
ATLaS: a Small but Complete SQL Extension for
Data Mining and Data Streams

1Haixun Wang 2Carlo Zaniolo 2Chang Richard Luo

1IBM T. J. Watson Research Center
haixun@us.ibm.com

2Computer Science Dept, UCLA
{zaniolo,lc}@cs.ucla.edu

1 Introduction
DBMSs have long suffered from SQL’s lack of power and
extensibility. We have implemented ATLaS [1], a powerful
database language and system that enables users to develop
complete data-intensive applications in SQL—by writing
new aggregates and table functions in SQL, rather than in
procedural languages as in current Object-Relational sys-
tems. As a result, ATLaS’ SQL is Turing-complete [7], and
is very suitable for advanced data-intensive applications,
such as data mining and stream queries. The ATLaS system
is now available for download along with a suite of applica-
tions [1] including various data mining functions, that have
been coded in ATLaS’ SQL, and execute with a modest
(20–40%) performance overhead with respect to the same
applications written in C/C++. Our proposed demo will
illustrate the key features and applications of ATLaS. In
particular, we will demonstrate:

• ATLaS’ SQL features, including its native support for
user-defined aggregates and table functions.

• Advanced database applications supported by ATLaS’
SQL, including continuous queries on data streams
and data mining applications such as classifiers main-
tained over concept-drifting data streams.

• The ATLaS system, including its architecture, query
rewriting and optimization techniques, and the data
stream management module.

2 ATLaS’ SQL
ATLaS adopts from SQL-3 the idea of specifying user de-
fined aggregates (UDAs) by an initialize, an iterate, and a
terminate computation; however, ATLaS let users express
these three computations by a single procedure written in

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

SQL [4]— rather than three procedures coded in procedu-
ral languages as in SQL-3.

The standard avg aggregate in SQL can be easily defined
in ATLaS (Example 1). It uses a local table, state, to keep
the sum and count of the values processed so far. While,
for this particular example, state contains only one tuple,
it is in fact a table that can be queried and updated using
SQL statements and can contain any number of tuples (see
later examples). These SQL statements are grouped into
the three blocks labeled respectively INITIALIZE, ITERATE,
and TERMINATE. Thus, INITIALIZE inserts the value taken
from the input stream and sets the count to 1. The ITERATE

statement updates the table by adding the new input value
to the sum and 1 to the count. The TERMINATE statement
returns the final result(s) of computation by INSERT INTO

RETURN (to conform to SQL syntax, RETURN is treated as
a virtual table; however, it is not a stored table and cannot
be used in any other role):

Example 1 Defining the standard ’avg’ aggregate

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
TERMINATE : {

INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}
}

This approach to aggregate definition is very general.
For instance, say that we want to support online aggrega-
tion [3], an important concept not considered in SQL-3.
Since averages converge to a final value well before all the
tuples in the set have been visited, we can have an online
aggregate that returns the average-so-far every, say, 200
input tuples. In this way, the user or the calling applica-
tion can stop the computation as soon as convergence is

detected. This gives the UDA of Example 2, where the
RETURN statements appear in ITERATE instead of TERMI-
NATE. The UDA online avg, so obtained, takes a stream
of values as input and returns a stream of values as output
(one every 200 tuples). While each execution of the RE-
TURN statement produces here only one tuple, in general,
it can produce (a stream of) several tuples. Thus UDAs op-
erate as general stream transformers. Observe that the UDA
in Example 1 is blocking, while that of Example 2 is non-
blocking. Thus, nonblocking UDAs are easily expressed in
ATLaS, and clearly identified by whether their TERMINATE

clause is either empty or absent.

Example 2 Online averages

AGGREGATE online avg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE: {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

INSERT INTO RETURN
SELECT sum/cnt FROM state
WHERE cnt % 200 = 0;

}
TERMINATE : { }

}

Straightforward as it appears to be, ATLaS’ approach to
aggregate definition greatly improves the expressive power
and extensibility of SQL. For instance, in ATLaS, UDAs
can call other UDAs, including themselves. This enables us
to compute, for example, the transitive closure of a graph
using a UDA that performs a depth-first traversal of the
graph by recursively calling itself. In fact, we proved that
SQL so extended is Turing-complete on database tables [7].
As a result, we can express in ATLAS advanced applica-
tions such as data mining that are difficult to support well
using the current SQL-compliant DBMSs [6].

