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Abstract

This article surveys deformable models, a promising and vigorously researched computer-
assisted medical image analysis technique. Among model-based techniques, deformable models
offer a unique and powerful approach to image analysis that combines geometry, physics, and
approximation theory. They have proven to be effective in segmenting, matching, and tracking
anatomic structures by exploiting (bottom-up) constraints derived from the image data together
with (top-down) knowledge about the location, size, and shape of these structures. Deformable
models are capable of accommodating the significant variability of biological structures over time
and across different individuals. Furthermore, they support highly intuitive interaction mecha-
nisms that, when necessary, allow medical scientists and practitioners to bring their expertise to
bear on the model-based image interpretation task. This article reviews the rapidly expanding
body of work on the development and application of deformable models to problems of fun-
damental importance in medical image analysis, including segmentation, shape representation,
matching, and motion tracking.
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1 Introduction

The rapid development and proliferation of medical imaging technologies is revolutionizing medicine.
Medical imaging allows scientists and physicians to glean potentially life-saving information by
peering noninvasively into the human body. The role of medical imaging has expanded beyond
the simple visualization and inspection of anatomic structures. It has become a tool for surgical
planning and simulation, intra-operative navigation, radiotherapy planning, and for tracking the
progress of disease. For example, ascertaining the detailed shape and organization of anatomic
structures enables a surgeon preoperatively to plan an optimal approach to some target structure.
In radiotherapy, medical imaging allows the delivery of a necrotic dose of radiation to a tumor with
minimal collateral damage to healthy tissue.

With medical imaging playing an increasingly prominent role in the diagnosis and treatment of
disease, the medical image analysis community has become preoccupied with the challenging prob-
lem of extracting, with the assistance of computers, clinically useful information about anatomic
structures imaged through CT, MR, PET, and other modalities [Stytz et al., 1991; Robb, 1994;
Höhne & Kikinis, 1996; Ayache, 1995a; Bizais et al., 1995; Duncan & Gindi, 1997; Ayache, 1995b;
Troccaz et al., 1997; Wells et al., 1998; Duncan & Ayache, 2000]. Although modern imaging devices
provide exceptional views of internal anatomy, the use of computers to quantify and analyze the
embedded structures with accuracy and efficiency is limited. Accurate, repeatable, quantitative
data must be efficiently extracted in order to support the spectrum of biomedical investigations
and clinical activities from diagnosis, to radiotherapy, to surgery.

For example, segmenting structures from medical images and reconstructing a compact geo-
metric representation of these structures is difficult due to the sheer size of the datasets and the
complexity and variability of the anatomic shapes of interest. Furthermore, the shortcomings typi-
cal of sampled data, such as sampling artifacts, spatial aliasing, and noise, may cause the boundaries
of structures to be indistinct and disconnected. The challenge is to extract boundary elements be-
longing to the same structure and integrate these elements into a coherent and consistent model
of the structure. Traditional low-level image processing techniques which consider only local in-
formation can make incorrect assumptions during this integration process and generate infeasible
object boundaries. As a result, these model-free techniques usually require considerable amounts
of expert intervention. Furthermore, the subsequent analysis and interpretation of the segmented
objects is hindered by the pixel- or voxel-level structure representations generated by most image
processing operations.

This chapter surveys deformable models, one of the most intensively researched model-based ap-
proaches to computer-assisted medical image analysis. The widely recognized potency of deformable
models stems from their ability to segment, match, and track images of anatomic structures by
exploiting (bottom-up) constraints derived from the image data together with (top-down) knowl-
edge about the location, size, and shape of these structures. Deformable models are capable of
accommodating the often significant variability of biological structures over time and across differ-
ent individuals. Furthermore, deformable models support highly intuitive interaction mechanisms
that allow medical scientists and practitioners to bring their expertise to bear on the model-based
image interpretation task when necessary. We will review the basic formulation of deformable
models and survey their application to fundamental medical image analysis problems, including
segmentation, shape representation, matching, and motion tracking. The chapter is an updated
version of [McInerney & Terzopoulos, 1996] (see also the compilation [Singh et al., 1998]).
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2 Mathematical Foundations of Deformable Models

The classical mathematical foundations of deformable models represent the confluence of geometry,
physics, and approximation theory. Geometry serves to represent object shape, physics imposes
constraints on how the shape may vary over space and time, and optimal approximation theory
provides the formal underpinnings of mechanisms for fitting the models to measured data.

Deformable model geometry usually permits broad shape coverage by employing geometric rep-
resentations that involve many degrees of freedom, such as splines . The model remains manageable,
however, because the degrees of freedom are generally not permitted to evolve independently, but
are governed by physical principles that bestow intuitively meaningful behavior upon the geometric
substrate. The name “deformable models” stems primarily from the use of elasticity theory at the
physical level, generally within a Lagrangian dynamics setting. The physical interpretation views
deformable models as elastic bodies which respond naturally to applied forces and constraints.
Typically, deformation energy functions defined in terms of the geometric degrees of freedom are
associated with the deformable model. The energy grows monotonically as the model deforms away
from a specified natural or “rest shape” and often includes terms that constrain the smoothness
or symmetry of the model. In the Lagrangian setting, the deformation energy gives rise to elastic
forces internal to the model. Taking a physics-based view of classical optimal approximation, ex-
ternal potential energy functions are defined in terms of the data of interest to which the model is
to be fitted. These potential energies give rise to external forces which deform the model such that
it fits the data.

Deformable curve, surface, and solid models gained popularity after they were proposed for use
in computer vision [Terzopoulos et al., 1988] and computer graphics [Terzopoulos & Fleischer, 1988]
in the mid 1980’s. Terzopoulos introduced the theory of continuous (multidimensional) deformable
models in a Lagrangian dynamics setting [Terzopoulos, 1986a], based on deformation energies
in the form of (controlled-continuity) generalized splines [Terzopoulos, 1986b]. Ancestors of the
deformable models now in common use include Fischler and Elshlager’s spring-loaded templates
[1973] and Widrow’s rubber mask technique [1973].

The deformable model that has attracted the most attention to date is popularly known as
“snakes” [Kass et al., 1988]. Snakes or “active contour models” represent a special case of the
general multidimensional deformable model theory [Terzopoulos, 1986a]. We will review their
simple formulation in the remainder of this section in order to illustrate with a concrete example
the basic mathematical machinery that is present in many deformable models.

Snakes are planar deformable contours that are useful in several image analysis tasks. They are
often used to approximate the locations and shapes of object boundaries in images based on the
reasonable assumption that boundaries are piecewise continuous or smooth (Fig. 1). In its basic
form, the mathematical formulation of snakes draws from the theory of optimal approximation
involving functionals.

2.1 Energy-Minimizing Deformable Models

Geometrically, a snake is a parametric contour embedded in the image plane (x, y) ∈ �2. The
contour is represented as v(s) = (x(s), y(s))�, where x and y are the coordinate functions and
s ∈ [0, 1] is the parametric domain. The shape of the contour subject to an image I(x, y) is
dictated by the functional

E(v) = S(v) + P(v). (1)
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Figure 1: Snake (white) attracted to cell membrane in an EM photomicrograph (from [Carlbom
et al., 1994]).

The functional can be viewed as a representation of the energy of the contour and the final shape
of the contour corresponds to the minimum of this energy. The first term of the functional,

S(v) =
∫ 1

0
w1(s)

∣∣∣∣∂v∂s
∣∣∣∣
2

+ w2(s)

∣∣∣∣∣∂
2v

∂s2

∣∣∣∣∣
2

ds, (2)

is the internal deformation energy. It characterizes the deformation of a stretchy, flexible contour.
Two physical parameter functions dictate the simulated physical characteristics of the contour:
w1(s) controls the “tension” of the contour while w2(s) controls its “rigidity”.1 The second term
in (1) couples the snake to the image. Traditionally,

P(v) =

∫ 1

0
P (v(s))ds, (3)

where P (x, y) denotes a scalar potential function defined on the image plane. To apply snakes
to images, external potentials are designed whose local minima coincide with intensity extrema,
edges, and other image features of interest. For example, the contour will be attracted to intensity
edges in an image I(x, y) by choosing a potential P (x, y) = −c|∇[Gσ ∗ I(x, y)]|, where c controls
the magnitude of the potential, ∇ is the gradient operator, and Gσ ∗ I denotes the image convolved
with a (Gaussian) smoothing filter whose characteristic width σ controls the spatial extent of the
local minima of P .

In accordance with the calculus of variations, the contour v(s) which minimizes the energy E(v)
must satisfy the Euler-Lagrange equation

− ∂

∂s

(
w1

∂v

∂s

)
+

∂2

∂s2

(
w2

∂2v

∂s2

)
+∇P (v(s, t)) = 0. (4)

This vector-valued partial differential equation expresses the balance of internal and external forces
when the contour rests at equilibrium. The first two terms represent the internal stretching and
bending forces, respectively, while the third term represents the external forces that couple the
snake to the image data. The usual approach to solving (4) is through the application of numerical
algorithms (Sec. 2.3).

1The values of the non-negative functions w1(s) and w2(s) determine the extent to which the snake can stretch
or bend at any point s on the snake. For example, increasing the magnitude of w1(s) increases the “tension” and
tends to eliminate extraneous loops and ripples by reducing the length of the snake. Increasing w2(s) increases the
bending “rigidity” of the snake and tends to make the snake smoother and less flexible. Setting the value of one or
both of these functions to zero at a point s permits discontinuities in the contour at s.
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Figure 2: Snake deforming towards high gradients in a processed cardiac image, influenced by “pin”
points and an interactive “spring” which pulls the contour towards an edge (from [McInerney &
Terzopoulos, 1995a]).

