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Outline
● Introduction to the TPU Family (~5 minutes)
● Lessons learned and how they shaped TPUs (~15 minutes)

○ Preview: DNNs grow and evolve quickly, FLOPs are easy but memory is hard

● Dire projections of carbon emissions of ML (~5 minutes)
○ Preview: Some papers overestimate Google ML emissions by 1,000,000x

● “4Ms” of energy efficiency: Model, Machine, Mechanization, Map (~10 minutes)
○ Preview: Optimizing 4Ms can reduce energy consumption 10x, emissions 100x
○ Preview: ML is ~75% of Google’s FLOPs but < 15% of total energy

● Conclusion and Recommendations (~5 minutes)
● Acknowledgements
● Q&A
● (if time) Lessons from My Career
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Introduction to the TPU Family
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TPU Origin Story
● 2013: Prepare for success-disaster of new DNN apps

○ Scenario with 100M users speaking to phones 3 minutes per day:
If only CPUs, double whole data center fleet!

● Goal: Custom Domain Specific Architecture (DSA) to reduce the Total Cost of 
Ownership (TCO) of DNN inference phase by 10X 
○ Training “learns” parameters; Inference uses the trained model in production
○ Must run existing apps developed for CPUs and GPUs

● Very short development cycle 
○ Started TPUv1 project 2014
○ Running in datacenter 15 months later: architecture invention, compiler invention, 

hardware design, build, test, and deploy
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TPU v1 vs CPU & GPU: Performance/Watt 
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~80X perf/Watt of Haswell CPU
~30X perf/Watt of K80 GPU

Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, et al. In-datacenter 
performance analysis of a tensor processing unit, ISCA, 2017.



May 18, 2016 Google Announcement
“We’ve been running TPUs inside our 
data centers for more than a year, and 
have found them to deliver an 
order of magnitude better-optimized 
performance per watt for ML.” 

Google CEO Sundar Pichai
cloudplatform.googleblog.com/2016/05/Google-superc
harges-machine-learning-tasks-with-custom-chip.html

See timecode 1:48:31 in the Google I/O keynote 
video (May 18, 2016): 
https://www.youtube.com/watch?v=862r3XS2YB0



The Launching of “1000 Chips”
● Intel acquires DSA chip companies

● Nervana:    ($0.4B)  August 2016
● Movidius:    ($0.4B) September 2016
● MobilEye: ($15.3B)  March 2017
● Habana:      ($2.0B)  December 2019

● Alibaba, Amazon build inference chips
● >100 startups ($3B/yr) launch own bets

● Coarse-Grained Reconfigurable Arch: SambaNova, ...
● Analog computing: Mythic, …
● Full silicon wafer computer: Cerebras, …

● Academia: TPUv1 paper ~5000 citations
● Most influential since RISC, Pentium Pro?
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TPU Generations
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Year Inference
Training 

& 
Inference

Peak Chip 
Performance* TDP Tech. 

Node
Chips/
Pod

Peak Pod
Performance*

2015 TPU v1 92     TOPs/s 75 W 28 nm - - - -

2017 TPU v2 46 TFLOPs/s 280 W 16 nm 256 11 PetaFLOPs/s

2018 TPU v3 123 TFLOPs/s 450 W 16 nm 1024 125 PetaFLOPs/s

2020 TPU v4i
(TPU v4 lite) 138 TFLOPs/s 175 W 7 nm - - - -

2021 TPU v4 275 TFLOPs/s  - - 7 nm 4096 ≥1 ExaFLOPs/s

2023 TPU v5e
(TPU v5 lite)

197 TFLOPs/s - - - - 256

Jouppi et al., Ten Lessons From Three Generations Shaped Google’s TPUv4i, ISCA, 2021 
* Bfloat16 FLOPS



Proprietary + Confidential

Ten Lessons and how they shaped 
TPUs
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10 Lessons Learned Over ~10 Years

1. DNNs grow rapidly in memory and compute
2. DNN workloads evolve with DNN breakthroughs
3. Can optimize DNN as well as compiler and hardware
4. Inference SLO limit is P99 latency, not batch size
5. Production inference normally needs multi-tenancy
6. It’s the memory, stupid (not the FLOPs)
7. DSA Challenge: Optimize for domain while being flexible
8. Logic, Wires, SRAM, & DRAM improve unequally
9. Maintain compiler optimizations and ML compatibility

10. Design for performance per TCO vs perf per CapEx

DNN Models  

Hardware/Architecture
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● For inference production DNNs, accelerators need headroom for growth in memory 
footprint and FLOPS over lifetime of deployment
○ ~1.5X per year in memory & FLOPs

● 1+ year design, 1+ year deployment, 3+ year service
○ 1.55 = ~8X!

