
Inside Vaucanson

Thomas Claveirole1, Sylvain Lombardy2, Sarah 0’Connor1,
Louis-Noël Pouchet1, and Jacques Sakarovitch3

1 LRDE, EPITA, {claveirole,o-connor,pouchet}@lrde.epita.fr
2 LIAFA, Université Paris 7, lombardy@liafa.jussieu.fr

3 LTCI, CNRS / ENST , sakarovitch@enst.fr

Abstract. This paper presents some features of the Vaucanson plat-
form. We describe some original algorithms on weighted automata and
transducers (computation of the quotient, conversion of a regular ex-
pression into a weighted automaton, and composition). We explain how
complex declarations due to the generic programming are masked from
the user and finally we present a proposal for an XML format that allows
implicit descriptions for simple types of automata.

1 Introduction

At CIAA’03, we had announced our project Vaucanson, a software platform
for computing with automata and transducers (see [12]). We have made some
demonstration of the possibilities of Vaucanson at CIAA’04. We would like to
report now on how some features of Vaucanson have been implemented at the
light of the first years of experiments. This applies to the algorithms as well as
to the programming facilities that had to be incorporated within Vaucanson.

We first describe three of the algorithms implemented in Vaucanson: those
which generalize to automata with multiplicity the Hopcroft algorithm of mini-
mization, the construction of the derived term automaton of a regular expression
and the composition of (sub-)normalized transducers.

We then explain how we have overcome the intrinsic difficulty of generic static
programming. And we finally introduce the last version of an XML format to
describe automata, implemented as input-output in Vaucanson. In particular,
Vaucanson is complemented with a model of a graphical interface, which relies
on the XML format to interact with the Vaucanson library.

The description of the algorithms is complemented with the results of some
benchmarks of the last version of Vaucanson 4. All the tests have been run on
a server installed at ENST, a bi-Xeon 3.2 GHz with 4 Go of RAM.

2 On the algorithms

The Vaucanson platform provides the most usual algorithms on automata:
determinization, minimization, product, Thompson automaton of an expression,

4 Downloadable at http://vaucanson.lrde.epita.fr.



standard automaton, ε-transitions removal, etc. Each of these algorithms has
been written such that it can be applied to the largest range of automata. For
instance, product or ε-transitions removal are generic and can be applied to
automata with any multiplicity.

As an example, let us mention the automaton An, drawn below, that had
been used in [12] for benchmarking the determinization and that will serve as
the basis of other tests in this paper.

On the latest version of Vaucanson the de-
terminization test gives the following result
for A20 (the minimal deterministic automaton
equivalent to An has 2n states).

Platform time (seconds) space (MB)

FSM 60 447

Vaucanson 105 1709

0

1

2

3n-3

n-2

n-1

a

aa

a

a, c

c

cc

c

a

c

b, c

b, c

b, cb, c

b, c

b, c

We focus now on three algorithms that are extensions for automata with
multiplicities of more or less well-known algorithms: a minimization algorithm
adapted from Hopcroft algorithm, a rather sophisticated algorithm for building
an expression, adapted from a method due to Champarnaud and Ziadi [5], and
finally an algorithm for the composition of transducers with multiplicity.

2.1 Minimal quotient

Definition of the minimal quotient The notion of minimal quotient (or K-covering)
is the generalization to weighted automata of the minimal automaton for DFA’s.
It consists in computing a (smaller) automaton by merging states which have
the “same” outgoing transitions. (cf. [10, 18]).
More formally, this definition is equivalent to the following one (straightforward
from [13]). Let A = (I, E, T ) be an automaton characterized by its initial vec-
tor I, its transition matrix E and its final vector T . The minimal quotient of B
is the (unique) smallest automaton B = (J, F, U) such that:

J = IK, KF = EK, and KU = T,

where K is an amalgamation matrix (i.e. with one and only one non-zero coef-
ficient, equal to 1, on every row). It is quite obvious that the minimal quotient
of A is equivalent to A.