2.2 Dynamic Deformable Models

While it is natural to view energy minimization as a static problem, a potent approach to computing
the local minima of a functional such as (1) is to construct a dynamical system that is governed
by the functional and allow the system to evolve to equilibrium. The system may be constructed
by applying the principles of Lagrangian mechanics. This leads to dynamic deformable models
that unify the description of shape and motion, making it possible to quantify not just static
shape, but also shape evolution through time. Dynamic models are valuable for medical image
analysis, since most anatomical structures are deformable and continually undergo nonrigid motion
in vivo. Moreover, dynamic models exhibit intuitively meaningful physical behaviors, making their
evolution amenable to interactive guidance from a user (Fig. 2).

A simple example is a dynamic snake which can be represented by introducing a time-varying
contour v(s, t) = (x(s, t), y(s, t))� with a mass density μ(s) and a damping density γ(s). The
Lagrange equations of motion for a snake with the internal energy given by (2) and external energy
given by (3) is

μ
∂2v

∂t2
+ γ

∂v

∂t
− ∂

∂s

(
w1

∂v

∂s

)
+

∂2

∂s2

(
w2

∂2v

∂s2

)
= −∇P (v(s, t)). (5)

The first two terms on the left hand side of this partial differential equation represent inertial and
damping forces. Referring to (4), the remaining terms represent the internal stretching and bending
forces, while the right hand side represents the external forces. Equilibrium is achieved when the
internal and external forces balance and the contour comes to rest (i.e., ∂v/∂t = ∂2v/∂t2 = 0),
which yields the equilibrium condition (4).

2.3 Discretization and Numerical Simulation

In order to numerically compute a minimum energy solution, it is necessary to discretize the en-
ergy E(v). The usual approach is to represent the continuous geometric model v in terms of linear
combinations of local-support or global-support basis functions. Finite elements [Zienkiewicz &
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Taylor, 1989], finite differences [Press et al., 1992], and geometric splines [Farin, 1993] are local
representation methods, whereas Fourier bases [Ballard & Brown, 1982] are global representation
methods. The continuous model v(s) is represented in discrete form by a vector u of shape param-
eters associated with the basis functions. The discrete form of energies such as E(v) for the snake
may be written as

E(u) =
1

2
u�Ku+ P(u) (6)

where K is called the stiffness matrix, and P(u) is the discrete version of the external potential.
The minimum energy solution results from setting the gradient of (6) to 0, which is equivalent to
solving the set of algebraic equations

Ku = −∇P = f (7)

where f is the generalized external force vector.
The discretized version of the Lagrangian dynamics equation (5) may be written as a set of

second order ordinary differential equations for u(t):

Mü+Cu̇+Ku = f , (8)

where M is the mass matrix and C is a damping matrix. The time derivatives in (5) are approxi-
mated by finite differences and explicit or implicit numerical time integration methods are applied
to simulate the resulting system of ordinary differential equations in the shape parameters u.

2.4 Probabilistic Deformable Models

An alternative view of deformable models emerges from casting the model fitting process in a
probabilistic framework, often taking a Bayesian approach. This permits the incorporation of prior
model and sensor model characteristics in terms of probability distributions. The probabilistic
framework also provides a measure of the uncertainty of the estimated shape parameters after the
model is fitted to the image data [Szeliski, 1990].

Let u represent the deformable model shape parameters with a prior probability p(u) on the
parameters. Let p(I|u) be the imaging (sensor) model—the probability of producing an image I
given a model u. Bayes’ theorem

p(u|I) = p(I|u)p(u)
p(I)

(9)

expresses the posterior probability p(u|I) of a model given the image, in terms of the imaging model
and the prior probabilities of model and image.

It is easy to convert the internal energy measure (2) of the deformable model into a prior
distribution over expected shapes, with lower energy shapes being the more likely. This is achieved
using a Boltzman (or Gibbs) distribution of the form

p(u) =
1

Zs
exp(−S(u)), (10)

where S(u) is the discretized version of S(v) in (2) and Zs is a normalizing constant (called the
partition function). This prior model is then combined with a simple sensor model based on linear
measurements with Gaussian noise

p(I|u) = 1

ZI
exp(−P(u)), (11)

where P(u) is a discrete version of the potential P(v) in (3), which is a function of the image
I(x, y).
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Models may be fitted by finding u which locally maximize p(u|I) in (9). This is known as the
maximum a posteriori (MAP) solution. With the above construction, it yields the same result as
minimizing (1), the energy configuration of the deformable model given the image.

The probabilistic framework can be extended by assuming a time-varying prior model, or system
model, in conjunction with the sensor model, resulting in a Kalman filter. The system model
describes the expected evolution of the shape parameters u over time. If the equations of motion
of the physical snakes model (8) are employed as the system model, the result is a sequential
estimation algorithm known as “Kalman snakes” [Terzopoulos & Szeliski, 1992].

3 Medical Image Analysis with Deformable Models

Although originally developed for application to problems in computer vision and computer graph-
ics, the potential of deformable models for use in medical image analysis has been quickly realized.
They have been applied to images generated by imaging modalities as varied as X-ray, computed
tomography (CT), angiography, magnetic resonance (MR), and ultrasound. Two dimensional and
three dimensional deformable models have been used to segment, visualize, track, and quantify a
variety of anatomic structures ranging in scale from the macroscopic to the microscopic. These
include the brain, heart, face, cerebral, coronary and retinal arteries, kidney, lungs, stomach, liver,
skull, vertebra, objects such as brain tumors, a fetus, and even cellular structures such as neurons
and chromosomes. Deformable models have been used to track the nonrigid motion of the heart, the
growing tip of a neurite, and the motion of erythrocytes. They have been used to locate structures
in the brain, and to register images of the retina, vertebra and neuronal tissue.

In the following sections, we review and discuss the application of deformable models to medical
image interpretation tasks including segmentation, matching, and motion analysis.

3.1 Image Segmentation with Deformable Curves

The segmentation of anatomic structures—the partitioning of the original set of image points
into subsets corresponding to the structures—is an essential first stage of most medical image
analysis tasks, such as registration, labeling, and motion tracking. These tasks require anatomic
structures in the original image to be reduced to a compact, analytic representation of their shapes.
Performing this segmentation manually is extremely labor intensive and time-consuming. A primary
example is the segmentation of the heart, especially the left ventricle (LV), from cardiac imagery.
Segmentation of the left ventricle is a prerequisite for computing diagnostic information such as
ejection-fraction ratio, ventricular volume ratio, heart output, and for wall motion analysis which
provides information on wall thickening, etc. [Singh et al., 1993].

Most clinical segmentation is currently performed using manual slice editing. In this scenario,
a skilled operator, using a computer mouse or trackball, manually traces the region of interest on
each slice of an image volume. Manual slice editing suffers from several drawbacks. These include
the difficulty in achieving reproducible results, operator bias, forcing the operator to view each
2D slice separately to deduce and measure the shape and volume of 3D structures, and operator
fatigue.

Segmentation using traditional low-level image processing techniques, such as thresholding,
region growing, edge detection, and mathematical morphology operations, also requires considerable
amounts of expert interactive guidance. Furthermore, automating these model-free approaches is
difficult because of the shape complexity and variability within and across individuals. In general,
the underconstrained nature of the segmentation problem limits the efficacy of approaches that
consider local information only. Noise and other image artifacts can cause incorrect regions or
boundary discontinuities in objects recovered by these methods.
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(a) (b) (c) (d) (e) (f)

Figure 3: (a) Intensity CT image slice of canine LV. (b) Edge detected image. (c) Initial snake.
(d)-(f) Snake deforming towards LV boundary, driven by “inflation” force. (From [McInerney &
Terzopoulos, 1995a].)

A deformable model based segmentation scheme, used in concert with image pre-processing,
can overcome many of the limitations of manual slice editing and traditional image processing
techniques. These connected and continuous geometric models consider an object boundary as a
whole and can make use of prior knowledge of object shape to constrain the segmentation problem.
The inherent continuity and smoothness of the models can compensate for noise, gaps and other
irregularities in object boundaries. Furthermore, the parametric representations of the models
provide a compact, analytical description of object shape. These properties lead to an efficient,
robust, accurate and reproducible technique for linking sparse or noisy local image features into a
complete and consistent model of the object.

Among the first and primary uses of deformable models in medical image analysis was the
application of deformable contour models, such as snakes [Kass et al., 1988], to segment structures
in 2D images [Berger, 1990; Cohen, 1991; Ueda & Mase, 1992; Rougon & Prêteux, 1993; Cohen
& Cohen, 1993; Leitner & Cinquin, 1993; Carlbom et al., 1994; Gupta et al., 1994; Lobregt &
Viergever, 1995; Davatzikos & Prince, 1995; Paulus et al., 1999]. Typically users initialized a
deformable model near the object of interest (Fig. 3) and allowed it to deform into place. Users could
then exploit the interactive capabilities of these models and manually fine-tune them. Furthermore,
once the user is satisfied with the result on an initial image slice, the fitted contour model may
then be used as the initial boundary approximation for neighboring slices. These models are then
deformed into place and again propagated until all slices have been processed. The resulting
sequence of 2D contours can then be connected to form a continuous 3D surface model [Lin &
Chen, 1989; Chang et al., 1991; Cohen, 1991; Cohen & Cohen, 1993].

