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Abstract. The usefulness of the results produced by data mining methods can
be critically impaired by several factors such as (1) low quality of data, includ-
ing errors due to contamination, or incompleteness due to limited bandwidth for
data acquisition, and (2) inadequacy of the data model for capturing complex
probabilistic relationships in data. Fortunately, a wide spectrum of applications
exhibit strong dependencies between data samples. For example, the readings
of nearby sensors are generally correlated, and proteins interact with each other
when performing crucial functions. Therefore, dependencies among data can be
successfully exploited to remedy the problems mentioned above. In this paper,
we propose a unified approach to improving mining quality using Markov net-
works as the data model to exploit local dependencies. Belief propagation is used
to efficiently compute the marginal or maximum posterior probabilities, so as to
clean the data, to infer missing values, or to improve the mining results from a
model that ignores these dependencies. To illustrate the benefits and great gener-
ality of the technique, we present its application to three challenging problems:
(i) cost-efficient sensor probing, (ii) enhancing protein function predictions, and
(iii) sequence data denoising.

1 Introduction

The usefulness of knowledge models produced by data mining methods critically de-
pends on two issues. (Data quality Data mining tasks expect to have accurate and
complete input data. But, the reality is that, in many situations, data is contaminated,
or is incomplete due to limited bandwidth for acquisition. i2ydel adequacyMany

data mining methods, because of efficiency considerations or design limitations, use a
model incapable of capturing rich relationships embedded in data. The mining results
from an inadequate data model will generally need to be improved.

Fortunately, a wide spectrum of applications exhibit strong dependencies between
data samples. For example, the readings of nearby sensors are correlated, and proteins
interact with each other when performing crucial functions. Data dependency has not
received sufficient attention in data mining research yet, but it can be exploited to rem-
edy the problems mentioned above. We study this in several typical scenarios.

Low Data Quality Issue Many data mining methods are not designed to deal with
noise or missing values; they take the data “as is” and simply deliver the best results
obtainable by mining such imperfect data. In order to get more useful mining results,
imprecise data needs to be cleaned, and missing values need to be inferred.



Data Contamination An example of data contamination is encountered in optical
character recognition (OCR), a technique that translates pictures of characters into a
machine readable encoding scheme. Current OCR algorithms often translate two adja-
cent letters “ ff " into a “# ” sign, or incur similar systematic errors.

In the OCR problem, the objective is not to ignore or discard noisy input, but to iden-
tify and correct the errors. This is doable because the errors are introduced according
to certain patterns. The error patterns in OCR may be related to the shape of individual
characters, the adjacency of characters, or illumination and positions. It is thus possible
to correct a substantial number of errors with the aid of neighboring characters.

Data Incompleteness A typical scenario where data is incomplete is found in sen-
sor networks where probing has to be minimized due to power restrictions, and thus data
is incomplete or only partially up-to-date. Many queries ask for the minimum/maximum
values among all sensor readings. For that, we need a cost-efficient way to infer such
extrema while probing the sensors as little as possible.

The problem here is related to filling in missing attributes in data cleansing [5]. The
latter basically learns a predictive model using available samples, then uses that model
to predict the missing values. Sample correlations are not considered in the model train-
ing. In the sensor problem, however, we can leverage the neighborhood relationship, as
sensor readings are correlated if the sensors are geographically close. Even knowledge
of far-away sensors helps, because that knowledge can be propagated via sensors de-
ployed in between. By exploiting sensor correlation, unprobed sensors can be inferred
accurately, and thus data quality can be improved.

Inadequate Data Model Issue Many well-known mining tools are inadequate to
model complex data relationships. For example, most classification algorithms, such
as Naive Bayes and Decision Trees, approximate the posterior probability of hidden
variables (usually class labels) by investigating individual data features. These discrim-
inative models fail to capture useful data dependencies or correlations.

Take protein function prediction as a concrete classification example. Proteins are
known to interact with some others to perform functions, and these interactions connect
genes to form a graph structure. If one chooses to use Naive Bayes or Decision Trees
to predict unknown protein functions, one is basically confined to a tabular data model,
and thus has lost rich information about interactions.

Markov networksas a type of descriptive model, provide a convenient represen-
tation for structuring complex relationships, and thus a solution for handling proba-
bilistic data dependency. In addition, efficient techniques are available to do inference
on Markov networks, including the powerfBlelief Propagation[15] algorithm. The
power in modeling data dependency, together with the availability of efficient infer-
ence tools, makes Markov networks very useful data models. They have the potential to
enhance mining results obtained from data whose dependencies are underused.