Algorithm for the minimal quotient The minimal quotient of a DFA can be
computed either by the Moore algorithm or by the Hopcroft algorithm [9].5

These both algorithms consist in refining a partition over states (initialized w.r.t.
the terminal states) but they are different: given a class P and a letter a, the

5 The Brzozowski algorithm is not a computation of quotient, even if it gives the same
result on DFAs.



Moore algorithm consists in considering the classes of successors of P by a and
splitting P , whereas the Hopcroft algorithm consists in considering the classes
of predecessors of P by a and splitting them. Therefore, the Hopcroft algorithm
can more directly be extended to NFAs or weighted automata:

1. Computation of a backward transition table: for every state q and every
letter a, the list of pairs (p, w) is stored, for all transitions from p to q

labelled by a with multiplicity w. The current implementation of automata
in Vaucanson already provides this table.

2. The algorithm is initialized by sorting states with respect to their terminal
function. This provides the initial partition that has to be refined to be a
right congruence. For every part P and every letter a, the pair (P, a) is
inserted into a queue l.

3. While l is not empty, the front of l, a pair (P, a) is poped up; for every part Q

which has successors by a in P , the part Q is splitted such that two states q

and q′ remain in the same part if and only if the sum of weights of their
outgoing transitions labelled by a that arrive in P are equal. If new parts
are created, they are inserted into l (paired with every letter).

4. An automaton whose states are the parts is then created. The terminal
function of the part is the (common) terminal function of each of its states,
the initial function is the sum, and the multiplicity of (P, a, Q) is the sum,
for any state p of P of the multiplicities of transitions (p, a, q) for every q

in Q.

Comparison with the classical Hopcroft algorithm The principle of the algorithm
is the same as the principle of the minimization algorithm: a backward transition
table is computed and a partition is refined by considering predecessors of each
part. Nevertheless, the existence of multiplicities has a number of outcomes in
every step of the algorithm.

First, the transition table does not contain lists of states, but lists of states
paired with weights.

In step 2, the initial partition has as many parts as the terminal function has
values. In step 3, it is not sufficient to know wether a state q has a successor
in P but which is the multiplicity from q to P . Moreover, one add to l every
subpart obtained from Q whereas in the Hopcroft algorithm the smallest among
both subparts is inserted, which is crucial to reach the n logn complexity in the
classical case. The complexity of that generalized Hopcroft algorithm is therefore
more likely to be quadratic.

Minimizing deterministic automata Minimization of DFAs is a special case of
computing the quotient and we have first tested implementations in this case
to allow comparison with other platforms. It has been shown in [3] that the
de Brujin graph, Bn is the worst case for Hopcroft minimization algorithm,
since it can lead to n2n steps in the main loop of the algorithm: let A = {a, b}
be the alphabet; the states of Bn are labelled by words of length n over A, that
gives 2n states. The state an is initial, for every x, y in A, every word w in An−1



there is a transition from xw to wy labelled by y and xw is final if and only if
x = a. We also test minimization on the the determinized automaton of An.
Four procedures are tested; the one proposed by FSM (unknown algorithm), and
two algorithms proposed by Vaucanson: Moore and Hopcroft.6

Input B12 B17 det(A12) det(A17)

FSM 0.048 1.791 0.065 2.829

Moore 0.271 37.11 0.470 146.77

Hop. 0.074 45.599 0.338 1752.33

Test of the generalized quotient Let C1 be the Z-automaton of Figure 1 that
maps every word w on {a, b}2, seen as a binary number, on its value w̄. For
every positive integer n, let Cn+1 be the automaton recursively defined as the
product of C1 by Cn. Cn maps every words w on w̄n. In the following tests, we
compute Cn, which has 2n states and then the minimal quotient Vn of Cn which
has n + 1 states.

b

a + b 2a + 2b

(a) The automaton C1

3b 4b 4b

a + b 2a + 2b 4a + 4b 8a + 8b

3b 2b

b
(b) The quotient of C3

Fig. 1. The automata Cn

n 8 9 10 11 12

Cn edges 6817 20195 60073 179195 535537

Vn edges 45 55 66 78 91

Time 0.036 0.112 0.340 0.999 3.161

2.2 Automaton of derived terms

The Vaucanson platform provides several algorithms to convert any regular
expression (with multiplicity) into a (weighted) finite automaton. We present
here the algorithm that constructs the derived term automaton AE of an expres-
sion E [1, 13]. This automaton is rather small: it has been proven that AE is a
quotient of the standard (or position, or Glushkov) automaton of E [5, 13].