The application of snakes and other similar deformable contour models to extract regions of
interest is, however, not without limitations. For example, snakes were designed as interactive
models. In non-interactive applications, they must be initialized close to the structure of interest
to guarantee good performance. The internal energy constraints of snakes can limit their geometric
flexibility and prevent a snake from representing long tube-like shapes and shapes with significant
protrusions or bifurcations. Furthermore, the topology of the structure of interest must be known in
advance since classical deformable contour models are parametric and are incapable of topological
transformations without additional machinery (such as that in T-snakes [McInerney & Terzopoulos,
2000]).

Various methods have been proposed to improve and further automate the deformable contour
segmentation process. Cohen and Cohen [1993] used an internal “inflation” force to expand a snakes
model past spurious edges towards the real edges of the structure, making the snake less sensitive
to initial conditions (inflation forces were also employed in [Terzopoulos et al., 1988]). Amini et
al. [1990] use dynamic programming to carry out a more extensive search for global minima.
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Figure 4: Image sequence of clipped angiogram of retina showing an automatically subdividing
snake flowing and branching along a vessel (from [McInerney & Terzopoulos, 1995b]).

(a) (b) (c) (d)

Figure 5: Segmentation of a cross sectional image of a human vertebra phantom with a topologically
adaptable snake (from [McInerney & Terzopoulos, 1995b]). The snake begins as a single closed curve
and becomes three closed curves.

Poon et al. [1994] and Grzeszczuk and Levin [1997] minimize the energy of active contour models
using simulated annealing which is known to give global solutions and allows the incorporation of
non-differentiable constraints.

Other researchers [Rougon & Prêteux, 1991; Ivins & Porrill, 1994; Chakraborty & Duncan,
1999; Herlin et al., 1992; Gauch et al., 1994; Mangin et al., 1995; Gunn & Nixon, 1997; Jones
& Metaxas, 1997] have integrated region-based information into deformable contour models or
used other techniques in an attempt to decrease sensitivity to insignificant edges and initial model
placement. For example, Poon et al. [1994] use a discriminant function to incorporate region based
image features into the image forces of their active contour model. The discriminant function allows
the inclusion of additional image features in the segmentation and serves as a constraint for global
segmentation consistency (i.e. every image pixel contributes to the discriminant function).

Several researchers [Leitner & Cinquin, 1991; Malladi et al., 1995; Whitaker, 1994; Caselles
et al., 1995; Sapiro et al., 1995; Malladi et al., 1996; Caselles et al., 1997; Yezzi et al., 1997; Niessen
et al., 1998; Lachaud & Montanvert, 1999; McInerney & Terzopoulos, 2000] have been developing
topologically adaptive shape modeling schemes that are not only less sensitive to initial conditions,
but also allow a deformable contour or surface model to represent long tube-like shapes or shapes
with bifurcations (Fig. 4), and to dynamically sense and change its topology (Fig. 5).

Finally, another development is a snake-like technique known as “live-wire” [Falcão et al., 1998;
Barrett & Mortensen, 1996-7]. This semiautomatic boundary tracing technique computes and
selects optimal boundaries at interactive rates as the user moves a mouse, starting from a user-
specified seed point. When the mouse is moved close to an object edge, a live-wire boundary snaps
to, and wraps around the object of interest. The live-wire method has also been combined with
snakes, yielding a segmentation tool that exploits the best properties of both techniques [Liang
et al., 2006, 1999].
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(a) (b)

Figure 6: (a) Deformable “balloon” model embedded in volume image deforming towards LV edges
of canine heart (b) Reconstruction of LV. (From [McInerney & Terzopoulos, 1995a].)

3.2 Volume Image Segmentation with Deformable Surfaces

Segmenting 3D image volumes slice by slice using manual slice editing (or image processing tech-
niques) is a laborious process and requires a post-processing step to connect the sequence of 2D
contours into a continuous surface. Furthermore, the resulting surface reconstruction can contain
inconsistencies or show rings or bands. As described in the previous section, the application of a 2D
active contour model to an initial slice and the propagation of the model to neighboring slices can
significantly improve the volume segmentation process. However, the use of a true 3D deformable
surface model can potentially result in even greater improvements in efficiency and robustness and
it also ensures that a globally smooth and coherent surface is produced between image slices.

Deformable surface models in 3D were first used in computer vision [Terzopoulos et al., 1988].
Many researchers have since explored the use of deformable surface models for segmenting structures
in medical image volumes. Miller [1991] constructs a polygonal approximation to a sphere and
geometrically deforms this “balloon” model until the balloon surface conforms to the object surface
in 3D CT data. The segmentation process is formulated as the minimization of a cost function where
the desired behavior of the balloon model is determined by a local cost function associated with
each model vertex. The cost function is a weighted sum of three terms: a deformation potential that
“expands” the model vertices towards the object boundary, an image term that identifies features
such as edges and opposes the balloon expansion, and a term that maintains the topology of the
model by constraining each vertex to remain close to the centroid of its neighbors.

Cohen and Cohen [1992b; 1993] and McInerney and Terzopoulos [1995a] use finite element and
physics-based techniques to implement an elastically deformable cylinder and sphere, respectively.
The models are used to segment the inner wall of the left ventricle of the heart from MR or CT
image volumes (Fig. 6). These deformable surfaces are based on a thin-plate under tension surface
spline, the higher dimensional generalization of equation (2), which controls and constrains the
stretching and bending of the surface. The models are fitted to data dynamically by integrating
Lagrangian equations of motion through time in order to adjust the deformational degrees of
freedom. Furthermore, the finite element method is used to represent the models as a continuous
surface in the form of weighted sums of local polynomial basis functions. Unlike Miller’s [1991]
polygonal model, the finite element method provides an analytic surface representation and the use
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of high-order polynomials means that fewer elements are required to accurately represent an object.
Pentland and Sclaroff [1991] and Nastar and Ayache [1996] also develop physics-based models but
use a reduced modal basis for the finite elements (see Section 3.5).

Staib and Duncan [1992b] describe a 3D surface model used for geometric surface matching to
3D medical image data. The model uses a Fourier parameterization which decomposes the surface
into a weighted sum of sinusoidal basis functions. Several different surface types are developed such
as tori, open surfaces, closed surfaces and tubes. Surface finding is formulated as an optimization
problem using gradient ascent which attracts the surface to strong image gradients in the vicinity of
the model. An advantage of the Fourier parameterization is that it allows a wide variety of smooth
surfaces to be described with a small number of parameters. That is, a Fourier representation
expresses a function in terms of an orthonormal basis and higher indexed basis functions in the
sum represent higher spatial variation. Therefore, the series can be truncated and still represent
relatively smooth objects accurately.

In a different approach, Szeliski et al. [1993] use a dynamic, self-organizing oriented particle
system to model surfaces of objects. The oriented particles, which can be visualized as small, flat
disks, evolve according to Newtonian mechanics and interact through external and interparticle
forces. The external forces attract the particles to the data while interparticle forces attempt
to group the particles into a coherent surface. The particles can reconstruct objects with complex
shapes and topologies by “flowing” over the data, extracting and conforming to meaningful surfaces.
A triangulation is then performed which connects the particles into a continuous global model that
is consistent with the inferred object surface.

We have generalized the topologically adaptive snakes (T-snakes) [McInerney & Terzopoulos,
2000] that were cited earlier (Fig. 5), to higher-dimensional surfaces. Known as T-surfaces [McIn-
erney & Terzopoulos, 1999, 1997], these deformable surface models are formulated in terms of an
Affine Cell Image Decomposition (ACID), which significantly extends standard deformable surfaces
while retaining their interactivity and other desirable properties. In particular, the ACID induces
an efficient reparameterization mechanism that enables parametric deformable surfaces to evolve
into complex geometries and even modify their topology as necessary in order to segment complex
anatomic structures from medical volume images.

Other notable work involving 3D deformable surface models and medical image applications
can be found in [Delingette et al., 1992; Whitaker, 1994; Tek & Kimia, 1997; Davatzikos & Bryan,
1995; Neuenschwander et al., 1997; Caselles et al., 1997; Delibasis et al., 1997; Xu & Prince, 1998;
Zeng et al., 1998] as well as several models described in the following sections.

3.3 Incorporating Knowledge

In medical images, the general shape, location and orientation of an anatomical structure is known
and this knowledge may be incorporated into the deformable model in the form of initial conditions,
data constraints, constraints on the model shape parameters, or into the model fitting procedure.
The use of implicit or explicit anatomical knowledge to guide shape recovery is especially important
for robust automatic interpretation of medical images. For automatic interpretation, it is essential
to have a model that not only describes the size, shape, location and orientation of the target object
but that also permits expected variations in these characteristics. Automatic interpretation of
medical images can relieve clinicians from the labor intensive aspects of their work while increasing
the accuracy, consistency, and reproducibility of the interpretations. In this section, and in the
following sections on matching and motion tracking, we will describe several deformable model
techniques that incorporate prior anatomical knowledge in different ways.

