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ABSTRACT 
The problem considered $8 that of tmplementtng recur- 
stve quer:es, expressed rn a logtc-based language, by 
eff:c:ent fixpornt computations In partscular, the sctua- 
t:on IS studted where the rntt:al btndrngs :n the recurstve 
predrcate can be used to restr:ct the search space and 
ensure safety of executton Two key techntquee preut- 
ously proposed to solve thts problem are (8) the htghly 
e&tent countrng method, and (II) the mag:c set method 
whtch 1s safe :n a wider range of srtuattons than (8) In 
thr8 paper, we preeent a family of methods, called the 
maggc countrng methods, that combrnes the advantage8 
of (I) and (I:) This IS made possible by the srmrlartty of 
the strateg:es used by the countgng method and the 
magtc set method for propagakng the brndtngs Thrs 
paper rntroduces these new methods, ezamrnes therr 
computatronal compleztty, and rllustrates the trade-ofl8 
between the famrly member8 and therr supertorrty wtth 
respect to the old methods 

1. Introduction 

The Counting Method [BSMU,SZl,SZ2] and the 
Magic Set Method [BSMU, SZl] are among the most 
slgnlficant techniques [BR] developed for supporting 
logic-based data languages such as NaIlI [Ul] or LDL 
[TZ] The former method IS normally more efflclent than 
the latter, but the latter IS safe m a wider range of 
sltuatlons than the former In this paper, we present a 
family of methods, called Magrc Countrng Methods, 

Permlsslon to copy without fee all or part of this material 1s granted 
provided that the copies are not made or dlstrlbuted for direct 
commercial advantage, the ACM copyrlght notlce and the title of 
the pubhcatlon and Its date appear, and nohce IS given that copymg 
1s by permlsslon of the Assoclatlon for Computmg Machmery, To 
copy otherwlse, or to repubhsh, reqmres a fee and/or specfic 
permission 

0 1987 ACM O-89791-236-5/87/0005/0049 7% 

that combme the strengths of both The combmatlon IS 
made possible by the fact that the countmg method and 
magic set method use slmllar strategies for propagatmg 
bmdmgs 

In this paper, we first Introduce a general frame 
work whereby the countmg method and magic set 
method are compared and their computational behavior 
analyzed (SectIons 2 and 3) This framework IS then 
used to Introduce and prove the correctness of the 
Independent Magic Counting Methods, and a refinement 
of these called the Integrated Magic Countmg Methods 
(Sections 4 and 5) The rest of the paper discusses the 
the lmplementatlon of these methods and their compu- 
tatlonal complexltles We find that there exists a well- 
defined efflclency hierarchy among them 

Throughout the paper, we consider the query prcl 
gram & composed by the query goal 

P(a) Y)? 

and the followmg rules 

P(X,Y) - E(X, Y) 

PP, Y) - L(X, XI 1, P(X1, YI), R(Y, YJ 

where P 1s a recursrve predicate and E, L and R are 
database predicates The first rule, which does not con- 
tam any recursive predicate m the body, IS called an ezrt 
rule, whereas the second rule 1s called a recurs:ve rule 
The answer of the query IS the set of pairs (a, b ) that 
can be inferred from the logic program and from the 
facts stored m the (finite) database relations correspond- 
mgtoE, L and R 

The above query IS an abstraction of a large class 
of slmllar queries, for mstance to obtam the well-known 
same-generation example [BMSU], we can assume that 
both L and R correspond to a relation Parent storing 
the facts that the person X1 (or Y,) IS parent of X (or 

t Part of this work was done while this author was 

vlsltmg at MCC 
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Y), and If we srmpltfy the exrt rule as 

P(X, w 

thus, every person IS of the same generatron of himself, 
and the query asks for all persons who are of the same 
generation as a ” 

It IS also easy to generahze this query by letting 
L and R be derrved predrcates or conpmcts of these, 
and X and Y be replaced by several arguments On 
the other hand, the above query has a clear graph 
mterpretatron where the methods and results can be 
shown wrthout too heavy a notation Moreover, smce a 
srmrlar graph mterpretatron holds for a large class of 
queries, notably all querres that can be expressed using 
only one linear recursrve rule, rt turns out that all 
results found for the query at hand can lmmedrately be 
extended to this rmportant class, whrch was studred rn 
[SZl] under the name of canonical strongly linear 
querres Furthermore, further extensrons to more gen- 
eral queries are possrble, although more drffrcult and outr 
side the scope of this paper 

PA@, Y) - MS(X), E(X) Y) (3) 
PM(X, Y) - MS(X), L(X, Xl), (4) 

&WI, YI), R ( Y, YI) 

2. The Counting Method and the Magic Set 
Method 

The countmg and the magrc set methods rewrite 
the rules and the query goal so that the answer can be 
constructed effmrently by means of two fixpomt compu- 
tatrons For the example at hand, the countmg method 
produces the followmg modified query program &o 

COUNTING METHOD 

CS(O, 5) (1) 

CS(J+1, X,) - CS(J, X), L(X, X,) (2) 

Pc(J, Y) - CS(J, Xl, E(X, Y) (3) 

Pc(J-1, Y) - Pc(J> YI), R(Y, YI) (4 

Answer(Y) - Pc(O, Y) 

Answer(Y)? 