Model Annual Memory Increase Annual FLOPS Increase

CNN1 0.97 1.46
CNN0 1.63 1.63
MLP0 2.16 2.16
MLP1 1.26 1.26

Lesson 1: DNN Model Growth 
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● New models getting even 
larger

● 2012-19, ML training 
compute SOTA 10X/year!

● GPT-3 “breakthrough”
is simply 100X bigger:
GPT-2 ⇒ GPT-3 
  1.5B ⇒175B parameters

From “AI and Compute.” Dario Amodei and Danny Hernandez, May 16, 2018
https://openai.com/blog/ai-and-compute/

ML Training
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Lesson 1: DNN Model Growth 



DNN Name 2020 2016
MLP0

25% 61%
MLP1
CNN0

18% 5%
CNN1
LSTM0

0% 29%
LSTM1
RNN0

29% 0%
RNN1
BERT0

28% 0%
BERT1
TOTAL 100% 95%

● Google DNN workloads 2016 vs 2020
● Past benchmarks still important (MLP, CNN) 
● RNNs replaced LSTMs
● Added BERT models 

○ Some apps switched from MLP to BERT
○ MLPerf 0.7 inference also added BERT 
○ BERT published 2018!

● DSA needs to be general enough to handle new 
models

Lesson 2: DNN Workloads Evolve with DNN Breakthroughs 
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Lesson 3: Can optimize DNN as well as compiler and hardware

● OK to change DNN as well as compiler and hardware to improve performance as 
long as maintain or improve DNN quality

○ Unlike CPUs where benchmark code is sacrosanct

● DNNs easier since 100s or 1000s of lines of TensorFlow code
○ Unlike CPUs where benchmarks can be 100,000s of lines of C++ code

● Platform-aware AutoML* uses Neural Architecture  Search (NAS) to 
Pareto-optimize ML model performance and quality on ML accelerators

○ Searches a space of more than O(2300) candidates
● Discovered DNN is 1.6X performance at comparable quality for CNN1 
● Using ML to improve ML performance!
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* Li, S., Tan, M., Pang, R., Li, A., Cheng, L., Le, Q.V. and Jouppi, N.P., 2021. Searching for Fast Model Families on 
Datacenter Accelerators. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition



Type DNN Latency constraint Batch size

Production

MLP0 7 ms 512
MLP1 20 ms 128
CNN0 1 ms 16
CNN1 32 ms 16
RNN0 60 ms 8
RNN1 10 ms 32
BERT0 5 ms 128
BERT1 10 ms 64

MLPerf
Resnet50 15 ms 16
SSD 100 ms 4
GNMT 250 ms 16

• Some accelerators claim batch size must be 1 to keep latency low. In reality:

Lesson 4: Inference SLO Limit is Latency, Not Batch Size
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• Google’s production workloads have ~9X larger batch size despite ~7X stricter latency 
limit than MLPerf



● Many inferencing applications need to support multiple models
○ Want near zero switching time between models (e.g., <100 μs)

● Examples:
○ Translate - many different language pairs and models
○ Development - Main model plus experimental models 
○ Multiple batch sizes to balance throughput and latency

Lesson 5: Production Inference Needs Multi-tenancy

16



Proprietary + Confidential

Multi- 
tenancy?

Avg # Programs 
(StdDev), Range

MLP0 Yes 27 (±17), 1-93
MLP1 Yes 5 (±0.3), 1-5

CNN0 No 1

CNN1 Yes 6 (10), 1-34

RNN0 Yes 13 (±3), 1-29

RNN1 No 1

BERT0 Yes 9 (±2), 1-14
BERT1 Yes 5 (±0.3), 1-5

Largest on 
chip SRAM
(~300 MB)

Lesson 5: DNN Tenancy and Size (Feb 2020) 

● 10s of ms context switching if reloading parameters from CPU host
● Need to fast DRAM to swap multiple models
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● Energy limits modern chips, 
not number of transistors

● External memory access energy 
~100X on chip memory access 
~ 10,000X arithmetic operation

● Easy to scale up FLOPs/sec by 
adding many ALUs to balance 
energy of memory accesses
○ Also why DNN model developers 

should focus on reducing memory 
accesses versus reducing FLOPs 
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Jouppi, N., Yoon, D-H, Jablin, T., Kurian, G., Laudon, J., Li, S., Ma, P., 
Ma, X., Patil, N., Prasad, S., Young, C., Zhou, Z., and Patterson, D., 
2021. Ten Lessons From Three Generations Shaped Google’s TPUv4i, 
In Proc. 48th International Symposium on Computer Architecture.