A number of researchers have incorporated knowledge of object shape into deformable models
by using deformable shape templates. These models usually use “hand-crafted” global shape pa-
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rameters to embody a priori knowledge of expected shape and shape variation of the structures and
have been used successfully for many applications of automatic image interpretation. The idea of
deformable templates can be traced back to the early work on spring loaded templates by Fischler
and Elshlager [1973]. An excellent example in computer vision is the work of Yuille et al. [1992]
who construct deformable templates for detecting and describing features of faces, such as the eye.
In an early example from medical image analysis, Lipson et al. [1990] note that axial cross sectional
images of the spine yield approximately elliptical vertebral contours and consequently extract the
contours using a deformable ellipsoidal template. Subsequently, Montagnat and Delingette [1997]
used a deformable surface template of the liver to segment it from abdominal CT scans, and a
ventricle template to segment the ventricles of the brain from MR images.

Deformable models based on superquadrics are another example of deformable shape templates
that are gaining in popularity in medical image research. Superquadrics contain a small number of
intuitive global shape parameters that can be tailored to the average shape of a target anatomic
structure. Furthermore, the global parameters can often be coupled with local shape parameters
such as splines resulting in a powerful hybrid shape representation scheme. For example, Metaxas
and Terzopoulos [1993] employ a dynamic deformable superquadric model [Terzopoulos & Metaxas,
1991] to reconstruct and track human limbs from 3D biokinetic data. Their prior models can deform
both locally and globally by incorporating the global shape parameters of a superellipsoid with the
local degrees of freedom of a membrane spline in a Lagrangian dynamics formulation. The global
parameters efficiently capture the gross shape features of the data, while the local deformation
parameters reconstruct the fine details of complex shapes. Using Kalman filtering theory, they
develop and demonstrate a biokinetic motion tracker based on their deformable superquadric model.

Vemuri and Radisavljevic [1993; 1994] construct a deformable superquadric model in an or-
thonormal wavelet basis. This multi-resolution basis provides the model with the ability to contin-
uously transform from local to global shape deformations thereby allowing a continuum of shape
models to be created and to be represented with relatively few parameters. They apply the model
to segment and reconstruct anatomical structures in the human brain from MRI data.

As a final example, Bardinet et al. [1996] fit a deformable superquadric to segmented 3D cardiac
images and then refine the superquadric fit using a volumetric deformation technique known as free
form deformations (FFDs). FFDs are defined by tensor product trivariate splines and can be
visualized as a rubber-like box in which the object to be deformed (in this case the superquadric)
is embedded. Deformations of the box are automatically transmitted to embedded objects. This
volumetric aspect of FFDs allows two superquadric surface models to be simultaneously deformed
in order to reconstruct the inner and outer surfaces of the left ventricle of the heart and the volume
in between these surfaces. Further examples of deformable superquadrics can be found in [Pentland
& Horowitz, 1991; Chen et al., 1994] (see Section 3.5). Further examples of FFD-based (or FFD-
like) deformable models for medical image segmentation can be found in [McInerney & Kikinis,
1998; Lötjönen et al., 1999].

Several researchers cast the deformable model fitting process in a probabilistic framework (see
Section 2.4) and include prior knowledge of object shape by incorporating prior probability distri-
butions on the shape variables to be estimated [Vemuri & Radisavljevic, 1994; Staib & Duncan,
1992a; Worring et al., 1996; Gee, 1999]. For example, Staib and Duncan [1992a] use a deformable
contour model on 2D echocardiograms and MR images to extract the LV of the heart and the corpus
callosum of the brain, respectively. This closed contour model is parameterized using an elliptic
Fourier decomposition and a priori shape information is included as a spatial probability expressed
through the likelihood of each model parameter. The model parameter probability distributions
are derived from a set of example object boundaries and serve to bias the contour model towards
expected or more likely shapes.

Szekely et al. [1996] have also developed Fourier parameterized models. Furthermore, they have
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added elasticity to their models to create “Fourier snakes” in 2D and elastically deformable Fourier
surface models in 3D. By using the Fourier parameterization followed by a statistical analysis of
a training set, they define mean organ models and their eigen-deformations. An elastic fit of the
mean model in the subspace of eigenmodes restricts possible deformations and finds an optimal
match between the model surface and boundary candidates.

Cootes et al. [1994] and Hill et al. [1993] present a statistically based technique for building
deformable shape templates and use these models to segment various organs from 2D and 3D
medical images. The statistical parameterization provides global shape constraints and allows the
model to deform only in ways implied by the training set. The shape models represent objects
by sets of landmark points which are placed in the same way on an object boundary in each
input image. For example, to extract the LV from echocardiograms, they choose points around
the ventricle boundary, the nearby edge of the right ventricle, and the top of the left atrium. The
points can be connected to form a deformable contour. By examining the statistics of training sets
of hand-labeled medical images, and using principal components analysis (PCA), a shape model
is derived that describes the average positions and the major modes of variation of the object
points. New shapes are generated using the mean shape and a weighted sum of the major modes
of variation. Object boundaries are then segmented using this active shape model by examining
a region around each model point to calculate the displacement required to move it towards the
boundary. These displacements are then used to update the shape parameter weights. An example
of the use of this technique for segmenting MR brain images can be found in [Duta & Sonka, 1998].

An extreme example of incorporating prior knowledge, aspiring toward fully automated medi-
cal image segmentation, is deformable organisms [McInerney et al., 2002; Hamarneh et al., 2001].
This recent paradigm for automatic image analysis combines deformable models and concepts from
artificial life modeling. The goal is to incorporate and exploit all the available prior knowledge
and global contextual information in any specific medical image analysis task. Analogous to nat-
ural organisms capable of voluntary movement, deformable organisms possess deformable bodies
with distributed sensors, as well as (rudimentary) brains with motor, perception, behavior, and
cognition centers. Deformable organisms are perceptually aware of the image analysis process.
Their behaviors, which manifest themselves in voluntary movement and body shape alteration,
are based upon sensed image features, stored structural knowledge, and a cognitive plan. The
organism framework separates global top-down, model-fitting control functionality from the local,
bottom-up, feature integration functionality. This separation enables the definition of model-fitting
controllers or ‘brains’ in terms of the high-level structural features of objects of interest, rather than
the low-level image features. The result is an ‘intelligent agent’ that is continuously ‘aware’ of the
progress of the segmentation process, allowing it to apply prior knowledge about target objects in a
deliberative manner (Fig. 7). 3D physics-based deformable organisms have recently been developed
[McIntosh & Hamarneh, 2006b] and software is available [McIntosh & Hamarneh, 2006a].

3.4 Matching

Matching of regions in images can be performed between the representation of a region and a model
(labeling) or between the representation of two distinct regions (registration). Nonrigid registration
of 2D and 3D medical images is necessary in order to study the evolution of a pathology in an
individual, or to take full advantage of the complementary information coming from multimodality
imagery [Maintz & Viergever, 1998; Goshtasby et al., 2003]. Examples of the use of deformable
models to perform medical image registration are found in [Moshfeghi, 1991; Moshfeghi et al.,
1994; Gueziec & Ayache, 1994; Feldmar & Ayache, 1994; Bookstein, 1989; Hamadeh et al., 1995;
Lavallée & Szeliski, 1995; Thirion, 1994]. These techniques primarily consist of constructing highly
structured descriptions for matching. This operation is usually carried out by extracting regions
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Figure 7: Automatic brain MR image segmentation by multiple deformable organisms (from [McIn-
erney et al., 2002]). The sequence of images illustrates the temporal progression of the segmentation
process. Deformable lateral ventricle (1–7), caudate nucleus (8–10), and putamen (11–16) organ-
isms are spawned in succession and progress through a series of behaviors to detect, localize, and
segment the corresponding structures in the MR image.
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of interest with an edge detection algorithm, followed by the extraction of landmark points or
characteristic contours (or curves on extracted boundary surfaces in the case of 3D data). In 3D,
these curves usually describe differential structures such as ridges, or topological singularities. An
elastic matching algorithm can then be applied between corresponding pairs of curves or contours
where the “start” contour is iteratively deformed to the “goal” contour using forces derived from
local pattern matches with the goal contour [Moshfeghi, 1991].

An example of matching where the use of explicit prior knowledge has been embedded into
deformable models is the automatic extraction and labeling of anatomic structures in the brain
from MR images, or the registration of multimodality brain images. The anatomical knowledge
is made explicit in the form of a 3D brain atlas. The atlas is modeled as a physical object and
is given elastic properties. After an initial global alignment, the atlas deforms and matches itself
onto corresponding regions in the brain image volume in response to forces derived from image
features. The assumption underlying this approach is that at some representational level, normal
brains have the same topological structure and differ only in shape details. The idea of modeling
the atlas as an elastic object was originated by Broit [1981], who formulated the matching process
as a minimization of a cost function. Subsequently, Bajcsy and Kovacic [1989] implemented a
multiresolution version of Broit’s system where the deformation of the atlas proceeds step-by-step
in a coarse to fine strategy, increasing the local similarity and global coherence. An earlier work with
similar objectives, albeit not applied to medical image analysis, was that by Witkin et al. [Witkin
et al., 1987], who formulated the general nonrigid registration problem—i.e., that of matching
any number of arbitrary-dimensional images or signals—as one of minimizing a nonconvex energy
functional combining a controlled-continuity generalized spline deformation energy with normalized
cross-correlation and efficiently solved it using an innovative scale-space continuation method. The
elastically deformable atlas technique is very promising and consequently has become a very active
area of research that is being explored by several groups [Evans et al., 1991; Gee, 1999; Sandor &
Leahy, 1995; Christensen et al., 1995; Bookstein, 1991; Bozma & Duncan, 1992; Declerck et al.,
1995; McDonald et al., 1994; Delibasis & Undrill, 1994; Subsol et al., 1995; Davatzikos et al., 1996;
Snell et al., 1995; Thompson & Toga, 1996-7; Vaillant & Davatzikos, 1997; Wang & Staib, 1998].

