
LETSEE: THE LEGAL TRANSFORMATION SPACE EXPLORATOR

Louis-Nöel Pouchet, Ćedric Bastoul and Albert Cohen

ALCHEMY group, INRIA Futurs and LRI / University of Paris-Sud 11,France

Motivation

The situation

� Usual static models fail to capture the real complexity of modern architectures

� Compiler optimization interactions are hard to interpret

A solution to address these issues

� Use an iterative compilation framework

� Focus on Loop Nest Optimization

� Consider only the result of the application of sequences of transformation

� Model a set of distinct, semantically equivalent program versions

Classical iterative optimization scheme: build a set of sequences of transformations

� Drawbacks:

⊲ A sequence may not be applied: it can break the semantics of the transformed program
⊲ Various sequences of transformations may lead to the same target program

Affine schedule-based iterative optimization scheme: build a set of different program versions

� Advantages:

⊲ Can do an upstream characterization of program candidates preserving the semantics
⊲ Drastic reduction of the number of possible candidates

For ex: h264 benchmark:≈ 1,8×108 distinct versions, only 360 preserve the semantics!
⊲ On small kernels, exhaustive traversal is possible

An Iterative Tool Chain

SCoP

representation

Iterative compilation and run of base source code

with transformed SCoP

Code generation

Source
Code

Static
Analysis

Kernel
Generation

Unit
Generation

Polyhedral computing libraries

PIPLib PolyLib CLooG

Run

C compilable

code

Feedback from hardware counter(s)

Compilation

Polyhedral

representation

of SCoP

Bounded

search space

Space
Construction

Space
Exploration

Target
Code

1.Static Analysis: isolate SCoPs and represent its information using a mathematical algebraic abstraction.
The remainder of the program and the actual statement operations are kept apart.

2.Space Construction: build a search space encompassing legal and distinct program versions, thanks to its
algebraic representation

3.Space Exploration: traverse the search space, where each point represent a different program version
where the semantics is preserved.

4.Kernel Generation: generate the target kernel code corresponding to a point inthe search space

5.Unit Generation: reinsert all the remainder of the original program plus theinstrumentation for perfor-
mance feedback (LetSee uses hardware counters to collect the most accurate information on the program
behavior)

6.Compilation: compile with a given optimizing compiler targeting a givenarchitecture

7.Run: run the program candidate on the target architecture, and gather information about its behavior

8. Use the information collected to drive the exploration according to user objectives (optimize speed, mem-
ory footprint, number of cache misses, etc.)

References

� CLooG: http://www.cloog.org

� PiPLib : http://www.piplib.org

� PolyLib : http://icps.u-strasbg.fr/polylib

� LetSee: http://www-rocq.inria.fr/∼pouchet

References

[1] Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time.
International Journal of Parallel Programming, 21(5):389–420, 1992.

[2] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined selection of tile sizes and unroll
factors using iterative compilation. InPACT ’00: Proceedings of the 2000 International Conference
on Parallel Architectures and Compilation Techniques, page 237, Washington, DC, USA, 2000. IEEE
Computer Society.

[3] Louis-Noël Pouchet, Ćedric Bastoul, Albert Cohen, and Nicolas Vasilache. Iterative optimization in the
polyhedral model: Part I, one-dimensional time. InInternational Symposium on Code Generation and
Optimization, pages 144–156, San Jose, California, March 2007. IEEE Computer Society.

Polyhedral Representation of Programs

Static Control Parts (SCoP)

� Loops and conditionals can be described using affine forms

� Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =













1 0 0 −1
−1 0 1 0

0 1 0 −1
−1 0 1 0
−1 −1 1 2













.









i
j
n
1









≥~0

� Memory accesses: static references, represented as affine functions of the iterators and the parameters

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

f S2
s =

[

1 0 0 0
]

.









i
j
n
1









f S2
a =

[

1 0 0 0
0 1 0 0

]

.









i
j
n
1









f S2
x =

[

0 1 0 0
]

.









i
j
n
1









� Data dependence between S1 and S2: a subset of the Cartesian product ofDS1 andDS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :



















1 0 0 −1
−1 0 0 3

0 1 0 −1
0 −1 0 3
0 0 1 −1
0 0 −1 3
1 −1 0 0



















.









iS1
iS2
jS2
1









≥~0
= 0

The dependenceS1δS2 only exists between

instances ofS1 andS2 such thatiS1 = iS2,

and not between all instances ofS1 andS2.

� Reduced dependence graph labeled by dependence polyhedra

� Affine schedulesare used to drive any composition of loop transformation

1

2

3

5

6

4

1 2 3 4 5 6

1

2

3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’
0

1

2

3

j’

=⇒

for (i=1; i<=3; ++i) {

. for (j=1; j<=2; ++j)

. . a[i][j] = a[i][j] * 0.2;

}

θR

(

i
j

)

=

(

j
i

)

=

[

0 1
1 0

]

(

i
j

)

for (j=1; j<=2; ++j) {

. for (i=1; i<=2; ++i)

. . a[i][j] = a[i][j] * 0.2;

}

Some Experimental Results

� Dramatic narrowing of the search space, and encouraging speedups: from 10% to 368% on UTDSP ker-
nels, on an AMD Athlon64 machine

Benchmark Statements Dependences Dimension All Legal Iterators Speedup

locality 1 2 1 5.9×104 6561 9 19%
matmult-250 2 7 1 1.9×104 912 76 243%

h264 5 15 1 1.2×108 360 32 36%
edge-2048 3 30 3 1.7×1024 3.1×107 1467 40%

compress-1024 6 56 2 6.2×1024 6480 9 368%
latnrm-256 11 75 2 4.1×1018 1.9×109 678 32%
lmsfir-256 9 112 2 1.2×1019 2.6×109 19962 22%

� Several traversal methods

⊲ Exhaustive scan (achievable on small kernels)

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

Transformation identifier

locality

original

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

Transformation identifier

matmult

original

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 1.2e+09

 1.3e+09

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
yc

le
s

(M
)

Transfo. ID

matvecttransp

Original

⊲ Various heuristic scans: comparison between Random and Decoupling Heuristic

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Runs

locality

Decoupling
Random

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Runs

matmult

Decoupling
Random

 65

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Runs

mvt

Decoupling
Random

What’s Next?

� Using machine learning for space exploration

⊲ accelerate the space traversal
⊲ capture the relationship between space variables, and ultimately learn new heuristics

� Integration ofLetSee in GRAPHITE, the new polyhedral-aware branch of GCC

� Improve scalability and applicability

⊲ search space exploration problem: equivalent to the dynamic scan of a large integer polytope
⊲ non static control parts can be amenable to polyhedral modeling with conservative approximation

� Computing search space for multidimensional schedules: a highly combinatorial problem

⊲ at the moment, we only compute the space corresponding to maximal fine-grain parallelism
⊲ do we need a new formulation of the space of legal program versions?

