
LASE: An Example-Based Program Transformation
Tool for Locating and Applying Systematic Edits

John Jacobellis Na Meng Miryung Kim
The University of Texas at Austin

Austin, US
jwjacobellis@gmail.com, mengna09@cs.utexas.edu, miryung@ece.utexas.edu

Abstract—Adding features and fixing bugs in software often
require systematic edits which are similar, but not identical,
changes to many code locations. Finding all edit locations and
editing them correctly is tedious and error-prone. In this paper,
we demonstrate an Eclipse plug-in called LASE that (1) creates
context-aware edit scripts from two or more examples, and uses
these scripts to (2) automatically identify edit locations and (3)
transform the code. In LASE, users can view syntactic edit
operations and corresponding context for each input example.
They can also choose a different subset of the examples to
adjust the abstraction level of inferred edits. When LASE locates
target methods matching the inferred edit context and suggests
customized edits, users can review and correct LASE’s edit
suggestion. These features can reduce developers’ burden in
repetitively applying similar edits to different methods. The tool’s
video demonstration is available at https://www.youtube.com/
watch?v=npDqMVP2e9Q.

I. INTRODUCTION

To add features, fix bugs, refactor, and adapt to new
APIs, developers often perform systematic edits—similar but
not identical changes to many locations. Nguyen et al. find
that 17% to 45% of bug fixes are systematic; 86% to 92%
occur in methods that perform similar functions and/or object
interactions [1]. When an API evolves, client applications
must systematically adapt by constructing new objects, passing
new arguments, or replacing API calls. When developers
fork software, they often copy patches between products of
the same family as the software evolves. For example, in a
recent case study of BSD products, developers copy 11%-16%
patches between OpenBSD, FreeBSD, and NetBSD [2].

Our prior work introduced LASE (Locating and Applying
Systematic Edits) to help developers perform systematic edit-
ing in multiple places [3]. When using LASE, developers
specify two or more example methods that they edited by
hand. LASE learns a partially abstract, context-aware edit
script out of them, uses the same edit script to find other
edit locations, and applies a customized edit to each location.
Then developers judge for themselves whether to accept the
suggested edits.

Intuitively, LASE infers edit operations (insert, delete, up-
date, and move) common to selected examples and abstracts
edit operations that differ between the examples. For instance,
if two examples delete the same if statement, but disagree
on specific names (variable, type, or method names), LASE
creates a partially abstract delete statement in the edit script
that abstracts the different names. It uses concrete identifiers

if they are common among all examples. LASE next computes
the context of inferred edit operations, which determines the
relative position of edits in the method. It determines the
largest common context with a novel algorithm that combines
clone detection [4], maximum common embedded subtree ex-
traction [5], and control/data dependence analysis. The result is
an edit script that consists of partially-abstract edit operations
and context. LASE searches for code locations that match the
context of the script and then customizes the script for each
found location. It replaces the abstract identifiers in the script
with concrete identifiers used by the target method. It suggests
the customized edit for developers’ review.

This paper introduces the LASE Eclipse plug-in. Using the
input selection view shown in Figure 1, a user supplies two
or more training examples, which consist of the old and new
version of methods. LASE visualizes a group of derived edit
scripts using an edit script hierarchy view. In this view, the
top node represents an edit script derived from all examples,
and the bottom nodes represent edit scripts derived from each
single example. The intermediate nodes represent edit scripts
derived from different subsets of examples. By clicking on
individual nodes, a user can see edit operations common to
the selected subset. With this hierarchy view, the user is not
limited to an edit script common to all given examples but
have a choice of deriving a script from a selected subset.
Furthermore, using the edit operation view, she can examine
edit operations with respect to underlying abstract syntax trees
and corresponding control and data flow contexts relevant
to those edit operations. Once a user selects an edit script,
LASE automatically searches for all target edit locations that
match the context of an inferred edit script. It visualizes
edit suggestions using a code comparison view—concrete,
customized edits are shown using an Eclipse compare style,
side-by-side view. Before approving the edit suggestion, the
user can correct the suggested edit.

According to our prior evaluation on an oracle test suite of
systematic edits from Eclipse JDT and SWT, LASE finds edit
locations with 99% precision and 89% recall, and transforms
them with 91% accuracy [3]. In future, we hope to build
features of directly modifying and storing edit scripts.