The automatic brain image matching problem is extremely challenging and there are many
hurdles that must be overcome before the deformable atlas technique can be adopted for clinical
use. For example, the technique is sensitive to the initial positioning of the atlas—if the initial
rigid alignment is off by too much, then the elastic match may perform poorly. The presence
of neighboring features may also cause matching problems—the atlas may warp to an incorrect
boundary. Finally, without user interaction, the atlas can have difficulty converging to complicated
object boundaries. A proposed solution to these problems is to use image preprocessing in con-
junction with the deformable atlas. Sandor and Leahy [1995] use this approach to automatically
label regions of the cortical surface that appear in 3D MR images of human brains (Fig. 8). They
automatically match a labeled deformable atlas model to preprocessed brain images, where pre-
processing consists of 3D edge detection and morphological operations. These filtering operations
automatically extract the brain and sulci (deep grooves in the cortical surface) from an MR image
and provide a smoothed representation of the brain surface to which their 3D B-spline deformable
surface model can rapidly converge.

3.5 Motion Tracking and Analysis

The idea of tracking objects in time-varying images using deformable models was originally proposed
in the context of computer vision [Kass et al., 1988; Terzopoulos et al., 1988]. Deformable models
have been used to track nonrigid microscopic and macroscopic structures in motion, such as blood
cells [Leymarie & Levine, 1993] and neurite growth cones [Gwydir et al., 1994] in cine-microscopy,
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Figure 8: The result of matching a labeled deformable atlas to a morphologically preprocessed MR
image of the brain (from [Sandor & Leahy, 1995]).

as well as coronary arteries in cine-angiography [Lengyel et al., 1995]. However, the primary use
of deformable models for tracking in medical image analysis is to measure the dynamic behavior of
the human heart, especially the left ventricle. Regional characterization of the heart wall motion is
necessary to isolate the severity and extent of diseases such as ischemia. Magnetic resonance and
other imaging technologies can now provide time varying three dimensional images of the heart
with excellent spatial resolution and reasonable temporal resolutions. Deformable models are well
suited for this image analysis task.

In the simplest approach, a 2D deformable contour model is used to segment the LV boundary
in each slice of an initial image volume. These contours are then used as the initial approximation
of the LV boundaries in corresponding slices of the image volume at the next time instant and are
then deformed to extract the new set of LV boundaries [Singh et al., 1993; Ueda & Mase, 1992;
Ayache et al., 1992; Herlin & Ayache, 1992; Geiger et al., 1995]. This temporal propagation of the
deformable contours dramatically decreases the time taken to segment the LV from a sequence of
image volumes over a cardiac cycle. Singh et al. [1993] report a time of 15 minutes to perform the
segmentation, considerably less than the 1.5-2 hours that a human expert takes for manual seg-
mentation. Deformable contour models have also been successfully used to track the LV boundary
in noisy echocardiographic image sequences [Jacob et al., 1999; Chalana et al., 1996].

McInerney and Terzopoulos [1995a] have applied the temporal propagation approach in 3D using
a 3D dynamic deformable “balloon” model to track the contractile motion of the LV (Fig. 9,10).

In a more involved approach, Amini and Duncan [1992] use bending energy and surface curvature
to track and analyze LV motion. For each time instant, two sparse subsets of surface points are
created by choosing geometrically significant landmark points, one for the endocardial surface, and
the other for the epicardial surface of the LV. Surface patches surrounding these points are then
modeled as thin, flexible plates. Making the assumption that each surface patch deforms only
slightly and locally within a small time interval, for each sampled point on the first surface they
construct a search area on the LV surface in the image volume at the next time instant. The best
matched (i.e. minimum bending energy) point within the search window on the second surface is
taken to correspond to the point on the first surface. This matching process yields a set of initial
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Figure 9: Sagittal slice of successive CT volumes over one cardiac cycle (1–16) showing motion of
canine LV (from [McInerney & Terzopoulos, 1995a]).

motion vectors for pairs of LV surfaces derived from a 3D image sequence. A smoothing procedure
is then performed using the initial motion vectors to generate a dense motion vector field over the
LV surfaces.

Cohen et al. [1992a] also employ a bending energy technique in 2D and attempt to improve on
this method by adding a term to the bending energy function that tends to preserve the matching
of high curvature points. Goldgof et al. [Goldgof et al., 1988; Kambhamettu & Goldgof, 1994;
Huang & Goldgof, 1993; Mishra et al., 1991] have also been pursuing surface shape matching ideas
primarily based on changes in Gaussian curvature and assume a conformal motion model (i.e.
motion which preserves angles between curves on a surface but not distances).

An alternative approach is that of Chen et al. [1994], who use a hierarchical motion model
of the LV constructed by combining a globally deformable superquadric with a locally deformable
surface using spherical harmonic shape modeling primitives. Using this model, they estimate the
LV motion from angiographic data and produce a hierarchical decomposition that characterizes the
LV motion in a coarse-to-fine fashion.

Pentland and Horowitz [1991] and Nastar and Ayache [1996] are also able to produce a coarse-to-
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Figure 10: Tracking of the LV motion of canine heart during one cardiac cycle (1–16) using de-
formable balloon model (from [McInerney & Terzopoulos, 1995a]).
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fine characterization of the LV motion. They use dynamic deformable models to track and recover
the LV motion and make use of modal analysis, a well-known mechanical engineering technique,
to parameterize their models. This parameterization is obtained from the eigenvectors of a finite
element formulation of the models. These eigenvectors are often referred to as the “free vibration”
modes and variable detail of LV motion representation results from varying the number of modes
used.

The heart is a relatively smooth organ and consequently there are few reliable landmark points.
The heart also undergoes complex nonrigid motion that includes a twisting (tangential) component
as well as the normal component of motion. The motion recovery methods described above are,
in general, not able to capture this tangential motion without additional information. Magnetic
resonance techniques, based on magnetic tagging [Axel & Dougherty, 1989] have been developed to
track material points on the myocardium in a non-invasive way. The temporal correspondence of
material points that these techniques provide allow for quantitative measurement of tissue motion
and deformation including the twisting component of the LV motion. Several researchers have
applied deformable models to image sequences of MR tagged data [Young et al., 1993, 1995; Park
et al., 1996; Duncan et al., 1994; Kumar & Goldgof, 1994; Kraitchman et al., 1995; Amini et al.,
1998]. For example, Amini et. al [1998] and Kumar and Goldgof [1994] use a 2D deformable grid
to localize and track SPAMM (Spatial Modulation of Magnetization) tag points on the LV tissue.
Park et al. [1995; 1996] fit a volumetric physics-based deformable model to MRI-SPAMM data of
the LV. The parameters of the model are functions which can capture regional shape variations of
the LV such as bending, twisting, and contraction. Based on this model, the authors quantitatively
compare normal hearts and hearts with hypertrophic cardiomyopathy.

Another problem with most of the methods described above is that they model the endocardial
and epicardial surfaces of the LV separately. In reality the heart is a thick-walled structure. Duncan
et al. [1994] and Park et al. [1995; 1996] develop models which consider the volumetric nature of the
heart wall. These models use the shape properties of the endocardial and epicardial surfaces and
incorporate mid-wall displacement information of tagged MR images. By constructing 3D finite
element models of the LV with nodes in the mid-wall region as well as nodes on the endocardial
and epicardial surfaces, more accurate measurements of the LV motion can be obtained. Young
and Axel [1992; 1995], and Creswell [1992] have also constructed 3D finite element models from the
boundary representations of the endocardial and epicardial surfaces.

4 Discussion

In the previous sections we have surveyed the considerable and still rapidly expanding body of work
on deformable models in medical image analysis. The survey has revealed several issues that are
relevant to the continued development of the deformable model approach. This section summarizes
key issues and indicates some promising research directions.

4.1 Autonomy vs Control

Interactive (semi-automatic) algorithms and fully automatic algorithms represent two alternative
approaches to computerized medical image analysis. Certainly automatic interpretation of medi-
cal images is a desirable, albeit very difficult, long-term goal, since it can potentially increase the
speed, accuracy, consistency, and reproducibility of the analysis. However, the interactive or semi-
automatic methodology is likely to remain dominant in practice for some time to come, especially
in applications where erroneous interpretations are unacceptable. Consequently, the most immedi-
ately successful deformable model based techniques will likely be those that drastically decrease the
labor intensiveness of medical image processing tasks through partial automation and significantly
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increase their reproducibility, while still allowing for interactive guidance or editing by the medical
expert. Although fully automatic techniques based on deformable models will likely not reach their
full potential for some time to come, they can be of immediate value in specific application domains
such as the segmentation of healthy tissue surrounding a pathology for enhanced visualization.