6,200x

43,300x

95x

3,400x

3,500x
Lesson 6: It’s the memory, stupid! (not the FLOPs)

Paper showing that FLOPS Misleading: Dehghani, M., Arnab, A., Beyer, L., 
Vaswani, A. and Tay, Y., 2022. The efficiency misnomer. ICLR.



Matrix
Multiply

Unit

Activation
Storage

Activation
Pipeline

Accumula
tors

DDR3
PCIe
Que 
ues● 4 MiB of on-chip Accumulator 

memory

● The Matrix Unit: 65,536 (256x256) 
8-bit multiply-accumulate units
○ >25X as many MACs vs GPU
○ >400X as many MACs vs CPU

● 700 MHz clock rate
● Peak: 92T operations/second 

○ 65,536 * 2 * 700M

● 24 MiB of on-chip Activation 
Storage
○ 3.5X on-chip memory vs GPU

● Two 2133MHz DDR3 DRAM 
channels for weights (8 GiB)

TPUv1: High-level Chip 
Architecture
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Easier to Scale FLOPs/sec as Logic improves quickest

46

TPU TPUv1 TPUv2 TPUv3 TPUv4i

MXUs/Core
1 

256x256
1 

128x128
2 

128x128
4 

128x128

MXUs % Die Area 24%   8% 11% 11%

Die Area (mm2) < 330 < 625 < 700 < 400

Technology (nm) 28 16 16 7

Jouppi et al., Ten Lessons From Three Generations Shaped Google’s TPUv4i, ISCA, 2021 
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● XLA (accelerated Linear Algebra) compiler does whole-program analysis and 
optimization
○ Divided into HLO ops (machine independent) and LLO ops (machine dependent)
○ HLO optimizations apply to all TPU/GPU/CPU systems, changes at LLO level OK

● XLA exploits huge parallelism represented in a TensorFlow input dataflow graph 
1. Multicore Parallelism: Up to 4096 chips
2. Data Level Parallelism: 2D vector and matrix functional units
3. Instruction Level Parallelism: VLIW instruction set (format 322–400 bits) 

● 2D vector registers, compute units ⇒ good data layout in units & memory
● No caches ⇒ XLA manages all memory transfers
● DSA software stacks less mature than CPU SW stacks; how fast improve?

Lesson 9: Maintain compiler optimizations and ML compatibility



● Compilers take time to mature and produce good quality code
○ Learning curve for new architecture and new DSA apps
○ Speedup MLPerf 0.7 (7/2020) vs. MLPerf 0.5 (11/2018)

Lesson 9: Maintain compiler optimizations and ML compatibility
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Dire Projections of Carbon Emissions 
for ML Training
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● Environmental cost to improve ML task (2024)?* 
“The answers are grim: Training such a model 
would cost US $100 billion and would produce as 
much carbon emissions as New York City does in a 
month. And if we estimate the computational 
burden of a 1 percent error rate, the results are 
considerably worse.”

Thompson, N.C., et al., October 2021. 
Deep Learning's Diminishing Returns: The Cost of 

Improvement is Becoming Unsustainable, IEEE Spectrum

Malthusian Predictions about ML Training 

* The ML task is object recognition using the Imagenet benchmark 
to reduce the error rate for an ML task* to a 5% from 11.5% today.

● “In fact, by 2026, the training cost of the largest AI 
model predicted by the compute demand trend 
line would cost more than the total U.S. GDP.” 
[$20T]

Lohn, J. and Musser, M., January 2022. 
AI and Compute—How Much Longer Can 

Computing Power Drive Artificial Intelligence Progress? 
Center for Security and Emerging Technology



Google Demonstration: Millionfold better in 2 years???

