compiler and the architecture
- → Optimizing and / or Enabling transformation process
- → Leads to encouraging speedups
- → On small kernels, exhaustive scan is achievable

- → Develop new exploration heuristics
- ightarrow Deal with multidimensional schedules
- → Integrate in GCC GRAPHITE branch

- → Iterative Compilation Framework independent of the compiler and the architecture
- → Optimizing and / or Enabling transformation process
- $\rightarrow\,$ Leads to encouraging speedups
- → On small kernels, exhaustive scan is achievable

- → Develop new exploration heuristics
- ightarrow Deal with multidimensional schedules
- \rightarrow Integrate in GCC GRAPHITE branch

- → Iterative Compilation Framework independent of the compiler and the architecture
- → Optimizing and / or Enabling transformation process
- $\rightarrow\,$ Leads to encouraging speedups
- → On small kernels, exhaustive scan is achievable

- → Develop new exploration heuristics
- \rightarrow Deal with multidimensional schedules
- \rightarrow Integrate in GCC GRAPHITE branch

- → Iterative Compilation Framework independent of the compiler and the architecture
- → Optimizing and / or Enabling transformation process
- $\rightarrow\,$ Leads to encouraging speedups
- → On small kernels, exhaustive scan is achievable

- \rightarrow Develop new exploration heuristics
- → Deal with multidimensional schedules
- → Integrate in GCC GRAPHITE branch

- → Iterative Compilation Framework independent of the compiler and the architecture
- → Optimizing and / or Enabling transformation process
- $\rightarrow\,$ Leads to encouraging speedups
- → On small kernels, exhaustive scan is achievable

- \rightarrow Develop new exploration heuristics
- \rightarrow Deal with multidimensional schedules
- → Integrate in GCC GRAPHITE branch

- → Iterative Compilation Framework independent of the compiler and the architecture
- → Optimizing and / or Enabling transformation process
- $\rightarrow\,$ Leads to encouraging speedups
- → On small kernels, exhaustive scan is achievable

- \rightarrow Develop new exploration heuristics
- \rightarrow Deal with multidimensional schedules
- \rightarrow Integrate in GCC GRAPHITE branch