4.2 Generality vs Specificity

Ideally a deformable model should be capable of representing a broad range of shapes and be useful
in a wide array of medical applications. Generality is the basis of deformable model formulations
with local shape parameters such as snakes. Alternatively, highly specific, “hand-crafted” or con-
strained deformable models appear to be useful in applications such as tracking the nonrigid motion
of the heart (Section 3.5), automatically matching and labeling structures in the brain from 3D MR
images (Section 3.4), or segmenting very noisy images such as echocardiograms. Certainly attempts
to completely automate the processing of medical images would require a high degree of application
and model specificity. A promising direction for future study appears to be techniques for learning
“tailored” models from simple general purpose models. The work of Cootes et al. [1994] may be
viewed as an example of such a strategy.

4.3 Compactness vs Geometric Coverage vs Topological Flexibility

A geometric model of shape may be evaluated based on the parsimony of its formulation, its
representational power, and its topological flexibility. Generally, parameterized models offer the
greatest parsimony, free-form (spline) models feature the broadest coverage, and implicit models
have the greatest topological flexibility. Deformable models have been developed based on each
of these geometric classes. Increasingly, researchers are turning to the development of hybrid
deformable models that combine complementary features. For objects with a simple, fixed topology
and without significant protrusions, parameterized models coupled with local (spline) and/or global
deformations schemes appear to provide a good compactness-descriptiveness tradeoff [Terzopoulos
& Metaxas, 1991; Pentland & Horowitz, 1991; Vemuri & Radisavljevic, 1994; Chen et al., 1994].
On the other hand, the segmentation and modeling of complex, multipart objects such as arterial
or bronchial “tree” structures, or topologically complex structures such as vertebrae, is a difficult
task with these types of models [McInerney & Terzopoulos, 1999]. Polygon based or particle based
deformable modeling schemes seem promising in segmenting and reconstructing such structures.
Polygon based models may be compacted by removing and “retiling” [Turk, 1992; Gourdon, 1995;
Delingette, 1997] polygons in regions of low shape variation, or by replacing a region of polygons
with a single, high-order finite element or spline patch [Qin et al., 1998]. A possible research
direction is to develop alternative models that blend or combine descriptive primitive elements
(rather than simple particles), such as flexible cylinders, into a global structure.

4.4 Curve vs Surface vs Solid Models

The earliest deformable models were curves and surfaces. Anatomic structures in the human body,
however, are either solid or thick-walled. To support the expanding role of medical images into
tasks such as surgical planning and simulation, and the functional modeling of structures such as
bones, muscles, skin, or arterial blood flow, may require volumetric or solid deformable models
rather than surface models. For example, the planning of facial reconstructive surgery requires the
extraction and reconstruction of the skin, muscles, and bones from 3D images using accurate solid
models. It also requires the ability to simulate the movement and interactions of these structures in
response to forces, the ability to move, cut and fuse pieces of the model in a realistic fashion, and the
ability to stimulate the simulated muscles of the model to predict the effect of the surgery. Several
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researchers have begun to explore the use of volumetric or solid deformable models of the human
face and head for computer graphics applications [Lee et al., 1995; Essa et al., 1993] and for medical
applications [Waters, 1992; Delingette et al., 1994; Pieper et al., 1992; Geiger, 1992; Keeve et al.,
1998; Gibson et al., 1998; Wells et al., 1998], particularly reconstructive surgery simulation, and
there is much room for further research. Researchers have also begun to use volumetric deformable
models to more accurately track and analyze LV motion [Young & Axel, 1992; Creswell et al., 1992;
Duncan et al., 1994; Park et al., 1996].

4.5 Accuracy and Quantitative Power

Ideally it should be possible to measure and control the accuracy of a deformable model. The most
common accuracy control mechanisms are the global or local subdivision of model basis functions
[Miller et al., 1991], or the repositioning of model points to increase their density in regions of the
data exhibiting rapid shape variations [Vasilescu & Terzopoulos, 1992]. Other mechanisms that
warrant further research are the local control and adaptation of model continuity, parameter evolu-
tion (including the rate and scheduling of the evolution), and the automation of all accuracy control
mechanisms. The parametric formulation of a deformable model should not only yield an accurate
description of the object, but it should also provide quantitative information about the object in
an intuitive, convenient form. That is, the model parameters should be useful for operations such
as measuring, matching, modification, rendering, and higher-level analysis or geometric reasoning.
This “parameter descriptiveness” criterion may be achieved in a postprocessing step by adapting or
optimizing the parameterization to more efficiently or more descriptively match the data. However,
it is preferable to incorporate the descriptive parameterization directly into the model formulation.
An example of this strategy is the deformable model of Park et al. [1996].

4.6 Robustness

Ideally, a deformable model should be insensitive to initial conditions and noisy data. Deformable
models are able to exploit multiple image attributes and high level or global information to increase
the robustness of shape recovery. For example, many snakes models now incorporate region based
image features as well as the traditional edge based features (Section 3.1). Strategies worthy of
further research include the incorporation of shape constraints into the deformable model that are
derived from low level image processing operations such as thinning, medial axis transforms [Fritsch
et al., 1997], or mathematical morphology. A classical approach to improve the robustness of model
fitting is the use of multiscale image preprocessing techniques [Kass et al., 1988; Terzopoulos et al.,
1988], perhaps coupled with a multiresolution deformable model [Bajcsy & Kovacic, 1989]. A
multiresolution technique that merits further research in the context of deformable models, is the
use of wavelet bases [Strang & Nguyen, 1996] for deformations [Vemuri et al., 1993; Vemuri &
Radisavljevic, 1994]. A deformable model should be able to easily incorporate added constraints
and any other a priori anatomic knowledge of object shape and motion. Section 3.3 reviewed
several of the most promising techniques to incorporate a priori knowledge. For example, for LV
motion tracking, a promising research direction is the incorporation of biomechanical properties of
the heart and the inclusion of the temporal periodic characteristics of the heart motion. Future
directions include modeling schemes that incorporate reasoning and recognition mechanisms using
techniques from artificial intelligence, such as rule-based systems or neural networks, and techniques
from artificial life [McInerney et al., 2002].
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4.7 Lagrangian vs Eulerian Deformable Models

An alternative to the Lagrangian formulation of deformable models upon which this survey has
focused, is the Eulerian formulation. The latter leads to so called level set methods, which have
attracted much attention in the medical image analysis literature. Covering the now voluminous
literature is beyond the scope of this survey, but we point the reader to the recent volume by Osher
and Paragios [2003] and recent survey articles [Suri et al., 2002; Tsai & Osher, 2003; Cremers et al.,
2007] for relevant background material and references. The important point is that the two ap-
proaches are complementary in precisely the same sense that Lagrangian solid models complement
Eulerian fluid models in continuum mechanics and that parametric and implicit geometric models
complement one another in computer-aided geometric design. The substantial medical image anal-
ysis literature on Lagrangian and Eulerian deformable models is a testament to the fact that each
approach is useful in particular applications.

The initial motivation for the Eulerian formulation of deformable models was to introduce topo-
logical flexibility into the model-based image segmentation problem through the adaptation of the
Osher-Sethian level set evolution technique [Caselles et al., 1993; Malladi et al., 1995; Whitaker,
1994; Caselles et al., 1995; Sapiro et al., 1995]. Formulated as evolving contours (surfaces in 3D)
or “fronts” which define the level set of some higher-dimensional (hyper-) surface over the im-
age domain, the main feature of this approach is that topological changes are handled naturally,
since the level set need not be simply connected; the higher-dimensional surface remains a simple
function even as the level set changes topology. While the level set technique is an attractive math-
ematical framework, partial differential equations governing curvature-dependent front evolution,
implicit formulations are generally not as convenient as the explicit, parametric formulations when
it comes to incorporating additional control mechanisms including internal deformation energies
and external interactive guidance by expert users. Furthermore, the higher-dimensional implicit
surface formulation makes it difficult to impose arbitrary geometric or topological constraints on
the level set indirectly through the higher dimensional representation. Therefore, the implicit for-
mulation may potentially limit the ease of use, efficiency and degree of automation achievable in
the segmentation task.

Among newer approaches that address these difficulties are T-snakes and T-surfaces [McInerney
& Terzopoulos, 2000, 1999], which can be viewed as hybrid models that combine aspects of the
Lagrangian and Eulerian approaches (with the ACID introducing aspects of the latter to induce
topological flexibility). A recent, purely Lagrangian approach that maintains the advantages of
level set methods while avoiding their drawbacks is the Delaunay Deformable Models [Pons &
Boissonnat, 2007]. This reference provides additional discussion of the shortcomings of the level
set method and cites several other recent alternatives to the T-snakes approach.