Our Contributions The primary contribution of this paper is a unified approach to
improving mining quality by considering data dependency extensively in data mining.
We adopt Markov networks as the data model, and use belief propagation for efficient
inference. The benefits of this approach for data mining practice are also illustrated by
real-life examples.
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Fig. 1. Example of a Pairwise Markov Network. In (a), the white circles denote the random

variables, and the shaded circles denote the external evidence. In (b), the potential functions
¢() and ¢() are showed.

Outline We describe Markov networks in the next section. Also discussed there are
pairwise Markov networks, a special form of Markov network. Pairwise Markov net-
works not only model local dependency well, but also allow very efficient computation
by belief propagation. We then address the above-mentioned examples in sections 3 and
4.1 We conclude the paper with related work and discussion in Section 5.

2 Markov Networks

Markov networks have been successfully applied to many problems in different fields,
such as artificial intelligence [10], image analysis [13] and turbo decoding [7]. They
have the potential to become very useful tools of data mining.

2.1 Graphical Representation

The Markov network is naturally represented as an undirected gfaph{V, E), where
V is the vertex set having a one-to-one correspondence with the set of random variables
X = {z;} to be modeled, an& is the undirected edge set, defining the neighbor-
hood relationship among variables, indicating their local statistical dependencies. The
local statistical dependencies suggest that the joint probability distribution on the whole
graph can be factored into a product of local functions on cliques of the graph. A clique
is a completely connected subgraphs (including singletons), denot&g ashis fac-
torization is actually the most favorable property of Markov networks.

Let C be a set of vertex indices of a clique, and@ebe the set of all suck’. A
potential functionyx (z¢) is a function on the possible realizatiog: of the cliqgue
X¢. Potential functions can be interpreted as “constraints” among vertices in a clique.
They favor certain local configurations by assigning them a larger value.

The joint probability of a graph configuratigri{«}) can be factored into

1
P({x}) = 5 [ ¥xc(x0) (1)
cec
whereZ is a normalizing constanZ = 3., [Tcec ¥xc(xc)
! Due to space limit, we only discuss two applications here: cost-efficient sensor probing and

enhancing protein function predictions. Please refer to our technical report [3] for another
application in sequence data denoising.



2.2 Pairwise Markov Networks

Computing joint probabilities on cliques reduces computational complexity, but still,
the computation may be difficult when cliques are large. In a category of problems
where our interest involves only pairwise relationships among the variables, we can use
usepairwise Markov networksA pairwise Markov network defines potentials functions
only on pairs of nodes that are connected by an edge.

In practical problems, we may observe some quantities of the underlying random
variables{z;}, denoted a$y; }. The{y;} are often called evidence of the random vari-
ables. In the text denoising example discussed in Section 1, for example, the underlying
segments of text are variables, while the segments in the noisy text we observe are evi-
dence. These observed external evidence will be used to make inferences about values
of the underlying variables. The statistical dependency betwgandy; is written as a
joint compatibility functiong; (z;, y;), which can be interpreted as “external potential”
from the external field.

Another type of potential functions are defined between neighboring variables. The
compatibility functiony;; (z;, ;) which captures the “internal binding” between two
neighboring nodes andj. An example of pairwise Markov networks is illustrated in
Figure 1(a), where the white circles denote the random variables, and the shaded circles
denote the evidence. Figure 1(b) shows the potential functiohandq().

Using the pairwise potentials defined above and incorporating the external evidence,
the overall joint probability of a graph configuration in Eq.(1) is approximated by

P({xt () = 3 [T vt ) [T o6 w) @
(i) i

where Z is a normalization factor, and the product oveérj) is over all compatible
neighbors.

2.3 Solving Markov Networks

Solving a Markov network involves two phases:

— The learning phasea phase that builds up the graph structure of the Markov net-
work, and learns the two types of potential function§)’s and()’s, from the
training data.

— The inference phase, phase that estimates the marginal posterior probabilities or
the local maximum posterior probabilities for each random variable, such that the
joint posterior probability is maximized.

In general learning is an application-dependent statistics collection process. It de-
pends on specific applications to define the random variables, the neighborhood rela-
tionships and further the potential functions. We will look at the learning phase in detail
with concrete applications in Sections 3-4.