3 Stream Applications in ATLaS
SQL extensions have been proposed to support continuous
queries in SQL [2]. ATLaS’ SQL is Turing complete, as a
result, stream queries can be implemented in ATLaS with-
out additional language constructs.

ATLaS supports a delta-based computation of aggre-
gates on windows (Example3). UDAs on windows are de-
fined using three states INITIALIZE, ITERATE, and REVISE

(which replaces TERMINATE). The first two states are ac-
tive in the transient situation, when the query is first started
on the stream, and the boundary of the window have not
yet been reached. Once the boundary of the window have
been reached then ITERATE is no longer true, and every
new incoming tuple is processed by REVISE. In this state,
the system maintains the EXPIRED table holding the input
tuples that just expired (one for count-based windows, zero,
one, or many for time-span based windows). This table has

the same schema as the input tuples, (i.e., EXPIRED(Next
Int) for Example 3), and it is updated automatically by the
system. Thus, the sum and the count of the tuples in EX-
PIRED can now be used to update the sum and the count,
and then return the average value of the window.

Example 3 Defining avg on windows

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
REVISE: {

UPDATE state SET
tsum=tsum + Next - SUM(E.Next),
cnt=cnt+1-count(E.*)

FROM EXPIRED AS E;
INSERT INTO RETURN

SELECT tsum/cnt FROM state
}

}

ATLaS also supports a window specification in the
FROM clause along the lines proposed in [2]. Thus, a win-
dow specification consists of:

1. an optional partitioning clause, which partitions the
data into several groups and maintains a separate win-
dow for each group,

2. a window size, using either the count of the elements
in the window, or the range of time covered by the
window (i.e., its time-span).

3. an optional filtering predicate.

Thus, to compute the average call length, but considering
only the ten most recent long-distance calls placed by each
customer we will write the following query:

Example 4 Count-Based Window on a Stream

STREAM calls(customer id Int, type Char(6), minutes Int,
Tstamp: Timestamp) SOURCE mystream;

SELECT AVG(S.minutes)
FROM Calls S [PARTITION BY S.customer id

ROWS 1000 PRECEDING
WHERE S.type = ’Long Distance’]

where the expression in braces defines a sliding window
on the stream of calls. The meaning of this query is that
for each new long-distance tuple coming in the stream, the
average of this and the previous 999 tuples is computed and
returned to the user. Thus this query receives a stream as
input and generate a stream as output.

4 Data Mining Applications in ATLaS

Using table functions and recursive aggregates, Algo-
rithm 1 implements a scalable decision tree classifier using
merely 14 SQL statements.

Algorithm 1 A Scalable Decision Tree Classifier
1: AGGREGATE classify(iNode Int, RecId Int, iCol Int,

iValue Int, iYorN Int)
2: { TABLE treenodes(RecId Int, Node Int, Col Int,

Value Int, YorN Int);
3: TABLE mincol(Col Int);
4: TABLE summary(Col Int, Value Int, Yc Int, Nc Int)

INDEX (Col,Value);
5: TABLE ginitable(Col Int, Gini Int);
6: INITIALIZE : ITERATE : {
7: INSERT INTO treenodes

VALUES(RecId, iNode, iCol, iValue, iYorN);
8: UPDATE summary

SET Yc=Yc+iYorN, Nc=Nc+1-iYorN
WHERE Col = iCol AND Value = iValue;

9: INSERT INTO summary
SELECT iCol, iValue, iYorN, 1-iYorN
WHERE SQLCODE<>0;

}
10: TERMINATE : {
11: INSERT INTO ginitable

SELECT Col, sum((Yc*Nc)/(Yc+Nc))/sum(Yc+Nc)
FROM summary GROUP BY Col;
HAVING count(Value) > 1

AND sum(Yc)>0 AND sum(Nc)>0;
12: INSERT INTO mincol

SELECT minpair(Col, Gini)→mPoint
FROM ginitable;