5 Conclusion

The increasingly important role of medical imaging in the diagnosis and treatment of disease has
opened an array of challenging problems centered on the computation of accurate geometric mod-
els of anatomic structures from medical images. Deformable models offer an attractive approach
to tackling such problems, because these models are able to represent the complex shapes and
broad shape variability of anatomical structures. Deformable models overcome many of the limi-
tations of traditional low-level image processing techniques, by providing compact and analytical
representations of object shape, by incorporating anatomic knowledge, and by providing interac-
tive capabilities. The continued development and refinement of these models should remain an
important area of research into the foreseeable future.
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Höhne, K.H., & Kikinis, R. (eds). 1996. Proc. fourth conf. on visualization in biomedical com-
puting (vbc’96), hamburg, germany, september. Lecture Notes in Computer Science, vol. 1131.
Berlin, Germany: Springer. 3

Huang, W.C., & Goldgof, D.B. 1993. Adaptive-size meshes for rigid and nonrigid shape
analysis and synthesis. Ieee trans. on pattern analysis and machine intelligence, 15(3). 18

28



Ivins, J., & Porrill, J. 1994. Statistical snakes: Active region models. Pages 377–386 of: Proc.
5th british machine vision conf. (bmvc’94). BMVA Press. 10

Jacob, G., Noble, J.A., Mulet-Parada, M., & Blake, A. 1999. Evaluating a robust contour
tracker on echocardiographic sequences. Medical image analysis, 3(1), 63–75. 17

Jones, T., & Metaxas, D. 1997. Automated 3D segmentation using deformable models and
fuzzy affinity. In: [Duncan & Gindi, 1997]. 10

Kambhamettu, C., & Goldgof, D.B. 1994. Point correspondence recovery in nonrigid motion.
Cvgip: Image understanding, 60(1), 26–43. 18

Kass, M., Witkin, A., & Terzopoulos, D. 1988. Snakes: Active contour models. International
journal of computer vision, 1(4), 321–331. 4, 9, 16, 22

Keeve, E., Girod, S., Kikinis, R., & Girod, B. 1998. Deformable modeling of facial tissue for
craniofacial surgery simulation. Computer aided surgery, 3(5), 228–238. 22

Kraitchman, D.L., Young, A.A., Chang, C.N., & Axel, L. 1995. Semi-automatic tracking
of myocardial motion in MR tagged images. Ieee trans. on medical imaging, 14(3), 422–432. 20

Kumar, S., & Goldgof, D. 1994. Automatic tracking of SPAMM grid and the estimation of
deformation parameters from cardiac MR images. Ieee trans. on medical imaging, 13(1), 122–132.
20

Lachaud, J.-O., & Montanvert, A. 1999. Deformable meshes with automated topology changes
for coarse-to-fine 3D surface extraction. Medical image analysis, 3(2), 187–207. 10

Lavallée, S., & Szeliski, R. 1995. Recovering the position and orientation of free-form objects
from image contours using 3D distance maps. Ieee trans. on pattern analysis and machine
intelligence, 17(4), 378–390. 14

Lee, Y., Terzopoulos, D., & Waters, K. 1995. Realistic modeling for facial animation. Pages
55–62 of: Proc. acm siggraph’95, in computer graphics proc., annual conf. series. Los Angeles,
CA: ACM SIGGRAPH. 22

Leitner, F., & Cinquin, P. 1991. Complex topology 3D objects segmentation. Pages 16–26 of:
Model-based vision development and tools. SPIE Proc., vol. 1609. Bellingham, WA: SPIE. 10

Leitner, F., & Cinquin, P. 1993. From splines and snakes to Snakes Splines. Pages 264–281 of:
Laugier, C. (ed), Geometric reasoning: From perception to action. Lectures Notes in Computer
Science, vol. 708. Springer-Verlag. 9

Lengyel, J., Greenberg, D.P., & Popp, R. 1995 (August). Time-dependent three-dimensional
intravascular ultrasound. Pages 457–464 of: Proc. acm siggraph’95 conf., in computer graphics
proc., annual conf. series. 17

Leymarie, F., & Levine, M. 1993. Tracking deformable objects in the plane using an active
contour model. Ieee trans. on pattern analysis and machine intelligence, 15(6), 635–646. 16

Liang, J., McInerney, T., & Terzopoulos, D. 1999. Interactive medical image segmentation
with united snakes. Pages 116–127 of: Proceedings of the second international conference on
medical image computing and computer assisted interventions (MICCAI99). Lectures Notes in
Computer Science, vol. 1679. Berlin, Germany: Springer-Verlag. 10

29



Liang, J., McInerney, T., & Terzopoulos, D. 2006. United snakes. Medical image analysis,
10(2), 215–233. 10

Lin, W.C., & Chen, S.Y. 1989. A new surface interpolation technique for reconstructing 3D
objects from serial cross-sections. Computer vision, graphics, and image processing, 48(Oct.),
124–143. 9

Lipson, P., Yuille, A.L., O’Keefe, D., Cavanaugh, J., Taaffe, J., & Rosenthal, D.

1990. Deformable templates for feature extraction from medical images. Pages 477–484 of:
Faugeras, O. (ed), Proc. first european conf. on computer vision (eccv’90), antibes, france,
april. Lectures Notes in Computer Science. Springer-Verlag. 13

Lobregt, S., & Viergever, M.A. 1995. A discrete dynamic contour model. Ieee trans. on
medical imaging, 14(1), 12–24. 9

Lötjönen, J., Reissman, P-J., Magnin, I.E., & Katila, T. 1999. Model extraction from
magnetic resonance volume data using the deformable pyramid. Medical image analysis, 3(4),
387–406. 13

Maintz, B.A, & Viergever, M.A. 1998. A survey of medical image registration. Medical image
analysis, 2(1), 1–36. 14

Malladi, R., Sethian, J., & Vemuri, B.C. 1995. Shape modeling with front propagation: A
level set approach. Ieee trans. on pattern analysis and machine intelligence, 17(2), 158–175. 10,
23

Malladi, R., Kimmel, R., Adalsteinsson, D., Sapiro, G., Caselles, V., & Sethian, J.A.

1996 (June). A geometric approach to segmentation and analysis of 3D medical images. Pages
244–252 of: Ieee workshop on mathematical methods in biomedical image analysis. 10

Mangin, J.F., Tupin, F., Frouin, V., Bloch, I., Rougetet, R., Regis, J., & Lopez-

Krahe, J. 1995. Deformable topological models for segmentation of 3D medical images. In:
[Bizais et al., 1995]. 10

McDonald, D., Avis, D., & Evans, A. 1994. Multiple surface identification and matching in
magnetic resonance images. In: [Robb, 1994]. 16

McInerney, T., & Kikinis, R. 1998. An object-based volumetric deformable atlas for the
improved localization of neuroanatomy in MR images. In: [Wells et al., 1998]. 13

McInerney, T., & Terzopoulos, D. 1995a. A dynamic finite element surface model for seg-
mentation and tracking in multidimensional medical images with application to cardiac 4D image
analysis. Computerized medical imaging and graphics, 19(1), 69–83. 6, 9, 11, 17, 18, 19

McInerney, T., & Terzopoulos, D. 1995b. Topologically adaptable snakes. Pages 840–845 of:
Proc. fifth international conf. on computer vision (iccv’95), cambridge, ma, june. 10

McInerney, T., & Terzopoulos, D. 1996. Deformable models in medical image analysis: A
survey. Medical image analysis, 1(2), 91–108. 3, 24

McInerney, T., & Terzopoulos, D. 1997. Medical image segmentation using topologically
adaptable surfaces. In: [Troccaz et al., 1997]. 12

McInerney, T., & Terzopoulos, D. 1999. Topology adaptive deformable surfaces for medical
image volume segmentation. IEEE transactions on medical imaging, 18(10), 840–850. 12, 21, 23

30



McInerney, T., & Terzopoulos, D. 2000. T-snakes: Topology adaptive snakes. Medical image
analysis, 4(2), 73–91. 9, 10, 12, 23

McInerney, T., Hamarneh, G., Shenton, M., & Terzopoulos, D. 2002. Deformable or-
ganisms for automatic medical image analysis. Medical image analysis, 6(3), 251–266. 14, 15,
22

McIntosh, C., & Hamarneh, G. 2006a. I-DO: A deformable organisms framework for ITK.
Insight journal, 1–14. Special Issue on “MICCAI 2006 Open Science Workshop”. 14

McIntosh, C., & Hamarneh, G. 2006b. Vessel crawlers: 3D physically-based deformable or-
ganisms for vasculature segmentation and analysis. Pages 1084–1091 of: Proceedings of the ieee
conference on computer vision and pattern recognition (cvpr’06). 14

Metaxas, D., & Terzopoulos, D. 1993. Shape and nonrigid motion estimation through physics-
based synthesis. Ieee trans. on pattern analysis and machine intelligence, 15(6), 580–591. 13

Miller, J.V., Breen, D.E., Lorensen, W.E., O’Bara, R.M., & Wozny, M.J. 1991 (July).
Geometrically deformed models: A method for extracting closed geometric models from volume
data. Pages 217–226 of: Computer graphics (proc. acm siggraph’91 conf.), vol. 25(4). 11, 22

Mishra, S.K., Goldgof, D.B., & Huang, T.S. 1991. Non-rigid motion analysis and epicardial
deformation estimation from angiography data. Pages 331–336 of: Proc. conf. computer vision
and pattern recognition (cvpr’91), maui, hi, june. 18

Montagnat, J., & Delingette, H. 1997. Volumetric medical image segmentation using shape
constrained deformable models. In: [Troccaz et al., 1997]. 13

Moshfeghi, M. 1991. Elastic matching of multimodality medical images. Cvgip: Graphical models
and image processing, 53, 271–282. 14, 16

Moshfeghi, M., Ranganath, S., & Nawyn, K. 1994. Three-dimensional elastic matching of
volumes. Ieee trans. on image processing, 3, 128–138. 14

Nastar, C., & Ayache, N. 1996. Frequency-based nonrigid motion analysis: Application to four
dimensional medical images. Ieee trans. on pattern analysis and machine intelligence, 18(11).
12, 18
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Székely, G., Kelemen, A., Brechbuhler, Ch., & Gerig, G. 1996. Segmentation of 2-D
and 3-D objects from MRI volume data using constrained elastic deformations of flexible Fourier
surface models. Medical image analysis, 1(1). 13