The inference phase can be solved using a number of methods: simulated annealing
[6], mean-field annealing [11], etc. These methods either take an unacceptably long time
to converge, or make oversimplified assumptions such as total independence between
variables. We choose to use the Belief Propagation method, which has a computation
complexity proportional to the number of nodes in the network, assumes only local
dependencies, and has proved to be effective on a broad range of Markov networks.



Fig. 2. Message passing in a Markov network.

2.4 Inference by Belief Propagation

Belief propagation (BP) is a powerful inference tool on Markov networks. It was pi-
oneered by Judea Pearl [10] in belief networks without loops. For Markov chains and
Markov networks without loops, BP is an exact inference method. Even for loopy net-
works, BP has been successfully used in a wide range of applications[8]. We give a
short description of BP in this subsection.

The BP algorithm iteratively propagates “messages” in the network. Messages are
passed between neighboring nodes only, ensuring the local constraints, as shown in
Figure 2. The message from nod node; is denoted asn;;(z;), which intuitively
tells how likely node thinks that nodg is in stater;. The messager;;(z;) is a vector
of the same dimensionality as.

There are two types of message passing rules:
— SUM-product rulethat computes the marginal posterior probability.
— MAX-product rule that computes the maximum a posterior probability.

For discrete variables, messages are updated using the SUM-product rule:

mit ) = D il y)eitax) [ mkix) 3)
%i KEN(i), k£
or the MAX-product rule,
mij* () = max ¢i(xi, vi) v (4, %)) [T mito (4)

keEN(i),k#j

wherem!,(z;) is the message computed in the last iteration of BRuns over all
neighbor nodes aofexcept nodg.

BP is an iterative algorithm. When messages converge, the final betigfis com-
puted. With the SUM-product rulé(z;) approximates the marginal probabilityz;),
defined to be proportional to the product of the local compatibility at no@g;)),
and messages coming from all neighbors of node

bi(xi)sum = xii (i, i) H mii(xi) (5)
JEN()
whereN (i) is the neighboring nodes of
If using the MAX-product rulep(x;) approximates the maximum a posterior prob-
ability:
bi(xi)max = arg max ¢i(x, yi) H m;i (xi) (6)
JeN()



3 Application I: Cost-Efficient Sensor Probing

In sensor networks, how to minimize communication is among the key research issues.
The challenging problem is how to probe a small number of sensors, yet to effectively
infer the unprobed sensors from the known. Cost-efficient sensor probing represents a
category of problems where complete data is not available, but has to be compensated
by inference.

Our approach here is to model a sensor network with a pairwise Markov network,
and use BP to do inference. Each sensor is represented by a random variable in the
Markov network. Sensor neighborhood relationships are determined by spatial posi-
tions. For example, one can specify a distance threshold so that sensors within the range
are neighbors. Neighbors are connected by edges in the network.

In the rest of this section, we study a rainfall sensornet distributed over Washington
and Oregon [9]. The sensor recordings were collected during 1949-1994. We use 167
sensor stations which have complete recordings during that period.

3.1 Problem Description and Data Representation

The sensor recordings were collected in past decades over two states along the Pacific
Northwest. Since rain is a seasonal phenomena, we split the data by week and build a
Markov network for each week.

We need to design the potential functiopgz;, v;) and;;(z;, z;) in Eq. (2) in
order to use belief propagation. One can use Gaussian or its variants to compute the
potential functions. But, in the sensornet we study, we find that the sensor readings
are overwhelmed by zeroes, while non-zero values span a wide range. Clearly Gaus-
sian is not a good choice for modeling this very skewed data. Neither are mixtures of
gaussian, due to limited data. Instead, we prefer to use discrete sensor readings in the
computation. The way we discretize data is given in section 3.3.

The ¢() functions should tell how likely we observe a readipdor a given sensor
x;. Itis natural to use the likelihood function:

¢i(xi, yi) = P(yilxi) (7)
The1)() functions specify the dependence of senss reading on its neighbar;.
Yij(xi,%;) = P(xj[xi) 8

3.2 Problem Formulation

A theoretical analysis of the problem will that the problem fits well into the maximum
a posterior (MAP) estimation on a Markov chain solvable by belief propagation.