(5) 

Rules 1 and 2, are called counting rules as they define 
the countmg set CS, while (3) and (4) are called 
modified rules (J +l IS an obvious notatron of convem- 
ence, m actual Prolog we should wrote Jl mstead and 
have a goal “Jl IS J+l”) 

On the other hand, the magrc set method pro- 
duces the followmg query &M 

MAGIC SET METHOD 

MS(a) (1) 

MS(XI) - MS(X), L (X, XI) (2, 

Answer(Y) - PM(u, Y) 

Answer(Y)? 

(5) 

Rules 1 and 2, are called the magic set rules as they 
define the the magic set MS, whrle (3) and (4) are called 
modified rules 

Two queries are said to be equrvalent when they 
have the same answer (as per the well defined semantics 
of Horn clause queries [VK]) Then, we have the follow- 
mg result that estabhshes the conceptual correctness of 
the magrc set and counting methods 

FACT 1 (SZl] The querres &, &C and I& are 
equrvalent U 

Let us next examme the problem of rmplementmg 
these methods using a least fixpomt computation To 
that end, we use a convement mrxture of Horn clause 
and procedural programming notatron 

The countmg set CS IS computed by the follow- 
mg fixpomt computatron (the semmolon IS used as end- 
dellmiter for both rules and statements) 

COUNTING SET COMPUTATION 

begin 
cs (0, a 1, 
J =O, 
while CS( J, X,) do 
begin 

CS(J+l, XI) - CS(J, X), L(X, X,), 
J = J+l, 

end, 
end 

Thus, we assume that we are working with a vsr~- 
able two-column relation CS correspondmg to the predr- 
cate In the fixpomt computatron, we perform relatronal 
algebra operatrons on relatrons, which, for stmphcrty and 
expressivity of notation, we represent by then 
equrvalent Horn-clause form Thus, m the first step, our 
variable relatron IS assrgned the relation contammg only 
the tuple (0,~ ) The fixpomt computatron step cons&e 
of taking the semrJom of the current relation with that 
representing L (X, X,) and mcrementmg the first 
column by one We thus assume that the new tuples so 
generated are added to the variable relation (e g , usmg 
Prolog assert) Thus, the test CS(J, X1) falls only after 
the last fixpomt lteratron has failed to produce any new 
tuple As we will discuss extensrvely later, there are 
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sltuatlons (I e , m the presence of cycles), where the loop 
test never falls and the fixpomt computation never ter- 
minates In these situations, we wrll say that the count- 
mg method IS not safe, 1 e , the answer cannot be com- 
puted m a finite amount of time [Ul, SZ2] 

Using the semmaive fixpomt approach [Ban, BaRI, 
we can express the fixpomt computation of magic sets as 
follows (to implement the fixpomt computation we have 
introduced an index that records the steps at which a 
value IS first introduced) 

SEMINAIVE MAGIC SET COMPUTATION 

begin 

m(O, a ), 
I =o, 
while m(I, XI) do 
begin 

Rqr+1, X,) - 

m(I, Xl, L (X, XI), not(m(-, XI)), 
I =I+l, 

end, 
end 

The final magic set can be computed as 

MS(Y) - m(-, 0 
I e , by prolectmg the index out 

The difference between the magic set computation 
and counting set fixpomt 1s thus clear, this difference 
reduces to the presence of not (m(-, Xl)) m the magic 
set fixpomt, 1 e , to the condltlon that (1+1, Xl) IS not 
added to m If (J, X1) IS already m m (for some 
O<J<I) Such negation can be implemented using the 
set difference operation of relational algebra 

3. Computational Complexity of Methods 

In order to characterize the data underlymg the query 
and to obtain Insight on the behavior of the methods, 
we need to associate a graph G w&h the query, m the 
following way 

4 For each value m the domains underlying L or 
R , there 1s a correspondmg node m G If the 
same value appears both m L and R then there 
~111 be two distinct associated nodes m G (one 
may thmk they have some label to dlstmgulsh 
them) Therefore, the nodes of G are partItIoned 
into L -nodes and R-nodes 

b) For each pair (6 , c ) m L , there IS an arc (b ,c ) in 
G , where both b and c are L-nodes 

Cl For each pair (b , c ) m E such that b and c are 
also database constants of L and R , respectively, 
there IS an arc (b ,c ) m G where b IS an L -node 

and c IS an R-node 

4 For each pair (b ,c) m R, there IS an arc (c ,b ) m 
G , where both b and c are R-nodes 

The query graph GQ = <N, A > IS the subgraph 
of G, induced by all nodes that are reachable from a 
(recall that (I IS the constant m the query goal) We call 
a the source node of Go The query graph GQ, m 
turn, IS composed by the three subgraphs 
GL= <NL,AL>, GE= <NE, AE> and 
GR = < NR , AR >, such that AL, AB and AR are all 
the arcs m A correspondmg to pairs m L , E and R , 
respectively It IS easy to see that NL and Iv, are dls- 
Joint and contain L-nodes and R -nodes, respectively, 
and NL U NR = N On the other hand, GE IS a blpar- 
tote graph havmg arcs from L-nodes to R-nodes 
Fmally, AL, AR and Ae are disJomt and 
AL IJ AR U AE = A The number of respective nodes 
of G,, CL, GR and GE ~111 be denoted by n , nL, nR 
and nE, while the number of respective arcs IS denoted 
bym,mL,mR andmE 

Let b and c be two nodes m the query graph If 
there IS a path from b to c with length k, we say that 
c has a distance k from 6 

