
LETSEE: THE LEGAL TRANSFORMATION SPACE EXPLORATOR
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Motivation

The situation

� Usual static models fail to capture the real complexity of modern architectures

� Compiler optimization interactions are hard to interpret

A solution to address these issues

� Use an iterative compilation framework

� Focus on Loop Nest Optimization

� Consider only the result of the application of sequences of transformation

� Model a set of distinct, semantically equivalent program versions

Classical iterative optimization scheme: build a set of sequences of transformations

� Drawbacks:

⊲ A sequence may not be applied: it can break the semantics of the transformed program
⊲ Various sequences of transformations may lead to the same target program

Affine schedule-based iterative optimization scheme: build a set of different program versions

� Advantages:

⊲ Can do an upstream characterization of program candidates preserving the semantics
⊲ Drastic reduction of the number of possible candidates

For ex: h264 benchmark:≈ 1,8×108 distinct versions, only 360 preserve the semantics!
⊲ On small kernels, exhaustive traversal is possible
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1.Static Analysis: isolate SCoPs and represent its information using a mathematical algebraic abstraction.
The remainder of the program and the actual statement operations are kept apart.

2.Space Construction: build a search space encompassing legal and distinct program versions, thanks to its
algebraic representation

3.Space Exploration: traverse the search space, where each point represent a different program version
where the semantics is preserved.

4.Kernel Generation: generate the target kernel code corresponding to a point inthe search space

5.Unit Generation: reinsert all the remainder of the original program plus theinstrumentation for perfor-
mance feedback (LetSee uses hardware counters to collect the most accurate information on the program
behavior)

6.Compilation: compile with a given optimizing compiler targeting a givenarchitecture

7.Run: run the program candidate on the target architecture, and gather information about its behavior

8. Use the information collected to drive the exploration according to user objectives (optimize speed, mem-
ory footprint, number of cache misses, etc.)
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Polyhedral Representation of Programs

Static Control Parts (SCoP)

� Loops and conditionals can be described using affine forms

� Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...
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� Memory accesses: static references, represented as affine functions of the iterators and the parameters

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

f S2
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� Data dependence between S1 and S2: a subset of the Cartesian product ofDS1 andDS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :
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The dependenceS1δS2 only exists between

instances ofS1 andS2 such thatiS1 = iS2,

and not between all instances ofS1 andS2.

� Reduced dependence graph labeled by dependence polyhedra

� Affine schedulesare used to drive any composition of loop transformation
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for (i=1; i<=3; ++i) {

. for (j=1; j<=2; ++j)

. . a[i][j] = a[i][j] * 0.2;

}
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for (j=1; j<=2; ++j) {

. for (i=1; i<=2; ++i)

. . a[i][j] = a[i][j] * 0.2;

}

Some Experimental Results

� Dramatic narrowing of the search space, and encouraging speedups: from 10% to 368% on UTDSP ker-
nels, on an AMD Athlon64 machine

Benchmark Statements Dependences Dimension All Legal Iterators Speedup

locality 1 2 1 5.9×104 6561 9 19%
matmult-250 2 7 1 1.9×104 912 76 243%

h264 5 15 1 1.2×108 360 32 36%
edge-2048 3 30 3 1.7×1024 3.1×107 1467 40%

compress-1024 6 56 2 6.2×1024 6480 9 368%
latnrm-256 11 75 2 4.1×1018 1.9×109 678 32%
lmsfir-256 9 112 2 1.2×1019 2.6×109 19962 22%

� Several traversal methods

⊲ Exhaustive scan (achievable on small kernels)
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⊲ Various heuristic scans: comparison between Random and Decoupling Heuristic
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What’s Next?

� Using machine learning for space exploration

⊲ accelerate the space traversal
⊲ capture the relationship between space variables, and ultimately learn new heuristics

� Integration ofLetSee in GRAPHITE, the new polyhedral-aware branch of GCC

� Improve scalability and applicability

⊲ search space exploration problem: equivalent to the dynamic scan of a large integer polytope
⊲ non static control parts can be amenable to polyhedral modeling with conservative approximation

� Computing search space for multidimensional schedules: a highly combinatorial problem

⊲ at the moment, we only compute the space corresponding to maximal fine-grain parallelism
⊲ do we need a new formulation of the space of legal program versions?