We have implemented the algorithm and the data structure proposed by
Champarnaud and Ziadi [5] for the computation of derived terms, together with
the necessary improvement in order to deal with multiplicity in expressions. The
main point proven in [5] is that every derived term of a regular expression E is
a product of subexpressions of E. Therefore, each derived term is represented
by a list of nodes in the tree of the regular expression E. Moreover, this tree
is equipped with some “links” that help to perform the derivation: for every
∗-node n, there is a link from the child of n to n itself, and for every ·-node,
there is a link from the left child of n to its right child.

6 The Brzozowski algorithm that consists in applying a co-determinization followed
by a determinization does not succeed in reasonable time on these inputs.



Two basic functions are c(E) and first(E, a). The function c(E) gives the
weight of the empty word in the series described by E and first(E, a) returns a
set of pairs weight/position recursively defined by:

first(0, a) = ∅ , first(1, a) = ∅ ,

∀b ∈ A first(b, a) =



(1K, y) with y position of a in E, if a = b,

∅ otherwise

first(k E, a) =
[

{(kx, y) | (x, y) ∈ first(E, a)} , first(E k, a) = first(E, a) ,

first(E + F, a) = first(E, a) ∪ first(F, a) , first(E · F, a) = first(E, a) ∪ first(c(E)F, a) ,

first(E∗, a) = first(c(E)∗E, a) , if c(E)∗ is defined in K.

These functions are easily computed on the tree of the regular expression. The
computation of the derivatives of E with respect to a consists, for every position x

in first(E, a), to go up to the root of the tree of E and collect the destinations of
the links starting from the nodes on that path.

Example 1. Let E1 = (5 F1) with F1 = ((2ab) + ((3b) · (4(ab)∗)))∗.

The derived terms of E1 are:

K1 = b · F1,

K2 = (4 (ab)∗) · F1,

K3 = F1,

K4 = (b · (ab)∗) · F1, and

K5 = (ab)∗ · F1.

For instance, ∂

∂a K2 = 8K1 ⊕ 4K4.

E1

K1

K3

K2

K4

K5

5

4

10 a

15 b

b

2a

3b

8a

12b

4a

b

2a

3b
a

The automaton AE1
.

The tree of E1 is equipped with links. The coding for E1 itself is I.

One computes first(I, a) = {(10, V I)} and
going up from V I, one get:

∂

∂a E1 = 10[V II, II].
Finally, we get the same automaton with

the following coding for derived terms:

K0 =[I] K1 =[V II, II] K2 =[XI, II]

K3 =[II] K4 =[XV, XII, II] K5 =[XII, II]

For instance,
first([XI, II], a)= {(4, XIV ), (8, V I)}
and ∂

∂a [XI, II] = 4[XV, XII, II]⊕ 8[V II, II].

I : 5.

II : ∗

III : +

IV : 2.

V : ·

V I : a V II : b

V III : ·

IX : 3.

X : b

XI : 4.

XII : ∗

XIII : ·

XIV : a XV : b

Test on the derived terms A set of expressions is provided by the elimination
algorithm applied on A15 with random orderings on states. The automaton of
derived terms AE of every expression E is computed, and also the quotient VE of



the standard (Glushkov) automaton of the expression E. One thousand expres-
sions are generated this way and classified w.r.t. their litteral length lE– which
is the size of SE. We present here means for four significant classes.

Derived term AE Standard SE

Class lE AE states time VE states time

1 110 24 0.123 24 0.012

7 410 53 0.470 51 0.050

14 1035 66 1.169 60 0.138

20 7821 90 13.412 78 1.418

2.3 Composition of transducers with multiplicity

A most fundamental result in the theory of transducers is Elgot and Mezei’s
Composition Theorem ([7]): The composition of two finite transducers is realized

by a finite transducer. The same result holds true for weighted transducers — up
to some definition problems which will not be considered here. The proof is, or
can be translated into, an algorithm for the construction of the transducer that
realizes the composition. And there are two main proofs for the Composition
Theorem.