II. MOTIVATING EXAMPLE AND TOOL FEATURES

Suppose Bob is working on org.eclipse.jdt
project’s revision 9800. To modify the code

1)Training edits given as input

2)Candidate changes suggested by LASE

3)Method details

4)New systemaic change button

Fig. 1. LASE allows developers to provide edit examples. LASE then searches for edit locations requiring similar edits.

comment processing logic, he updates two methods
getTrailingComments and getLeadingComments
in core.dom.DefaultCommentMapper, shown in
Figure 2. This change requires similar updates to both
methods. In the getTrailingComments method, he
modifies the if condition, modifies an assignment to range,
and inserts a for loop to scan for a given AST node. In the
getLeadingComments method, he makes a similar edit
by modifying its if condition, an assignment to range, and
inserting a for loop. After making these repetitive edits to
the two methods, Bob suspects a similar edit may be needed
to all methods with a comment processing logic. He uses
LASE to automatically search for candidate edit locations and
view edit suggestions.
Input Selection. Bob specifies the old and new versions
of getTrailingComments and getLeadingComments
respectively. He names this group of similar changes as a
comment processing logic change. He then selects an edit
script generation option to derive generalized program trans-
formation among the specified examples.
Edit Operation View. For each example, using an edit
operation view, Bob examines the details of constituent edit
operations (insert, delete, move and update) with respect to
underlying abstract syntax trees. In this view, Bob can also
examine corresponding edit context—surrounding unchanged
code that has control or data flow dependences on edited code.
Figure 4 shows edit operations and corresponding context
within method getTrailingComments’s abstract syntax
tree. The AST nodes include both unchanged nodes and
changed nodes which are the source and/or target of individual
insert, delete, move, or update operations. These nodes can be
expanded to show more details. The dark blue node in the fig-
ure represents the updated if statement. The light blue nodes
represent the inserted new assignment to range and the new
for loop. The beige node represents the deleted assignment to
range, and the rest gray nodes represent unchanged context
nodes relevant to edited code. The algorithm for identifying
edit context is described in detail elsewhere [3].
Edit Script Hierarchy View. To create an edit script from
multiple examples, LASE generalizes example edits, pair-by-
pair. Figure 3 shows how we explore the space given four
exemplar changed methods, LASE creates a base cluster for

①  !! ②  !! ③  !! ④  !!

"#$! $#%! %#&!"#%! "#&! $#&!

"#$#%! "#$#&! "#%#&! $#%#&!

"#$#%#&!

'()*!

+*,*-."!

+*,*-.$!

+*,*-.%!

Fig. 3. Generation of an Edit Script Hierarchy

each method. It then compares them pair-by-pair. By merging
the results of two cluster nodes, LASE generalizes common
edit sequences in the edit hierarchy through a bottom up
construction. For example, it merges the results of common
edit sequences at Level 1 of methods (1,2) and (1,3). At
level 3, it generates the generalization of methods (1,2,3) by
computing the generalization of (1,2) and (1,3).

For example, by opening the edit script hierarchy view
shown in Figure 5, Bob can examine a group of inferred edit
scripts at different abstraction levels. By default, LASE uses
the top node, i.e., an edit script inferred from all examples. By
clicking a node in the edit script hierarchy, Bob may select a
different subset of provided examples to adjust the abstraction
level of an edit script. The script selected by a user is colored
in gray, while other nodes are colored in blue. The selected
script is used for searching edit locations and generating edits.
Searching for Edit Locations and Applying Customized
Edits. By using a right-click menu in the input selection
view, Bob begins his search for edit locations with similar
context. In this case, when LASE finishes searching for the
target locations, Bob sees four candidate change locations in
the menu. Two of them are getTrailingComments and
getLeadingComments, which are used as input examples
and thus match the context of the inferred edit script—this
provides an additional confirmation that the edit script can
correctly describe the common edits for the two examples.

Bob then examines the edit suggestions for the first candi-
date method getExtendedEnd using the comparison view.
See Figure 6. He sees that getExtendedEnd contains the
same structure as his example methods. For example, the

Fig. 2. A programmer makes similar but not identical edits to getTrailingComments and getLeadingComments. While getTrailingComments
involves edits to trailingComments and trailingPtr, getLeadingComments involves edits to leadingComments and leadingPtr. The two
examples are provided as input to LASE to generate a partially abstract, context-aware edit script.

if statement checking whether trailingComments is set
to null and the assignment to range. When viewing the
LASE’s automatically provided edit suggestions, Bob notices
that the suggested change involves inserting new variables.
LASE cannot infer the names of the new variables because
there are no matching variable names in the target context. Bob
thus chooses the names of those variables by replacing $v_1_,
$v_2_ and $v_3_ to concrete names. Choosing variables and
any other changes Bob wishes to make could be easily done
by making direct modifications on the edit suggestion in this
comparison view. He applies the modified edits and repeats
the process with the other methods.