Consider the graph GL It follows directly from the 
definitions that the nodes of this graph are the magic set 
values, NL =MS Thus we ~111 call G, the Mugrc 
Graph and refer to magic graph nodes and magic set 
values as synonyms The countmg set CS consrsts of 
pairs (3, 6 ) where 6 ~8 a node m the magic graph and 
3 IS its distance from the source node a, as It will be 
shown below The set of values obtained from CS by 
prolectmg the Indices out ~111 be denoted CS-, , obvl- 
ously CS-, =MS Moreover, let 1‘ denote the set of 
indices 3 such that (3, 6 ) IS m CS Then a node b 
will, respectively, be called 

4 

b) 

eingle if I, 1s a singleton set , 

multiple if I, has a finite cardmalrty greater than 
one, 

cl recurrrng d Ib 1s mfinite 

The magic graph of a query will be called regular, 
when all its nodes are smgle and non-regular otherwise 

For the query graph of Figure 1, GL IS the sub- 
graph induced by the nodes a, a 1 , a6, while GR 
IS the subgraph, represented by darker a&3, induced by 
the nodes b 1, b 0 The graph GE IS composed by 
the dashed arcs m ilgure 1 The magic graph IS regular 
smce all nodes m GL are angle, I e , they have a unique 
distance from a If we add the tupie <ap,a6> to the 
relation L then the query becomes acyclic and the node 
a6 becomes multiple, Instead, If we add the tuple 
< ab,a2> then the query becomes cychc and the nodes 
a 2, a 9 and a 6 become recurrmg 
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Fig 1. Query Graph 

Proposltlon 1 summarizes the properties of query 
graphs 

PROPOSITION 1 Let Q be a Query and GQ be 
the query graph Then MS = CS, = NL In addltlon, 
gtven a node b rn GL, 

4 b 18 srngle of and only rf all drrected path8 from the 
source node a to b m GL have the 8ame du- 
tance, 

b) b 18 multrple If and only zf there at leaet two 
dIrected path8 from a to b In GL wrth dlflerent 
length, 

Cl b 18 recurrrng rf and only if there 18 a cyclic 
dtrected path from a to b :n GL, and 

4 the set Z, of mdlces aesociated to b coincides 
w:th the set of all dretances of b from a 

As shown m [SZl,MPS], there IS also a simple 
graph based mterpretatlon of the query answer 

FACT 2 A node b 18 :n the answer of Q rf there 
18 a (poearbly cycltc) dtrected path from the 8ource node 
a to b in G, such that this path 18 composed by ezactly 
k arc8 from AL, one arc from A= and k arc8 from AR, 
where k 18 any non-negative rnteger U 

Consider the query Instance whose graph IS shown 
m Figure 1 Then b5 IS m the answer because of the 
path a, a I, b s, b 6 The other answer nodes are b ?I b v, b 0 
and be Note that the latter node IS m the answer 
because of the cychc path 

The path from a to b o IS cyclic as well 

Wlthm the graph formahsm, Interesting complex- 
lty results about the magic set and the counting 
methods have been found m [MPS] The costs of the 
two methods are summarized m Table 1 for the different 

kmds of Magic Graphs (MG) The basic cost urut IS the 
cost of retrlevmg a tuple m a database relation In this 
table and throughout the paper, we use the notations 0 
and 8 for descrlbmg asymptotic time complexity If the 
cost function of an algorithm IS f (n ), where n IS the 
problem size, and g (n ) IS another function of n , then 

4 f (n ) = 0 (g (n )), if there exists a constant d 
such that f(n) 5 d xg(n) for all but some 
fimte (possibly empty) set of non-negative values 
for n , and 

b) f(n)= %7(n)), If both f(n)= o(g(n))md 

o(n)= o(f(n)) 

Tab 1 Costs of the counting and magic set method8 

PROPOSITION 2 Let C and Me be the coet8 of 

the counting method and of the magic eet method, 
respecttvely Then 

4 Zf the magic graph8 are regular then 
c = O(M8) 

b) Zf the magic graph8 are acyclic and 
rnL = O(mR), then C = O(M8) 

PROOF Smce the number of arcs IS always 
greater than the number of nodes, we have that 
nL = 0 (rnt ) Hence, nL X rnR = 0 (mL X rnR ), thus, 
part a) of the proposltlon holds Furthermore, d 
rnL = O(m), then obviously 
nL x mR = 0 (ml, x rnL ) Therefore, also part b) of the 
proposltlon IS proved 0 

Propasltlon 2 says that the countmg method 
always works better than the magic set method when 
the magic graphs are regular In addltlon, smce It IS real- 
&c to assume that rnR IS, on the average, of the same 
order of ml,, it IS far to say that the countmg method, 
on the average, works better than the magic set method 
when there IS no cycle In fact, m the average, we have 
that C = e( n x m ) and MS = e(m X m ) Note that 
having mL >> mR IS not suffrclent for the magic set 

t In IMPS] it has been shown that the countmg 
method can be extended to deal with cychc graphs 
and Its cost IS e(m x13 Also note that the costs for 
the magic set method are actually higher than 
those given m Table 1, smce arca not m GQ can be 
developed at each step of fixpomt computation us- 
mg the modified rules For slmphclty, these costs 
can be neglected smce they simply remforce the su- 
perlorlty of magic countmg methods 