The first proof follows from Kleene-Schützenberger characterization of ra-
tional relations from A∗ into B∗ as recognizable series on A∗ with multiplicity
in RatB∗. Transducers are thus representations of A∗ by matrices with entries
in RatB∗ and representations can be composed in a natural way: this yields a
representation for the composition of transducers [19]. This proof has the advan-
tage that it generalizes directly to weighted transducers: they are representations
by matrices with entries in KRatB∗ if K is the multiplicity semiring. It is thus
perfectly “generic” i.e. independent from the type of considered transducers and
hence fits well with the architecture of Vaucanson. It is the one we have first
implemented. Besides its genericity, this algorithm has a serious drawback: as
it deals with real-time transducers, the transition “outputs” may be regular ex-
pressions and the composition requires the computation of the image (by the
second transducer) of all these expressions, a computation that may prove to be
costly.

The other proof, certainly better known, relies on the realization of rational
relations by projections and intersection with rational (regular) languages (see
[6, 2]). We have also implemented another composition algorithm which follows
more closely this classical proof and which works directly on transducers seen as
labeled graphs.

Let us first sketch quickly an algorithm that corresponds to that proof in the
unweighted case. In spite of its simplicity, it has not been described so often; it
can be seen as a simplified version of the algorithm for the weighted case of [16,
15] which we shall mention again later. It can be also found in [14].

We consider two normalized transducers T = 〈Q, A∗ × B∗, E, I, T 〉 and
U = 〈R, B∗ × C∗, F, J, U〉 , that is transitions of T are labeled in A × 1 or in



1×B and those of U are labeled in B×1 or in 1×C. The proof of the Composition
Theorem as presented in [2] is equivalent to the construction of the transducer

T ⊲⊳ U = 〈Q × R, A∗ × C∗, G, I × J, T × U〉

by the following rules.

(i) If (p, (a, 1), q) ∈ E then for all r ∈ R
(
(p, r), (a, 1), (q, r)

)
∈ G .

(ii) If (r, (1, c), s) ∈ F then for all q ∈ Q
(
(q, r), (1, c), (q, s)

)
∈ G .

(iii) If (p, (1, b), q) ∈ E and (r, (b, 1), s) ∈ F then
(
(p, r), (1, 1), (q, s)

)
∈ G .

A next possible step is to eliminate the transitions with label (1, 1) by means
of a classical closure algorithm.

T1

(1, y)

(1, x)
(b, 1)

(a, 1)

U1
(x, 1) (y, 1)

(1, u)(1, v)

(b, 1)

(a, 1)

(b, 1)

(a, 1)

(b, 1)

(a, 1)

(1, u)

(1, v)

(1, u)(1, v)

(1, u)(1, v)

(1, 1)

(1, 1)

T1 ⊲⊳ U1

(b, 1)

(a, 1)

(1, v)

(1, u)

(b, 1)

(1, v)

(a, 1)

(1, u)

Fig. 2. Composition Theorem on Boolean transducers

This construction can easily be extended to transducers which we shall call
sub-normalized and which are such that transitions are labeled in Â× B̂ \ (1, 1)

where Â = A ∪ {1} . It amounts to replace (iii) by

(iii’) If (p, (x, b), q) ∈ E with x ∈ Â and (r, (b, y), s) ∈ F with y ∈ Ĉ then(
(p, r), (x, y), (q, s)

)
∈ G .

In this form, it contains as a particular case the composition of letter-to-letter
transducers.

It is known that this construction is not correct if multiplicities are to be
taken into account. Let us say that two paths in T ⊲⊳ U are equivalent if they
correspond to the same pair of paths in T and U . For instance, there is one
path labeled (aa, y) in T1 and one path labeled (y, u) in U1; and there are two

equivalent paths labeled (aa, u) in T1 ⊲⊳ U1. Hence, T ⊲⊳ U does not realize the
composition of the weighted relations realized by T and U .