● Will show 2 years later trained an 
equivalent model with a millionfold less 
emissions! 
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● Same authors of those papers 
said training Evolved Transformer 
by Google in 2019 took: 
2M GPU hours*, 
5X lifetime emissions of a car**,***

* Thompson, N.C., et al., 2020. The computational limits of deep learning. 
arXiv:2007.05558.
** Freitag, C., et al., 2021. The real climate and transformative impact of ICT: 
A critique of estimates, trends, and regulations. Patterns 2(9).
*** Dodge, J., et al., 2022, Measuring the carbon intensity of AI in cloud 
instances. ACM Conference on Fairness, Accountability, and Transparency.
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https://xkcd.com/1007/



We studied Operational energy use, not Embodied

● Responsible AI is a broad topic; this focus is carbon emissions from ML 
training (matching much of the attention in ML community and public)

● Emissions can be classified as 
○ Operational: energy cost of operating ML hardware including datacenter 

overheads , or
○ Embodied: operational + embedded carbon emitted during 

manufacturing of all components, from chips to datacenter buildings 
● Like prior work we focus on operational emissions

○ Estimating embodied emissions is a larger, more difficult, future study 
● Emissions measured as tCO2e = 1000 kg of CO2 equivalent emissions 

○ Includes greenhouse gases like methane
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How to document energy use and CO2e

KWh = Hours to train ✕ Number of Processors  ✕ Average Power per Processor ✕ PUE
 

● Google, Facebook publish quarterly PUE for all regions (e.g., Iowa, Oklahoma )
○ Power Usage Effectiveness: energy overhead “wasted” in datacenter (doesn’t get to 

computers); if overhead is 50%, PUE = 1.5
● ML experts already know Hours to Train and Number of Processors
● Average Power per Processor:  

○ Measure power while running like we did
○ Or reuse our Google average power numbers

■ TPUv2: 228 Watts ± 5% (Transformer, Evolved Transformer, NAS)
■ P100 GPU: 284 Watts ± 10% (Transformer, Evolved Transformer, NAS)
■ TPU v3: 283 Watts ± 10% (T5, Meena, Gshard, Switch Transformer)
■ V100 GPU: 325 Watts ± 2% (GPT-3, Transformer Big)

tCO2e = KWh ✕ tCO2e per KWh

● Ask datacenter operator for tCO2e per KWh
○ Google publishes %carbon free energy per datacenter
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4Ms of Energy Efficiency for ML
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Good News #1: Reduce energy 100X, CO2e 1000X!
CO2 equivalent emissions (CO2e) include greenhouse gases

Energy efficiency in ML can be improved 
by 4 (multiplicative) best practices
“4Ms of ML Energy Efficiency” 

66Thanks to Cliff Young for 4M mnemonic!

1. Model. Transformer (2017) to 
Primer (2021) is 4x

2. Machine. P100 (2017) to 
TPUv4 (2021) is 14x

3. Mechanization (datacenter 
efficiency). PUE from global 
average to Google average is 1.4x

4. Maps (geographic location, energy 
source).  Avg %Carbon Free Energy 
(2017) to Google OK %CFE is 9x (2021)



4Ms for NLP: GLaM (TPUv4, Google Oklahoma datacenter, 
2021) vs GPT-3 (V100 GPU, Microsoft datacenter, 2020)

● 18 months after GPT-3
● GLaM has better accuracy 

for same tasks as GPT-3
● 7X more parameters
● Mixture of experts: 

8% parameters/token
● 3X less time, energy
● 14X less CO2e 

Du, N., et al 2021. GLaM: Efficient Scaling of 
Language Models with Mixture-of-Experts. 
arXiv preprint arXiv:2112.06905.

7X
3X

3X

14X
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552 mt  = 123 cars 
driven for 1 year
40 mt = 9 cars 1 year
1.4B cars in world
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What about ML on the Edge?

● New paper Feb 2024 Communication of the ACM
● “Energy and Emissions of Machine Learning on Smartphones versus the Cloud: 

A Google Case Study” by David Patterson, Jeffrey M. Gilbert, Marco Gruteser, 
Efren Robles, Krishna Sekar, Yong Wei, and Tenghui Zhu,

● Preview
○ ML is <3% of smartphone energy consumption
○ Smartphone charger inefficiency is a much larger energy consumption issue than ML 

■ Chargers were responsible for 80% of energy use (wireless + multiple chargers)
○ While training ML models on smartphones has inherent advantages for privacy, it can 

have 100× the carbon footprint of training in the cloud



Climate change is one of our most important challenges
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● But must get numbers right to ensure work on biggest challenges



[Str19] Strubell, E., Ganesh, A. and McCallum, A., June 2019. Energy and policy considerations for deep learning in NLP.  
Annual Meeting of the Association for Computational Linguistics. 
[So19] So, D., Le, Q. and Liang, C., 2019. The Evolved Transformer. In International Conference on Machine Learning (ICML).
[Pa22] Patterson, D., et al., 2022. The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink,  IEEE Computer.