52 



method to work better than the counting method 

Thus the countmg method IS superior to the 
magic set method m terms of worst case behavior This 
superlorlty IS even more dramatlc when typlcal behavior 
IS considered, m the comparative study presented in 
[BR) the countmg method was shown to be more 
efficient than all other methods (mcludmg the magic set 
method but excludmg the [HN] method which IS com- 
parable performance-wise) Unfortunately, the potential 
presence of cycles m the database compromises the 
apphcablhty of the countmg method m many sltuatlons 
Note that, a database bemg logically acychc (e g , a 
non-mcestuous family tree) does not guarantee that the 
physlcal database IS cycle free, smce checking acychclty 
upon updates IS very expensive and not often done m 
practice -- thus there could be accldental cycles that 
throw the countmg method astray Therefore, a method 
that combmes the performance of the counting set 
method with the safety of the magic set method IS 
highly desirable 

4. Magic Counting Methods 

We now propose a family of methods that com- 
bme the magic set and the countmg methods and that 
are, therefore, called magrc countcng methods All 
methods m the family make use of a reetrrcted mag:c 
eet and a restrrcted countwag set A reshrcted magic 
set, denoted by RM, IS any (possibly empty and not 
necessarily proper) subset of MS LIkewIse, RC ~111 
denote any (possibly empty and not necessarily proper) 
subset RC of CS, while RC-, denotes the set of values 
m RC wlthout their mdlces In addltlon, for each b m 
RC-, , RI, IS the set of all mdlces associated to b m 
RC (obviously RI6 c Ib ) 

The general structure of the magic counting 
methods consists of two steps In the first step, a rep 
trrcted magic set RM and a restrlcted countmg set RC 
IS constructed, m the second step, both the magic count 
mg method and the magic set method are apphed usmg 
the restrlcted sets This second step IS Implemented as 
follows 

MODIFIED RULES d QUERY FOR 
INDEPENDENT MC METHODS 

Pc(J, Y) - WJ, X), E(X, Y) (1) 

Pc(J-1, Y) - Pc(J, Yd, R(Y, Yl) (2) 

fh(X, Y) - RM(X), E(X, Y) (3) 

P,(X, Y) - MS(X), L(X, XI), (4) 

h&f,, Yd, R(Y, YI) 

Anewer (X) - Pc(0, X) 

Anwer(X) - P~(u,x) 

Answer (X)7 

(5) 

(6) 

Notlce that the predicate RC has replaced CS m 
the exit rule of PC (Rule l), while RM has replaced the 
orlgmal MS m the exit rule for PM (Rule 3) The recur- 
sive rules for both PO and PM (Rules 2 and 4) have 
remained as m the orlgmal magic set and countmg 
methods It IS easy to see that the PC and the PM rules 

operate independently from each other Therefore, these 
magic countrng methods ~111 be called rndependent 

Let us next consider the Issue of correctness of the 
magrc countmg methods A method ~111 be said to be 
correct If It generates the same answer as the orlgmal 
query for all po88:ble databases (I e, by FACT 1, the 
same answer as the magic set method or the countmg 
method) We then have this Important result 

THEOREM 1 An Independent mag:c countrng 
method te correct :f and only tf the followmg two condt- 
t:one hold 

4 RMuRC-, =MS,and 

b) for each b In RC-,-RM, RI, = Ib 

PROOF Only-:f part Let M be a correct 
Independent magic counting method We first prove 
that, for each Instance of the query Q, 
RM u RC-, = MS, where MS IS the magic set of the 
query and RM and RC are the reduced sets con- 
structed by M We carry out the proof by contradlc- 
tlon Suppose that, for a given query mstance $ , a node 
b IS m MS but not m RM u RC-, Let k be the 
length of any (non-cychc) path from the source node a 
to b (by Proposltlon 1, such a path exists) We con- 
struct another Instance of Q by modlfymg the query 
graph as follows We add the new nodes bk, bk-l, 
b e to GR , and also Introduce the arc (b , bb ) m GE ani 
the arcs (bk , bh-1) , , (bdd In GR It is easy to see 
that the new graph corresponds to a new query Instance 
g Moreover, by Fact 2, the node b. 1s m the answer of 
g Since the reduced sets are constructed by M 
mdependently from the database predicates E and R 

( le, GE and GR ), the reduced sets for 8 remam 
unchanged and do not contam the node b Hence, smce 
only those arcs of AE starting from a node in MS or 
RC-, are used m the second step of the method M (see 
Rules 1 and 3 of Step 2 for Independent methods), the 
arc (b , bb ) and, hence, the path from a to b o IS not 
taken mto account Therefore, the method M does not 
generate the node b. -- a contradlctlon Let us now 
agam proceed ab absurd0 to prove that for each b in 
RC-,-RM, Rib = Ib Suppose not and let k be an 
index m Ib but not m Rib We modify the query graph 

53 



of the query instance 6 as before The magic set does 
not use the new arc (b , bk ) because b IS not m RM and 
It cannot generate the pair (a ,a,) The countmg 
method uses the node b but, smce Rib does not contam 
the mdex k, the node bt does not have the Index k 
Hence, a path from bt to bo with length k cannot be 
constructed by repeatedly usmg Rule 2, 1 e , b. IS not 
marked as an answer (contradlctlon) 