In [6], the Composition Theorem is proved for weighted transductions (at
least for those with weights taken in a complete positive and commutative semir-

ing, which allows to dispose of the question of definition). In this proof, the



multiplicity, that is the selection among the equivalent paths, is taken care of,
so to speak, by the intersection with a certain local language T .

As we already mentioned, a construction of a weighted transducer that real-
izes the composition of two weighted transductions is given in [16, 15]. It amounts
first to mark the transitions which, in the above construction, have a label one
component of which is the empty word, and then to choose a filter, that is a
language on the alphabet of marks which retains one path in every set of equiv-
alent paths. Besides implementing a proof of the Composition Theorem, this
construction has the advantage of being well-suited to the lazy evaluation of the
composition, that is the implementation of an algorithm that does not compute
the composed transducer but the output of it on any input word (with the same
number of steps as if the composed transducer had been computed). On the
other hand, it is easy to verify that the language T in Eilenberg’s proof plays
the role of a filter.

(1, y)

(1, y)

(1, x)
(b, 1)

(b, 1)

(a, 1)

(x, 1)

(y, 1)

(y, 1)

(1, u)(1, v)

(1, v)

(1, v)

(1, v)

(b, 1)

(b, 1)

(a, 1)
(1, u)

(a, 1)

(a, 1)

(1, u)
(1, u)

Fig. 3. A composition that preserves multiplicity

We have implemented a construction on transducers that corresponds to this
filter T and as it is chosen beforehand we avoid the introduction of marked
transductions. We replace them by a preliminary operation on the transducers
and the intersection with T is then realized by the deletion of certain states in
the product. The construction on T and U can be described as follows:
(a) Split the states of T and their outgoing transitions in such a way they are

labeled either in (A × 1) — black states — or in Â × B (or the state is final)
— white states; the incoming transitions are duplicated on split states. This is
transducer T ′.
(b) Split the states of U and their incoming transitions in such a way they are

labeled either in (1 × C) — black states — or in B × Ĉ (or the state is initial)
— white states; the outgoing transitions are duplicated on split states. This is
transducer U ′.
(c) Apply the preceeding algorithm [steps (i), (ii) and (iii’)] to T ′ and U ′ in order
to build T ′ ⊲⊳ U ′.
(d) Delete the black-black states (every state in T ′ ⊲⊳ U ′ is a pair of states).



(e) Trim and eliminate the transitions with label (1, 1) by classical closure.
Figure 3 shows the construction applied to T1 and U1.

Composition algorithm We consider the rewriting rule abn → ban. This transfor-
mation is achieved by the composition of a left sequential transducer by a right
sequential transducer, respectively performing rewriting from right to left and
left to right. The composition has been implemented using both the composition
of representations and the composition of sub-normalized transducers.

Algorithm n Nb. states Nb. transitions Time

Sub-normalized 20 30084 40356 0.551
transducer 40 232564 305506 4.849

Representation 20 441 882 2.042
40 1681 3362 36.195

3 Coping with generic static programming

Genericity in Vaucanson In order to ensure maximal genericity of the func-
tions and algorithms written in the Vaucanson library, most of the objects that
come into the definiton of automata are parameterizable. For instance and to
quote a few, one can, but also one has to, define the type of the following entities:

– the alphabet, i.e. the type of “letters”: characters, pairs of characters, etc.
– the multiplicity, which involves both the domain (B, Z, Q, R for instance) and

also the semiring operations considered on these domains: usual + and ×,
or min and +, or max and +, etc.

– the transition label type such as letter, polynomial, (rational) series, etc.

As already advocated in [12], the use of C++ static genericity is one of the
characteristic features of Vaucanson. Algorithms are written once, and the as-
surance is given that they will work for all kinds of automata (concerning the
above parameters). In order to achieve efficiency, the use of “classical” virtual
methods and abstract classes is avoided. Instead, static mechanisms similar to
those described by [4] and [17] are used. The combination of genericity for such
a wide range of types and the use of such methods for static mechanism have
a heavy counterpart: programming becomes pretty tough, even for most ad-
vanced users. The solution to this drawback which threatened the usability of
Vaucanson came through the writing of “context headers”.