Objective: MAP
Let X to be the collection of all underlying sensor readingshe collection of all
probed sensors. Using Bayes’ rule, the joint posterior probability givenY is:
P(YIX)P(X)
P(X]Y) =
XM = =5 ©)
Since P(Y') is a constant over all possibl&, we can simplify this problem of
maximizing the posterior probability to be maximizing the joint probability
P(X,Y) = P(Y|X)P(X) (10)



Likelihood

In a Markov network, the likelihood of the readinysdepends only on those vari-
ables they are directly connected to:

PYIX) = T Plyilx) (11)
i=1

wherem is the number of probed sensors.
Prior

Priors shall be defined to capture the constraints between neighboring sensor read-
ings. By exploiting the Markov property of the sensors, we define the prior to involve
only the first order neighborhood. Thus, the prior of a sensor is proportional to the
product of the compatibility between all neighboring sensors:

P(X) o< [ Plala:) (12)
Solvable by BP &4

By replacing Egs.(11) and (12) into the objective Eq.(10), we have the joint proba-
bility to be maximized:

N

1

P(X,Y) = = H P(l"j|$z‘)HP(yz'|$i) (13)
(4.9 i=1

Looking back at thes() and () functions we defined in Egs.(7) and (8), we see

that the objective function is of the form: v

P Y) = o [T oo [T ot m) (14)
(4,5) i=1
whereZ is a normalizing constant.
This is exactly the form in Eq.(2), where the joint probability over the pairwise
Markov network is factorized into products of localized potential functions. Therefore,
it is clear that the problem can be solved by belief propagation.

3.3 Learning and Inference

The learning part is to find the() and() functions for each sensor, as defined in
Eqgs.(7) and (8). The learning is straight-forward. We discretize the sensor readings in
the past 46 years, use the first 30 years for training and the rest 16 years for testing.
In the discrete space, we simply count the frequency of each value a sensor could pos-
sibly take, which is the(), and the conditional frequencies of sensor values given its
neighbors, which is the ().

We use a simple discretization with a fixed number of bins, 11 bins in our case,
for each sensor. The first bin is dedicated to zeroes, which consistently counts for over
50% of the populations. The 11 bins are assigned in a way that give roughly balanced
number of readings in each bin. This very simple discretization method has been shown
to work well in the sensor experiments. More elaborated techniques can be used which
may further boost the performance, such as histogram equalization that gives balanced
bin population with adaptive bin numbers.

For inference, belief propagation does not guarantee to give the exact maximum a
posterior distribution, as there are loops in the Markov network. However, loopy belief
propagation still gives satisfactory results, as we will see shortly.
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Fig. 3. Top-K recall rates vs. probing ratios. (a): results obtained by our BP-based probing;
(b) by the naive probing. On average, BP-based approach probed 8% less, achieves 13.6%
higher recall rate for raw values, and 7.7% higher recall rate for discrete values.

3.4 Experimental Results

We evaluate our approach using Top-K queries. A Top-K query asks fdk tkensors
with the highest values. It is not only a popular aggregation query that the sensor com-
munity is interested in, but also a good metric for probing strategies as the exact answer
requires contacting all sensors.

We design a probing approach in which sensors are picked for probing based on
their local maximum a posterior probability computed by belief propagation, as follows.

BP-based Probing:

1. Initialization: Compute the expected readings of sensors using the training data. As
the initialization, pick the top\/ to probe. (We sedd = 20 in our experiments.)
. Probe the selected sensors.

3. True values acquired in step 2 become external evidence in the Markov network.
Propagate beliefs with all evidence acquired so far.

4. Again, pick the top sensors with the highest expectations for further probing, but
this time use the updated distributions to compute expectations. When there are
ties, pick them all.

5. Iterate steps 2-4, until beliefs in the network converge.

6. Pick the topK with the highest expectations according to BP MAP estimation.

As a comparative baseline, we have also conducted experiments using a naive prob-
ing strategy as follows:

Naive Probing:

1. Compute the expectations of sensors. Pick thetdp sensors.
2. Probe those selected sensors.
3. Pick the topK.

Performance of the two approaches is shown in Figure 3 (a) and (b), respectively.
On each diagram, the bottom curve shows the probing ratio, and the two curves on the
top show the recall rates for raw values and discrete values, respectively. We use the
standard formula to compute recall rate. lSetlenotes the top-K sensor set returned,
andT the true top-K set. then:

N

T
S T

Recall =
||

(15)



Since the sensor readings are discretized in our experiments, we can cohagmate
T using raw values, or discrete values. Discrete recall demonstrates the effectiveness of
BP, while raw recall may be of more interest for real application needs. As can be seen
from Figure 3, raw recall is lower than discrete recall. This is due to error introduced
in the discretization step. We expect raw recall to be improved when a more elaborated
discretization technique is adopted.