If part Let us now suppose that, for any query 
mstance $ , the Independent magic countmg method M 
constructs the reduced sets m such a way that 
RM lJ RC-, = MS and for each b m RC,-RM, 
RI6 = 16 We have to prove that M IS correct con- 
slder any node bo m the query answer By ProposItIon 
1, there exists a path from a to bO composed by k arcs 
m GL , the arc (b , bt ) m G,J and the arcs (bk ,bt-I) 

, , (b do) In GR If b IS m RC-, -RM, the index k 
IS m Ib by Proposition 1 and, then, In RI6 since 
RI, = Ib by hypothesis The mdex k IS passed to bt by 
Rule 1 Hence, the countmg method assigns the mdex 0 
to b 0 by repeatedly applymg Rule 2 Therefore, the node 
bO IS mcluded m the answer by Rule 5 Suppose now 
that b IS not m RC,-RM We have that b IS m Nt 
because it IS the source node of an arc m GE Hence, 
smce NL = MS by Proposition 1 and 
RM U RC-, = MS by hypothesq b IS m RM Rules 
3 and 4 generate all pans (c ,d ) such that (b ,e ) IS m 
AE and there are paths from c to b and from e to d 
with the same length Hence, the pair (a ,b 0) 1s also 
generated and the node b,-, IS mcluded m the answer by 
Rule 6 This concludes the proof t] 

Theorem 1 allows us to dlvlde the nodes of the 
magic graph mto the set RC that uses the counting 
method and the set RM that uses the magic set 
method Smce the countmg method 1s better than the 
magic method for all nodes but the recurrmg ones, the 
Ideal solution assigns the recurrmg nodes to RM and all 
others to RC However, this ultimate goal IS not easy to 
reach, because of the added complexity of detectmg 
recurrmg nodes, thus, we present three alternatlve 
methods that approximate the ultimate goal with solu- 
tlons that offer practical advantages of their own Smce 
detectmg non-regular graphs IS easier than detectmg 
cychc ones, these methods use the regularity of the 
magic graph as their declslon crlterlon 

The simplest method to Implement IS the bsslc 
method, as follows 

4 Basrc Method If the graph G, IS regular then 
RM = 0 and RC = CS, otherwlse RM = MS 
and RC = 0 The basic method comcrdes with 
the countmg method m the former case and 

e 

b 

a 

Fig 2. Magic Graph 

w&h the magic set method m the latter csse 

For instance, the graph CL. of Figure 2, IS not regular, 
thusRM=MS={a,b, ,l}sndRC=@ 

While the basic method removes the compdetlme 
dilemma of havmg to chose between counting and magic 
sets, It 1s clearly suboptlmal m the sense that the count- 
mg method should still be used for the parts of the 
graph which do not contam any multlple or recurrmg 
nodes The next method accomphshes that by recordmg 
the level at which non-regular nodes are first found 

b) Srngle Method Let il be the maximum mdex such 
that all nodes m CS-, havmg an mdex less then 
;, are single Then, RC-, IS the set of all (smgle) 
nodes with mdex less than ‘2 I and 
RM = MS-RC-, 

In Figure 2, for example, we have t, =2, RC-, = {a, 
b,c,d}andRM={e,f, 11) 

Usmg an mdex to partltlon the graph horlzontally 
represents too coarse a cntenon, smce nodes m different 
vertical branches of the graph are smeared together For 
the example of Figure 2, for Instance, the nodes 
e, ,h are asslgned to RM, although they are smgle 
The next method solves this problem 

cl Multrple Method RC, IS the set of all smgle 
nodes and RM = MS-RC-, (I e , RM contams 
all multiple and recurrmg nodes) 

For the example of Figure 2, we have RC-, = {a, b , 
c, d, e, f } and RM = {g, h, I, 3, k, I} 

Our final method uses countmg for both single 
and multlple nodes 

54 



4 Recurrrng Method RC, 1s the set of all single 
and multiple nodes and RM = MS-RC, (thus, 
RM contams all recurring nodes) 

For the magic graph GL m Figure 2, the Recurrmg 
Method wdl produce, RC-, = {a, b , c , d, e , f , h , 
k}andRM={g,1,3,1} 

5. Integrated Magic Counting Methods 

Before turnmg to the actual computation of the 
reduced set, let us observe how, m the last three 
methods, the RM nodes have been relegated to the part 
of the graph most remote from the source-- I e , to the 
upper part of Figure 2 As the magic set computation 
for these nodes progresses, It moves to the lower part of 
the graph (I e, closer to the source node) where no recur- 
rmg node exists -- thus it can be Improved by usmg the 
countmg method The Integrated magic counting 
methods embody this Improvement 

MODIFIED RULES El QUERY FOR 
INTEGRATED MC METHODS 

Jh(X, Y) - RWX), E(X, Y) (1) 

f&(X, Y) - RWW, L(X, XI), (2) 

&(X1, Y,), R (Y, YJ 

PC(J) Y) - RC(J, X), L(X, Xl), (3) 

&t(X, Y), R(Y, YJ 

Pc(J, Y) - RC(J, W, E(X, Y) (4 

Po(J--1, Y) - PO(J) Yd, R(Y, Y,) (5) 

Answer(X) - Po(O, X) 

Answer (X) 9 

(6) 

Rules 1 and 2 are those of the magic set method, 
whereas Rules 4 and 5 are those of the countmg method 
Rule 3 contains the recursive predicate PM m Its body 
Nevertheless, d the magic set method (first two rules) 
are apphed before the countmg method, then PM IS 
already solved and Rule 3 can be considered as an exit 
rule Indeed, this rule transfers the results of the magic 
set method to the countmg method Therefore, these 
magic countmg methods are called rntegrated 