Context headers The Vaucanson platform now provides a set of context
headers, each of them contains all the needed declarations for a classical type of
automata such as Boolean automata, automata with multiplicity in Z, max-plus
or min-plus automata, or transducers.

The objective is achieved to some extend. The wide range of functions imple-
mented in the Vaucanson library may be used with a minimal amount of decla-
rations when applied to classical types of automata. On the other hand, advanced



users may also use their own definitions to take the most of the genericity in Vau-
canson. On the developer’s side, genericity is kept and algorithms are written
once and specializable in various ways (regarding the automaton type, a partic-
ular implementation, etc). By offering predefined types to the user, Vaucanson
provides services which are in fact context-sensitive, as the new_rat_exp() or
thompson_of() functions for instance.

The future of context headers As explained in [12], the “type” of an entity
in Vaucanson does not refer only to the type of a variable but also to how this
variable is implemented. The present headers refer to the general implementation
of automata and do not thus insure the best possible efficiency.

Moreover, the writing of a context header is a tedious process, and every
user’s wish or need cannot be fulfilled by a library of headers: the possible com-
binations of types are potentially infinite.

A more elegant solution that we plan to implement in a near future will be to
provide a kind of parameterized context, for which only the most usual parameters
are fixed. As an example, an automaton with “numerical” multiplicity would be
defined by a header weighted_automaton which will have as parameters the
type of the letters of the alphabet and the type of the weight: int, float, etc.

4 The XML exchange format for automata

At CIAA’04, the Vaucanson group presented an XML description format for
automata. This format was elaborated both as a proposal for an exchange format
within the community of automata users and as an input-output standard in
order to allow communications between Vaucanson and other softwares dealing
with automata7. We shall present a new proposal at CIAA’05, and the XML
format proposed will be described there. We describe here only the main features
of this new format, their motivation, and the way Vaucanson handles it.

4.1 The XML proposal

Quick review of the format The description of automata is structured in
two parts. The <type> tag provides automaton type definition, like Boolean
automaton, or weighted ones with the ability to specify weight type, alphabet
specification, etc. The <content> tag provides the definition of the automaton
“structure”. The visual representation of automata involves a very large amount
of informations. The <geometry> data corresponds to the embedding of the
automaton in a plane (with informations such as state coordinates or edge type
for a transition). The <drawing> data contains the definition of attributes that
characterize the actual drawing of the graph (such as label position or state
color for instance). Most of them are indeed implicit and provided by drawing
programs; the format only provides the possibility to make them explicit at every
level of the description.
7 Vaucanson supports as well the FSM format for loading and saving automata.



From DTD to XSD The most important difference with our previous proposal
is the change from a DTD (Document Type Definition) describing the tags for
automata representation to an XSD Schema.

This change is indeed a consequence of the same simplification policy which
lead us to the definition of context headers: it is desirable to keep the description
of automata simple when describing widely used structures, while giving the
possibility to describe the most complex ones.

For XML, this simplification amounts to have default types, in order to omit
<type> tag when describing common Boolean automata or transducers.

The problem then arises when describing an automaton or a transducer,
the default values for the <type> tag must of course be different. This is not
possible with a DTD description. The use of a XSD overcomes this difficulty,
since it is possible to define different properties for a same element, according
to the embracing context. Is is so possible to locally alter the behavior of a tag,
and make it context-sensitive. With this feature, default values for the <type>

tag are achieved, whether it is a child of <transducer> or of <automaton>.
It is of course possible to redefine only the tag where default values are

inappropriate, inside the <type> tag. For instance, in order to define a weighted
automaton on Z, it is sufficient to write a <semiring> tag as a child of <type>,
with set attribute set to Z.

4.2 Implementation in Vaucanson

In order to implement support of proposed XML format in Vaucanson, two
main objectives need to be achieved: maintenance easiness in case of format
modification or extension and routines availability to access state geometric co-
ordinates specified in the XML document.

Parsing the XML document To parse the XML document and create the
associated tree, we use the Apache Xerces C++ parser [20]. Xerces is a validating
XML parser, and handles well DTD document validation or XSD validation.