13: INSERT INTO result
SELECT iNode, Col FROM mincol;

{Call classify() recusively to partition each of its}
{subnodes unless it is pure.}

14: SELECT classify(t.Node*MAXVALUE+m.Value+1,
t.RecId, t.Col, t.Value, t.YorN)

FROM treenodes AS t,
(SELECT tt.RecId RecId, tt.Value Value

FROM treenodes AS tt, mincol AS m
WHERE tt.Col=m.Col) AS m

WHERE t.RecId = m.RecId
GROUP BY m.Value;

}

}

A detailed description of Algorithm 1 can be found
in [6]. In summary, the INITIALIZE and ITERATE rou-
tine of UDA classify updates the class histogram kept in
the summary table for each column/value pair. The TER-
MINATE routine first computes the gini index for each col-
umn using the histogram. If a column has only one distinct
value (count(Value)≤ 1), or tuples in the partition belongs to
one class (sum(Yc)=0 or sum(Nc)=0), then the column is not
splittable and hence, not inserted into ginitable. On line 12,
we select the splitting column which has the minimal gini
index. A new sub-branch is generated for each value in the
column. The UDA minpair returns the minimal gini index

as well as the column where the minimum value occurred.
After recording the current split into the result table, we call
the classifier recursively to further classify the subnodes.
On line 14, GROUP BY m.Value partitions the records in
treenodes into MAXVALUE subnodes, where MAXVALUE
is the largest number of different values in any of the table
columns. The recursion terminates if table mincol is empty,
that is, there is no valid column to further split the partition.

UDA classify can be applied to relational training sets
after they are transformed on the fly to a stream of col-
umn/value pairs. Such transformations can be carried out
by ATLaS’ table functions, which also play a critical role
in extending the expressive power of SQL [6].

Due to space limitations, here we have only discussed
the classification algorithm, but more complex applica-
tions, including the Apriori algorithm for association rule
mining, DBSCAN for density based clustering, and other
data mining functions can be concisely written and effi-
ciently implemented in SQL using ATLaS [4, 5, 6].

5 The ATLaS System

The ATLaS system consists of the following components:
(i) the database storage manager, (ii) the language proces-
sor, and (iii) the data stream management engine.

The database storage manager consists of (i) the Berke-
ley DB library and of (ii) additional access methods includ-
ing in-memory database tables with hash-based indexing,
R+-tree for secondary storage, sequential text files, etc.
We use Berkeley DB to support access methods such as
the B+Tree, and Extended Linear Hashing on disk-resident
data. R+-trees are introduced to support spatio-temporal
queries, and in-memory tables are introduced to support
the efficient implementation of special data structures, such
as trees or priority queues, that are needed to support effi-
ciently specialized algorithms, such as Apriori or greedy
graph-optimization algorithms.

The ATLaS language processor translates ATLaS pro-
grams into C++ code, which is then compiled and linked
with the database storage manager and user-defined exter-
nal functions. The core data structure used in the language
processor is the query graph. The parser builds initial query
graphs based on ATLaS’ abstract syntax tree. The rewriter,
which makes changes to the query graphs, is a very impor-
tant module, since much optimization, such as predicate
push-up/push-down, UDA optimization, index selection,

Storage
Manager

code
generator

Rewriter

Stream
Engine

query
graph

Berkeley
DB

In Memory
Tables

R+tree,
etc.

Figure 1: The ATLaS Architecture

and in-memory table optimization, is carried out during this
step. While ATLaS performs sophisticated local query op-
timization, it does not attempt to perform major changes in
the overall execution plan, which therefore remains under
programmer’s control. After rewriting, the code generator
translates the query graphs into C++ code.