THEOREM 2 An rntegrated magrc countrng 
method :s correct J and only :f the followtng condrtrons 
hold a) RM u RC-, = MS, b) for each b tn 
RC-,-RM, Rib = Ib, and c) the parr (O,a), where a IS 
the source node of the query graph, :s tn RC 

PROOF It follows the lmes of the proof of 
Theorem 1 u 

Also for Integrated methods, we may have basic, 
angle, multiple and recurrmg methods, according to the 
way the reduced sets are constructed However, by 
Theorem 2, the reduced countmg set RC cannot be 
empty Then we shall assume that an empty RC actu- 
ally means that RC only contams the pair (0,a ) The 
Integrated smgle method comcldes with the magic 
countmg method proposed m [SZl] 

We are interested m magic countmg methods that 
are not only correct but also eafe, 1 e , the answer to the 
query can be found m a fimte amount of time via a 
fixpomt computation Let Step 1 denote the cornputs 
tlon of the sets RM and RC The followmg proposltlon 
states that the safety of a magic countmg method only 
depends on Step 1 

PROPOSITION 3 An (tntegrated or rndepen- 
dent) magtc counttng method 18 safe rf and only J for 
each rnstance of the query Q, the computatron of Step 1 
is safe 0 

In the remammg sectlons, we discuss the four 
approaches for computing the reduced sets and we com- 
pare the corresponding methods for efflclency To this 
end, we shall denote the cost function of the basic 
method by B , single method by S, multiple method by 
M, or recurrmg method by R A subscript denotes 
whether the method IS independent (IND ) or integrated 
(INT) For instance MINI IS the cost function of the 
Independent multiple method and SIN* IS the cost funo 
tlon of the Integrated smgle method Since the 
Integrated basic method practically corncldes with the 
Independent one, we denote by B the cost function of 
the two of them Fmally, we contmue to denote the cost 
functions of the countmg method and the magic set 
method by C and MS, respectively Also, If M’ and 
M are two methods, then M' 5, M ~111 denote that 
o,t = 0 ( OM) for magic graphs of type q , where 
q =R stands for regular magic graphs, q =A stands for 
non-regular acychc ones and q =C stands for non- 
regular cychc ones When M’ IM and vice versa, we 
write M’ = M When Ml <M holds only on the - 
average case (I e , d the bound mL = 0 (mR ) holds as It 
~111 happen on the average), then we use the notation 
M’ AM For Instance, the part a) and b) of Proposl- 
tlon 2 are expressed as C & MS and C &A MS , 
respectively We have MS IO C as well 

6. Basic Magic Counting Methods 

The basic magic countmg methods lust detect 
whether there IS some multlple node m the magic graph 
When no such a node occurs, they use the countmg 
method, otherwIse they use the magic set method Thus, 
Step 1 1s Implemented as follows we extend the magic 
set predicate with an addItIona argument that records 
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whether this IS the first occurrence of a node (l), or a 
succemlve one (2) Only first occurrences are used m the 
followmg steps, the multiple occurrences are not 

begin 

mo, 1, a 1, 
I ‘0, 

while m(I, 1, X,) do 

begin 

Jw+1, c, Xl) - m(r, 1, X), L(X, Xl), 

lf Jq t 1, X,) then C=2 else C=l, 

I =I+l, 

end, 

end 

(note the use of tf -then -eke construct wrth the 
ous meaning as per any implementation of Prolog) 

obvl- 

At the end of the above fixpomt computation, If 
all nodes are smgle (I e , there are no tuples (I, 2, Y) m 
MS), then RM = 8 and RC IS computed as follows 

RC(I, Y) - m(I, 1, Y) 

On the other hand, If there IS at least one multl- 
ple (or recurrmg) node (1 e , there are at least one tuple 
(I, 2, Y) m m), then RC = 8 (or RC = ((0,~ )}, d 
the method 1s Integrated) and RM LS computed as fol- 
lows 

RM( Y) - m(- > 1, Y) 

Then the followmg proposltlon follows directly 
from the defimtlons 

PROPOSITION 4 The bas:c magrc counttng methods 
are correct and saje and therr costs are the ones shown 
tn Table 2 Furthermore, B =R C, B =A,C Ma, 
B SC C, and C & B 

Tab 2 Coats of besrc magtc counhng methods 

7. Single magic counting methods 

The smgle magic countmg methods represent a 
simple extension of the basic methods They perform 
the same fixpomt computation as basic methods, but, at 
the end, they construct the reduced sets m a different 
way If all nodes are smgle then RM = 8 and RC IS 
constructed from m by prolectmg out the second 
mdex (as basic methods do) If there IS at least one mul- 
tiple (or recurrmg) node then the methods select the 
maximum index I, for which all nodes with index I <r, 

are smgle Then, RM and RC are computed m the fol- 
lowmg way 

RM(I, Y) - m(I,l, Y), 121~ 

RC(I, Y) -m(I,I, Y), I<:, 

(Again, if RC turns out to be empty, then the 
integrated method adds the pair (0, a ) ) 