Building the automaton When reading and interpreting data, the program
faces a totally dynamic content. It doesn’t know, a priori, tag properties it will
read. We face the problem of knowledge of the treatment type, not data type.
In order to solve this problem, we use the Factory Method design pattern [8].

Factory Method is a creational pattern. It encourages the user to create a
common interface for handled objects (in this case tags), while the exact type
of the object is chosen by a subclass according to the context. The main routine
deals with abstraction since it knows how to manipulate tags, but doesn’t know
about data it is dealing with.

Acknowledgments

The help and support of all members of the Vaucanson Group is gratefully acknowl-
edged: A. Demaille for the management of the group at LRDE, R. Poss and Y. Régis-
Gianas for keeping an eye on the evolution of the platform, R. Bigaignon, M. Cadilhac,
F. Terrones at LRDE and R. Souza at ENST for their participation to the writing of
the platform and especially for the benchmarking.

The help of H. Assaoui and Ph. Martins for the installation of the vaucanson server

at ENST is also gratefully acknowledged.



References

1. Antimirov V. M., Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155, 2 (1996), 291–319.

2. Berstel J., Transductions and context-free languages, Teubner, 1979.
3. Berstel J. and Carton )., On the Complexity of Hopcroft’s State Minimization,

Proc. of CIAA 2004, Lect. Notes in Comp. Sc. 3317, (2004), 24–44.
4. Burrus N., Duret-Lutz A., Géraud T., Lesage D. and Poss R. A Static C++

Object-Oriented Programming (SCOOP) Paradigm Mixing Benefits of Traditional
OOP and Generic Programming. In Proc. of MPOOL’03, 18th SIGPLAN Conf.,
(2003), 137–163.

5. Champarnaud J.-M., and Ziadi D., Canonical derivatives, partial derivatives and
finite automaton constructions. Theor. Comput. Sci. 289, 1 (2002), 137–163.

6. Eilenberg S., Automata, Languages and Machines, vol. A, Academic Press, 1974.
7. Elgot C. C. and Mezei J. E., On relations defined by generalized finite automata,

IBM J. Res. and Develop. 9 (1965), 47–68.
8. Gamma E., Helm R., Johnson R., and Vlissides J., Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley, 1995.
9. Hopcroft J., An n log n algorithm for minimizing states in a finite automaton. In

Theory of machines and computations (Proc. Internat. Sympos., Technion, Haifa,
1971). Academic Press, New York, 1971, pp. 189–196.

10. Kuich W., Walk K., Block-stochastic matrices and associated finite-state lan-
guages. Computing 1 (1966), 50–61.

11. Lind D. and Marcus B., An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, 1995.

12. Lombardy S., Régis-Gianas Y., and Sakarovitch J., Introducing Vaucanson
Theoretical Comput. Sci. 328 (2004), 77–96. Journal version of Proc. of CIAA 2003,
Lect. Notes in Comp. Sc. 2759, (2003), 96–107 (with R. Poss).

13. Lombardy S., and Sakarovitch J., Derivatives of rational expressions with
multiplicity. Theoretical Comput. Sci. 332 (2005), 141–177.

14. Lothaire, Applied Combinatorics on Words, Cambridge University Press, 2005.
15. Mohri M., Pereira F., and Riley M., The Design Principles of a Weighted

Finite-State Transducer Library. Theoretical Comput. Sci. 231 (2000), 17–32.
16. Pereira F. and Riley M., Speech Recognition by Composition of Weighted

Finite Automata In Finite State Devices for Natural Language (Roche E. and
Schabes Y., eds.), Proc. MIT Press, 1997.

17. Régis-Gianas Y., and Poss R., On orthogonal specialization in C++: Dealing
with efficiency and algebraic abstraction in Vaucanson In Proc. of POOSC’2003
(2003).

18. Sakarovitch J., Eléments de théorie des automates, Vuibert, 2003. Translation:
Elements of Automata Theory, Cambridge Universiy Press, to appear.

19. Schützenberger, M. P. A remark on finite transducers. Information and Control
4 (1961), 185–196.

20. http://xml.apache.org/xerces-c/