The runtime model of ATLaS is based on data pipelin-
ing. In particular, all UDAs, including recursive UDAs that
call themselves, are pipelined; thus, tuples inserted into the
RETURN relation during the INITIALIZE/ITERATE steps are
returned to their caller immediately. Therefore, local tables
declared in a UDA can not reside on the stack. Instead, they
are assembled into a state structure which is then passed
to the UDA for each INITIALIZE/ITERATE/TERMINATE

call, so that these internal data are retained between calls.
The data stream management engine is responsible for

efficiently maintaining records in windows and the EX-
PIRED table. Records in a window are stored in a disk file.
Count-based windows have fixed sizes, while time-based
windows may require dynamic allocation of disk buffers.
A window specification with a PARTITION clause may cor-
respond to multiple windows, one for each unique partition
key. Records of the windows are clustered by the partition
key and stored in a same disk file. ATLaS also supports
data sharing among multiple queries that access the same
external data stream concurrently. A single procedure is
responsible for reading the data from the external stream
and delivering them to the disk buffers of each individ-
ual query. Furthermore, window specifications of different
queries can share disk buffers if the specifications have the
same filtering predicate and PARTITION clause.

6 About the Demo
Our demonstration consists of the following parts.

ATLaS Language Features

The only extension introduced by ATLaS is the ability of
defining UDAs and table functions in SQL, yet this mini-
malist approach makes SQL Turing complete. We demon-
strate ATLaS’ expressive power and ease-of-use through
a suite of UDAs and table functions that implement, for
example, temporal databases operators (e.g. coalescing),
greedy graph-optimization algorithms (e.g. the shortest
path algorithm), OLAP operators (e.g. ROLLUP, CUBE),
and many others.

ATLaS provides a GUI IDE for writing ATLaS pro-
grams. An ATLaS program may consist of several mod-
ules, which are either source code in ATLaS’ SQL, source
code in C/C++, or libraries to be dynamically linked with
other modules. ATLaS also provides query plan visualiza-
tion tools so that users can track the effect of query rewrit-
ing and optimization.

Continuous Queries on Data Streams

We showcase ATLaS’ ability of handling con-
tinuous queries using the schema and queries in

Stanford’s Stream Query Repository (http://www-
db.stanford.edu/stream/sqr). We implement each query
in two different approaches. The first approach uses
ATLaS’ windows-on-streams construct similar to that
proposed in [2]. But ATLaS is Turing complete without
this construct. The second approach implements the same
query using ATLaS’ UDAs and table functions. We will
compare the pros and cons of the two approaches.

Data Mining Applications

Substantial extensions have been added to SQL over the
years, yet data mining applications remain an unsolved
challenge for DBMSs. We demonstrate how ATLaS’ min-
imalist approach attacks this problem. The demonstration
package consists of data mining applications such as the de-
cision tree classifier, the Aprior algorithm for association
rule mining, and the density-based clustering algorithm
DBSCAN. All applications are written entirely in ATLaS’
SQL, and can be applied directly on relational data [6].

Recently, stream data mining has been a field of intense
research. The demonstration also includes a stream classi-
fier that handles time-changing drifts in the streaming data.
It is realized by leveraging ATLaS’ continuous-query and
data mining ability.

Our demonstration will show ATLaS incurs only a mod-
est performance overhead with respect to the same applica-
tions written in C/C++.

The ATLaS System

The demonstration will reveal ATLaS’ internal architecture
by focusing on several of its key components, such as the
query rewrite module, the query plan generation module,
and the stream data management engine.

References
[1] http://wis.cs.ucla.edu/atlas

[2] Brian Babcock, Shivnath Babu, Rajeev Motwani,
and Jennifer Widom. “Models and Issues in Data
Streaming Systems”, SIGMOD Record, Vol. 30 No.
3, pp. 109-120 (September 2001).

[3] J. M. Hellerstein, P. J. Haas, and H. J. Wang. “On-
line Aggregation”. SIGMOD, 1997.

[4] Haixun Wang and Carlo Zaniolo. “Using SQL to
Build New Aggregates and Extenders for Object-
Relational Systems”. VLDB 2000.

[5] Haixun Wang and Carlo Zaniolo. “Extending SQL
for Decision Support Applications”. DMDW 2002.

[6] Haixun Wang and Carlo Zaniolo. “ATLaS: A Na-
tive Extension of SQL for Data Mining and Stream
Computations”. SIAM Data Mining, May 2003.

[7] Haixun Wang and Carlo Zaniolo. “On the Proper-
ties of a Native Extension of SQL for Data Streams
and Data Mining”. Submitted to VLDB 2003.