In order to present the complexity of single 
methods, we characterize the graph GL as follows Con- 
slder the subgraph of GL induced by all smgle nodes b 
havmg a drstance from a less than I, We denote the 
number of nodes and arcs of this subgraph by n, and 
m,, respectively Moreover, we denote by ni the 
number of all smgle nodes b such that b has a distance 
from a less than :, and there IS no directed path from 
b to any node with drstance from a greater or equal to 
I, Le mj be the total number of arcs entermg the 
above nodes Obviously, n, 2 nj and m, 2 mi For 
the magic graph GL m Figure 2, we have I, = 2, 
n, = 4, ni = 1, m, = 3, m, = 1 

Thus we have the followmg proposltlon 

PROPOSITION 5 The smgle magrc countrng methods 
are correct and safe and therr costs are the ones shown 
tn Tuble S Furthermore, %'D =R &NT =R B, 

SINT SA,C SIM, and&w IA,C B 

PROOF It IS easy to see that 
RC-, U RM = MS In addition, RC, contams only 
single nodes Hence, every node m RC, has only one 
Index, thus, condltlon b) of Theorem 1 or 2 IS satisfied 
Fmally, If RC IS not empty, then it contams the pair 
(o ,(I ) smce obvlousiy 05 I# In the other case, we have 
added the above pair It follows that also condltlon c) of 
Theorem 2 holds, so the smgle methods are correct Let 
us now discuss their complexity If the magic graph IS 
regular, RC-, contams all nodes and the smgle methods 
comcldes with the counting method Let us now suppose 
that the query IS not regular It IS easy to see that also 
m this case the reduced sets are constructed m 0 (mL ) 
time Let us now consider the lmplementatlon of Step 2 
The Integrated single method works as the mag;lc set 
method for all nodes m N‘ that have a distance from 
the source node 4 greater or equal to I, Thus, the 
method finds all possible paths from such nodes to all 
nodes m NR Hence, the magic set part of the 
n&grated method works m e(( rnL -m, ) x rnR ) time On 
the other hand, the method works as the countmg 
method for all nodes with distance from 4 less than I, 
Thus, Its cost IS e( n, x mR ) Note that the cost of the 
Rule 3 (see the lmplementatlon of Step 2 for Integrated 
methods), where the results of the magic set method IS 
passed to the countmg method, has been already 
included m the cost of the magic set part of the 
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Integrated method Usmg a slmllsr argument, It IS easy 
to see that the cost functions of the independent method 
for non-regular magic graphs, with or without cycles, are 
the ones shown m Table 3 Hence, all cost functions m 
Table 3 are correct and, therefore, the single methods 
are safe The cost function of the independent method 
IS an upper bound for the cost function of the Integrated 
method for non-regular graphs, since m, >m, The 
other relatlonshlps among cost functions can be easily 
derived from Table 3 and Table 2 u 

Tab 3 Costs of the stngle magrc countrng methods 

Proposition 5 says that the single methods work 
better than the basic ones and that the integrated single 
method works better than the independent one We note 
that the integrated single method comcldes with the 
magic counting method presented m [SZl] 

8. Multiple Magic Counting Methods 

We now propose multiple magic countmg methods 
that fully exploit single nodes by mcludmg all of them 
m the reduced counting set To this end, the second 
argument of the magic set predicate records whether 
this IS the first occurrence of a node or the second This 
time, both first and second occurrences are used to gen- 
erate other nodes m order to identify all multiple or 
recurrmg nodes (thus, we may need to use the same 
path twice) 

begin 

Jmo, 1, 0 1, 
I =o, 
while m(I, C, XI), do 
begin 

Ms(I+1, c, X,) - 
m(I, 6, X), L(X, XI), not(MS(-, 2, XI)), 
If Ms(- , 1, X,) then C=2 else C=l, 

I =I+1, 
end, 

end 

RM( Y) - MS(,) 2, Y) 

RC(I, Y) -m(I, 1, Y), not(RM(Y)) 

If RC happens to be empty (I e , there are no sm- 
gle nodes), then the integrated method adds the pair 
(0,a ) In order to discuss the complexity of multiple 
magic counting methods, we denote by n, the number 
of all simple nodes m GL and by m, the number of arcs 
m the subgraph of GL induced by the simple nodes 
Besides, we denote by ni the number of all simple nodes 
b m GL such that there IS no directed path from b to 
any multiple or recurring node Let mi be the total 
number of arcs entering the above nodes It IS easy to 
see that nl>nj, m,>mo, n,>n,, m,>m,, 
nj > n, and rn; >rno For the magic graph in Figure 
2, we see that n, = 6, ni = 2, m, = 6 and m, = 3 

PROPOSITION 6 The multtple magtc countrng 
methods are correct and safe and thetr costs are the 
ones shown rn Table 4 Furthermore, MINT <A ,c MIND, 

MIND <A.C %JD, MINT 5 A .C &NT and 

MIND =R MINT =R &NT =R SIND t3 

Tab 4 Costs of multrpie magtc countrng method8 

From Proposition 6, we infer that the independent 
(rev , integrated) multiple counting method works 
better than the independent (resp , integrated) single 
method Besides, the integrated multiple method works 
better than the independent one 

Q. Recurring Magic Counting Methods 

In order to cope with cycles m the reduced set 
computation, we observe that, m a graph with K nodes, 
any path with length >2 x K-l, IS cychc Thus, we 
have the followmg algorithm, which also uses a set- 
cardmahty function (an efflclent operation that does not 
change our complexity bounds) 