III. APPROACH AND EVALUATION

This section summarizes LASE’s three phase approach. We
analyze edit operations and context using an Abstract Syntax
Tree (AST) representation. Phase I takes as input multiple
changed methods. LASE compares the old and new version of
every input method. LASE identifies the longest common edit
operation subsequence among the examples. When common
edit operations in the examples use distinct names (variable,
type, and method), LASE replaces the concrete identifier
names with abstract names. Otherwise, it uses the original con-
crete identifiers. It finds the largest common context relevant to
the edit operations using code clone detection, maximum com-
mon embedded subtree extraction, and dependence analysis. It
then abstracts identifiers in the common context. Phase II uses
the edit script’s context to search for methods that match the
context. Phase III customizes the edit to each new location and
applies it. For each found method, LASE concretizes identifiers

and code positions in the script to the target method, produces
customized edits, and suggests a modified version.

To measure LASEs precision, recall, and accuracy, a test
suite of supplementary bug fixes [2], [6] was used. Supple-
mentary bug fixes are fixes that span multiple commits, where
initial commits tend to be incomplete or incorrect, and thus
developers apply supplementary changes to resolve the bug.
If a bug is fixed more than once and there are clones of at
least two lines in bug patches checked in at different times,
they are manually examined for systematic changes. Using this
method, 2 systematic edits in Eclipse JDT and 22 systematic
edits in Eclipse SWT are found.

Meng et al. then use these patches as an oracle test suite
for correct systematic edits and test if LASE can produce the
same results as the developers given the first two fixes in each
set of systematic fixes. If LASE however produces the same
results as developers do in later patches, it indicates that LASE
can help programmers detect edit locations earlier, reduce
errors of omissions, and make systematic edits. LASE locates
edit positions with respect to the oracle data set with 95%
precision, 88% recall, and performs edits with 91% accuracy.
More details on LASE evaluation is described elsewhere [3].

IV. SUMMARY

Our prior work, SYDIT [7], [8], produces code transfor-
mation from a single example only. It does not search for
edit locations and requires developers to supply target edit
locations. LASE learns non-trivial data and control context-
aware edits from multiple edit examples and automatically
searches for edit locations, and applies customized edits to
the locations. LASE Eclipse plug-in allows users to select input

Fig. 4. LASE visualizes edit operations and corresponding context with
respect to AST. Edited nodes are marked in light blue for insertions, dark
blue for updates, yellow for deletes, and green for moves. Blue nodes are
context nodes.

Fig. 5. LASE learns an edit from two or more examples. Each node in the
edit script hierarchy corresponds to an edit script from a different subset of
the input examples.

Fig. 6. A user can review and correct edit suggestions generated by LASE before approving the tool-suggested edit.

examples, to browse edit scripts inferred from the examples,
and to inspect and correct tool-suggested edits.

ACKNOWLEDGMENT

We thank Kathryn McKinley for her valuable contribution in
designing and evaluating the key algorithms in LASE and for
discussions that helped us refine our idea. This work was supported
by National Science Foundation under grants CCF-1149391, CCF-
1117902, CCF-1043810, SHF-0910818, and CCF-0811524 and Mi-
crosoft SEIF award.

REFERENCES

[1] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen, “Recurring bug fixes in object-oriented programs,” in ICSE ’10:
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering. New York, NY, USA: ACM, 2010, pp. 315–324.

[2] B. Ray and M. Kim, “A case study of cross-system porting in forked
projects,” in ESEC/FSE-20: ACM SIGSOFT the 20th International Sym-
posium on the Foundations of Software Engineering, 2012, p. 11 pages.

[3] N. Meng, M. Kim, and K. McKinley, “Lase: Locating and applying
systematic edits,” in ICSE’ 13: Proceedings of the 35th ACM/IEEE
International Conference on Software Engineering, Research Track (To
appear), 2012, p. 10 pages.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.”
IEEE Trans. on Software Engineering, vol. 28, no. 7, pp. 654–670, 2002.

[5] A. Lozano and G. Valiente, “On the maximum common embedded subtree
problem for ordered trees,” in In C. Iliopoulos and T Lecroq, editors,
String Algorithmics, chapter 7. Kings College London Publications, 2004.

[6] J. Park, M. Kim, B. Ray, and D.-H. Bae, “An empirical study of
supplementary bug fixes,” in MSR ’12: The 9th IEEE Working Conference
on Mining Software Repositories, 2012, pp. 40–49.

[7] N. Meng, M. Kim, and K. S. McKinley, “Systematic editing: Generating
program transformations from an example,” in Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and im-
plementation, ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp.
329–342.

[8] N. Meng, M. Kim, and K. McKinley, “Sydit: Creating and applying a
program transformation from an example,” in ESEC/FSE’11, 2011, pp.
440–443.