Szeliski, R. 1990. Bayesian modeling of uncertainty in low-level vision. International journal of
computer vision, 5, 271–301. 7

Szeliski, R., Tonnesen, D., & Terzopoulos, D. 1993. Modeling surfaces of arbitrary topology
with dynamic particles. Pages 82–87 of: Proc. conf. computer vision and pattern recognition
(cvpr’93), new york, ny, june. 12

Tek, H., & Kimia, B. 1997. Volumetric segmentation of medical images by three-dimensional
bubbles. Computer vision and image understanding, 65(2), 246–258. 12

Terzopoulos, D. 1986a. On matching deformable models to images. Tech. rept. 60. Schlumberger
Palo Alto Research. Reprinted in Topical Meeting on Machine Vision, Technical Digest Series,
Vol. 12 (Optical Society of America, Washington, DC) 1987, 160-167. 4

Terzopoulos, D. 1986b. Regularization of inverse visual problems involving discontinuities. Ieee
trans. on pattern analysis and machine intelligence, 8(4), 413–424. 4

Terzopoulos, D., & Fleischer, K. 1988. Deformable models. The visual computer, 4(6),
306–331. 4

Terzopoulos, D., & Metaxas, D. 1991. Dynamic 3D models with local and global deformations:
Deformable superquadrics. Ieee trans. on pattern analysis and machine intelligence, 13(7), 703–
714. 13, 21

Terzopoulos, D., & Szeliski, R. 1992. Tracking with Kalman snakes. Pages 3–20 of: Blake,

A., & Yuille, A. (eds), Active vision. Cambridge, MA: MIT Press. 8

33



Terzopoulos, D., Witkin, A., & Kass, M. 1988. Constraints on deformable models: Re-
covering 3D shape and nonrigid motion. Artificial intelligence, 36(1), 91–123. 4, 9, 11, 16,
22

Thirion, J.P. 1994. Extremal points: Definition and application to 3D image registration. Pages
587–592 of: Proc. conf. computer vision and pattern recognition (cvpr’94), seattle, wa, june. 14

Thompson, P.M., & Toga, A.W. 1996-7. Detection, visualization and animation of abnormal
anatomic structure with a deformable probabilistic brain atlas based on random vector field
transformations. Medical image analysis, 1(4), 271–294. 16

Troccaz, J., Grimson, E., & Mosges, R. (eds). 1997. Proc. first joint conf. computer vi-
sion, virtual reality and robotics in medicine and medical robotics and computer-assisted surgery
(cvrmed-mrcas’97), grenoble, france, march. Lectures Notes in Computer Science, vol. 1205.
Berlin, Germany: Springer-Verlag. 3, 26, 30, 31

Tsai, Richar, & Osher, Stanley. 2003. Level set methods and their applications in image
science. Communications of mathematical sciences, 1(4), 623–656. 23

Turk, G. 1992 (July). Re-tiling polygonal surfaces. Pages 55–64 of: Computer graphics (proc.
acm siggraph’92 conf.), vol. 26(2). 21

Ueda, N., & Mase, K. 1992. Tracking moving contours using energy-minimizing elastic contour
models. Pages 453–457 of: Sandini, G. (ed), Proc. second european conf. on computer vision
(eccv’92), santa margherita ligure, italy, may. Lectures Notes in Computer Science. Springer-
Verlag. 9, 17

Vaillant, M., & Davatzikos, C. 1997. Mapping the cerebral sulci: Application to morphological
analysis of the cortex and non-rigid registration. In: [Duncan & Gindi, 1997]. 16

Vasilescu, M., & Terzopoulos, D. 1992. Adaptive meshes and shells: Irregular triangulation,
discontinuities and hierarchical subdivision. Pages 829–832 of: Proc. conf. computer vision and
pattern recognition (cvpr’92), urbana, il, june. 22

Vemuri, B.C., & Radisavljevic, A. 1994. Multiresolution stochastic hybrid shape models with
fractal priors. Acm trans. on graphics, 13(2), 177–207. 13, 21, 22

Vemuri, B.C., Radisavljevic, A., & Leonard, C. 1993. Multiresolution 3D stochastic shape
models for image segmentation. Pages 62–76 of: Colchester, A.C.F., & Hawkes, D.J. (eds),
Information processing in medical imaging: Proc. 13th int. conf. (ipmi’93), flagstaff, az, june.
Lectures Notes in Computer Science. Springer-Verlag. 13, 22

Wang, Y., & Staib, L.H. 1998. Elastic model based non-rigid registration incorporating statistical
shape information. In: [Wells et al., 1998]. 16

Waters, K. 1992. A physical model of facial tissue and muscle articulation derived from computer
tomography data. Pages 574–583 of: Robb, R.A. (ed), Proc. second conf. on visualization in
biomedical computing (vbc’92), chapel hill, nc, october. SPIE Proc., vol. 1808. Bellingham, WA:
SPIE. 22

Wells, W., Colchester, A., & Delp, S. (eds). 1998. Medical image computing and computer-
assisted intervention: Proc. 1st int. conf. (miccai’98), cambridge, ma, usa, october. Lectures
Notes in Computer Science, vol. 1496. Berlin, Germany: Springer. 3, 22, 30, 34, 35

34



Whitaker, R. 1994. Volumetric deformable models: Active blobs. In: [Robb, 1994]. 10, 12, 23

Widrow, B. 1973. The rubber mask technique, part I. Pattern recognition, 5(3), 175–211. 4

Witkin, A., Terzopoulos, D., & Kass, M. 1987. Signal matching through scale space. Inter-
national journal of computer vision, 1(2), 321–331. 16

Worring, M., Smeulders, A.W.M., Staib, L.H., & Duncan, J.S. 1996. Parameterized
feasible boundaries in gradient vector fields. Computer vision and image understanding, 63(1),
135–144. 13

Xu, C., & Prince, J.L. 1998. Snakes, shapes, and gradient vector flow. Ieee transactions on
image processing, March, 359–369. 12

Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., & Tannenbaum, A. 1997. A geometric
snake model for segmentation of medical imagery. Ieee trans. on medical imaging, 16(2), 199–209.
10

Young, A., & Axel, L. 1992. Non-rigid wall motion using MR tagging. Pages 399–404 of: Proc.
conf. computer vision and pattern recognition (cvpr’92), urbana, il, june. 20, 22

Young, A.A., Axel, L., Dougherty, L., Bogen, D.K., & Parenteau, C.S. 1993. Validation
of tagging with MR imaging to estimate material deformation. Radiology, 188, 101–108. 20

Young, A.A., Kraitchman, D.L., Dougherty, L., & Axel, L. 1995. Tracking and finite
element analysis of stripe deformation in magnetic resonance tagging. Ieee trans. on medical
imaging, 14(3), 413–421. 20

Yuille, A.L., Hallinan, P.W., & Cohen, D.S. 1992. Feature extraction from faces using
deformable templates. International journal of computer vision, 8, 99–111. 13

Zeng, X., Staib, L.H., Schultz, R.T., & Duncan, J.S. 1998. Segmentation and measurement
of the cortex from 3D MR images. In: [Wells et al., 1998]. 12

Zienkiewicz, O.C., & Taylor, R.L. 1989. The finite element method. New York: McGraw-Hill.
6

35



Index

Deformable models, 1–35
Accuracy, 22
Active contour models, 4–7
Active shape models, 14
Autonomy vs control, 20–21
Balloon, 11
Compactness, 21
Curve vs surface vs solid, 21–22
Deformable curves, 8–10
Deformable cylinders, 11
Deformable organisms, 14
Deformable surfaces, 11–12
Discretization, 6–7
Dynamic, 6
Elastically deformable atlas, 16
Energy minimizing, 4–5
Eulerian, 23
Finite elements, 6, 11, 20, 21
Fourier representation, 12
Generality vs specificity, 21
Geometric coverage, 21
Lagrange equations of motion, 6
Lagrangian, 23
Level set methods, 23
Matching with, 14–16
Mathematical foundations, 4–8
Modal models, 18–20
Motion analysis with, 16–20
Motion tracking with, 16–20
Nonrigid registration with, 14–16
Numerical solution of, 6–7
Oriented particle system, 12
Prior knowledge, 12–14
Probabilistic, 7–8
Quantitative power, 22
Robustness, 22
Snakes, 4–9
Splines, 4, 7, 11, 13, 16, 21
T-snakes, 9, 12, 23
T-surfaces, 12, 23
Topological flexibility, 21

36


	Abstract
	Contents
	1 Introduction
	2 Mathematical Foundations of Deformable Models
	2.1 Energy-Minimizing Deformable Models
	2.2 Dynamic Deformable Models
	2.3 Discretization and Numerical Simulation
	2.4 Probabilistic Deformable Models

	3 Medical Image Analysis with Deformable Models
	3.1 Image Segmentation with Deformable Curves
	3.2 Volume Image Segmentation with Deformable Surfaces
	3.3 Incorporating Knowledge
	3.4 Matching
	3.5 Motion Tracking and Analysis

	4 Discussion
	4.1 Autonomy vs Control
	4.2 Generality vs Specificity
	4.3 Compactness vs Geometric Coverage vs Topological Flexibility
	4.4 Curve vs Surface vs Solid Models
	4.5 Accuracy and Quantitative Power
	4.6 Robustness
	4.7 Lagrangian vs Eulerian Deformable Models

	5 Conclusion
	Acknowledgements
	References
	Index