At the end of the above fixpomt computation, the 
multlple methods compute RC, aa the set of all smgle 
nodes and RM ss the set of all multlple/recurrmg nodes 
m the followmg way (recall that the magic set MS IS 

also needed for independent methods) 

MS(Y) -m(-,I, Y) 
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begin 

wo, 1, a 1, 
I =o, 
K =l, 
while m(I, XJ, I <2x K-l do 
begin 

Ms(I+1, X,) - Ms(I, X), L(X, Xl), 

K =cardrnalrty (m(, , Y)), 
I =1+1, 

end, 

end 

At the end of the above fixpomt computation, the 
recurring methods compute RC-, as the set of all single 
and multiple nodes and RM as the set of all recurring 
nodes m the followmg way 

MS:Y) -m(-, Y) 

RM(Y) -m(I, Y), IZK 

RC(I, Y) - m(I, Y), not(RM( Y)) 

If RC happens to be empty (I e , all nodes are 
recurring) then the mtegrated method adds the pair 
(0, a ) to it 

In order to perform the complexity analysis of 
recurring methods, we denote by n, and m,,, the 
number of multiple and single nodes and the number of 
arcs among such nodes Besides, we denote by n6 the 
number of all simple or multiple nodes b m G’, such 
that there IS no directed path from b to any recurring 
node Let m+, be the total number of arcs entering the 
above nodes It IS easy to see that n, 2 n, , m,,, 2 m, , 

n, 2 nh, mm 2 m,, n+, 2 ni and m, 2 mj For 
the magic graph GL m Figure 2, we see that n, = 8, 
%I =7,m, =9andm, =8 

PROPOSITION 7 The recrrrrng magrc couatmg 
methods are correct and safe and the:r costs are the 
ones shown rn Table 5 Furthermore, RINT sAvC RIND, 

RIND 6,~ MIND, &NT 6,~ MINT and 

RIND =R &NT =R MINT =R MIND tl 

MG Independent Integrated 

Regular 8(mL -I-nt X mR) e(mL+nLxmR) 

Acychc e(nL X mL e(nL x mL 
+nLxmR) +nLxmR) 

cyc11c 8(nL XmL+ 8(nL x mL+ 
+(mL-m&)x mR $-(mL-%)xmR 

+n, XmR) +%XmR) 

Tab 5 Costs of recurring magrc counting methods 

Proposltlon 7 states that again the integrated 
method works better than the correspondmg mdepen- 
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dent method, and both methods work better than the 
counting method However, the reduced sets are not 
computed any longer m 0 (mL ) time This means that 
the recurring methods work better than the correspond- 
ing multiple methods only on the average One could 
object that the lmplementatlon of Step 1 for recurring 
methods 1s a bit naive, and some other lmplementatlon 
could work better Indeed, we have a smarter implemen- 
tation that computes the reduced set in 
0 (mL +n, x m, ), thus the increase of complexity IS 
only hmlted to the multiple nodes, whereas recurring 
nodes are detected m linear time (Due to the space con- 
straints of this paper, this algorithm IS not given here, 
but see [Tar] for a depth algorithm that detects strongly 
connected components m lmear time ) We point out 
that the cost component n, x m, 1s due to the fact 
that we need to associate with every multiple node all 
possible distances from the source node This means 
that we cannot expect the same tangible improvement 
m passing from multiple methods to recurring ones as 
we had m moving from basic to single methods or from 
single to multiple methods 

10. Conclusion 

We have presented a family of methods that com- 
bine the strengths of two well-known methods for Imple- 
mentmg logic queries for databases, namely, the magic 
set method and the counting method We have given 
necessary and sufficient conditions for the new alg+ 
nthms, called magic counting methods, to be correct 
and safe In addition, we have divided the family of 
magic counting methods into independent methods and 
integrated methods, according to whether the magic set 
part and the counting part run independently from each 
other or cooperate Within each family, four methods 
were Introduced, these are the basic method, the single 
method, the multiple method and the recurring method 
Every method IS identified by two coordinates, one dls- 
tmgulshmg between basic methods, single methods, mul- 
tlple methods and recurring ones, and the second coor- 
dinate estabhshmg whether the method IS independent 
or integrated 

A detailed efficiency analysis of the methods was 
performed and it was found that that there exists a 
clear hierarchy among them In fact, If the first coordl- 
nate IS fixed, then the integrated method works better 
than the independent ones, d the second coordinate 1s 
fixed, then a recurring method works better than a mul- 
tiple one, a multiple one works better than a single one, 
and a single one works better than a basic one Finally, 
all magic counting methods are safe and work better 
than the magic set method, and they comclde with the 
counting method when the query 1s regular In Figure 3 
we present this hierarchy m details The relatlonshlp 



5 p IS denoted by a a sohd arc labelled s while the rela- 
tlonshlp sg IS denoted by a dotted arc The integrated 
basic method and the the independent basic method 
have the same cost, thus, they are represented by a one 
node, B Since all magic countmg methods have the 
same cost function for regular cases, the correspondmg 
arcs are not included m Figure 3 

These results were obtamed for simple kmds of 
queries However, their extension to a larger class of 
queries, called canonical strongly linear in [SZl], 1s rea- 
sonably simple Their extension to the completely gen- 
eral case IS harder, but possible, and constitutes a topic 
for future research 

; A, C I I I I 

A, C 

/ 

/ 

gg 

Fig 3 Efficienq Hierarchy Among hlag~c Counting Methods 
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