Good News #3: Dire Predictions too high by >100,000x
● [So19] NAS for Evolved Transformer 

○ Neural Architecture Search done once per 
problem domain+architectural search space

○ Didn’t include energy or emissions
● Concerns rightly raised about CO2e of ML
● [St19] estimated emissions of this NAS

○ Cited ~2700 times
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○ Used P100 vs TPUv2, US averages vs Google DC: 5X too high for NAS (4Ms)
○ + Used full model vs small proxy for search: 19X  (88X too high for NAS)

● Some papers citing [Str19] confused NAS with Training 
○ NAS emissions ~1300x training emissions of DNN model found in search

● 5  ✕ 19  ✕ 1300 = 120,000x (different 4Ms ✕ flawed NAS ✕ searching vs training)
● 2.4 kg vs 248,019 kg; 5 car lifetimes to < 0.00005 car lifetimes

[St19]

[Pa22]



Get numbers right to ensure working on the actual biggest 
information technology challenge

● Within IT, more likely climate challenge is embodied cost of 
manufacturing computing equipment of all types/sizes 
vs operational cost of ML training 
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1700M cell phones in 2021
2-3 year lifetime

340M PCs
3-5 year
lifetime

12M servers
5-8 year
lifetime 
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Conclusion and Recommendations 
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Conclusion
● 10 Lessons learned from previous TPU generations drove next design

● Four generations of TPU significantly improve Perf/TCO and Emissions of ML
○ 2019–2021: ML 70%–80% of FLOPS but only 10%–15% of Google energy use 
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1. DNNs grow rapidly in memory and compute
2. DNN workloads evolve with DNN breakthroughs
3. Can optimize DNN as well as compiler and hardware
4. Inference SLO limit is P99 latency, not batch size
5. Production inference normally needs multi-tenancy
6. It’s the memory, stupid (not the FLOPs)
7. DSA Challenge: Optimize for domain while being flexible
8. Logic, Wires, SRAM, & DRAM improve unequally
9. Maintain compiler optimizations and ML compatibility

10. Design for performance per TCO vs perf per CapEx
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Recommendations for ML Research and ML Practice
● Model: ML researchers keep developing more efficient ML models: 2x–4x

○ Research Challenge: Reduce cost of training and inference of giant models like GPT-3, GlaM
■ Focus on memory accesses vs FLOPS 

○ Practice: Also publish energy consumption and carbon footprint of model to
■ Foster competition beyond ML quality e.g., speed, emissions
■ Ensure accurate accounting of their work (external estimates were off 100x–100,000x)

● Machine: Build faster, more efficient ML HW (e.g., A100 GPU, TPU v4): 2x–4x
○ Research Challenge: Leverage Sparsity with Systolic Arrays
○ Research Challenge: How to do embodied costs, not just operational costs

● Mechanization: Data center operators publish datacenter efficiency (PUE): 1.4x 
○ Practice: Also publish % carbon free of energy supply per location 

● Map: ML practitioners use greenest data centers per region, often in Cloud: 5x-10x
○ Practice: Increase carbon free energy per location (2 in Europe, 3 in US ~90% carbon free energy)

● Co-optimize 4Ms to realize the amazing potential of ML to positively impact many 
fields in a sustainable manner
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Backup Slides 
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Reducing Contrails with AI

● Contrails ~35% Aviation CO2e 
○ Increases warming since trap heat
○ Also reflect sunlight (during the day)

● Only occur when planes fly 
through humid regions  

● Google AI predicts path for planes 
to reduce contrails

● American Airlines flew 70 test 
flights over 6 months

○ 0.3% more fuel for whole fleet
○ 54% reduction in contrails
○ Cost per tCO2e saved $5-$25
○ Cost to extract tCO2e from air ~$1000

● 2020 Data centers/data transmission ~330 Mt
● Aviation in 2019 ~900 Mt CO2e 

○ ~2% of global energy-related CO2e 
● AI might save 54% x 35% x 900 = ~170 Mt CO2e