It shows clearly in Figure 3 that BP-based approach outperforms the naive approach
in terms of both recall rates, while requiring less probing. On average, the BP-based
approach has a discrete recall8§¥% and a raw recall o78.2%, after probing only
17.5% sensors. The naive recall has a discrete recall of 8B/%, a raw recall of only
64.6%, after probing25% sensors.

The results shown in Figure 3 are obtained for= 10. The relative performance
remains the same for other valuEs= 20, 30, 40.

In our technical report [3], we give a closer look on how sensor beliefs change over
iterations, and further discussions on how belief propagation works.

4  Application II: Enhancing Protein Function Predictions

Local data dependency can not only help infer missing values, as in the sensor example,
but can also be exploited to enhance mining results. Many data mining methods, for
efficiency consideration or design limitation, use a model incapable of capturing rich
relationships embedded in data. Most discriminative models like Naive Bayes and SVM
belong to this category. Predictions of these models can be improved, by exploiting local
data dependency using Markov networks. The predictions are used as the likelihood
proposal, and message passing between variables refines and reinforces the beliefs. Next
we show how to improve protein function predictions in this way.

4.1 Problem Description

Proteins tend to localize in various parts of cells and interact with one another, in order
to perform crucial functions. One task in the KDD Cup 2001 [2] is to predict protein
functions. The training set contains 862 proteins with known functions, and the test-
ing set includes 381 proteins. The interactions between proteins, including the testing
genes, are given. Other information provided specifies a number of properties of indi-
vidual proteins or genes that encodes the proteins. These include the chromosome on
which the gene appears, phenotype of organisms with differences in this gene, etc.

Since information about individual proteins or genes are fixed features, it becomes
crucial how to learn from interactions. According to the report of the cup organizers,
most competitors organized data in relational tables, and employed algorithms that deal
with tabular data. However, compared with tables, graphical models provide a much
more natural representation for interacting genes. With a Markov network model, inter-
actions can be modeled directly using edges, avoiding preparing a huge training table.
Interacting genes can pass messages to each other, thus getting their beliefs refined
together.

In the next of this section, we show a general way of enhancing a weak classifier
by simply leveraging local dependency. The classifier we use is Naive Bayes, which
is learned from the relational table. We build a Markov network, in which genes with
interactions are connected as neighbors. &fdunction prediction comes from Naive
Bayes, and the () are learned from gene interactions.



4.2 Learning Markov Networks

We separate the learning of each function, as focusing on one function a time is easier.

There are 13 function categories, hence we build 13 Markov networks. To prepare the

initial beliefs for a network, we first learn a Naive Bayes classifier, which output a prob-

ability vectorby (), indicating how likely a gene will perform the function in question.
Each gene maps to a binary variable; in the Markov network. First we design

the ¢() potentials for{z;}. One can set the Naive Bayes predictigit) to be ¢().

But this way the Naive Bayes classifier is over trusted, make it harder to correct the

misclassifications. Instead, we adopt a generalized logistic function, shown in Eq.(16),

to blur the margin between the belief on two classes, yet still keeping the prediction

decision. In the experiments, we set 0.75, b = 0.125, « = 6, andg = 0.5.

+b (16)

The () potentials are learned from protein interactions. Interactions are measured
by the correlation between the expression levels of the two encoding genes. At first we
tried to related the functions of two genes in a simple way: a positive correlation indi-
cates that with a fixed probability both or neither genes perform the function, while a
negative correlation indicates that one and only one gene perform the function. This will
leads to a simple fixeg() function for all interacting genes. But, a close look at the in-
teraction tells that 25% of the time this assumption is not true. In reality, sometimes two
genes participating in the same function may be negatively correlated; a more influen-
tial phenomena is that genes may participate in several functions, hence the correlation
is a combined observation involving multiple functions.

We decided to learn the distribution of correlation values for three groups of in-
teractions, separately: (a)FF: a group for protein pairs that both perform the function,
(b)FNF: a group for pairs that one and only one performs the function, and (c)NFNF: a
group for protein pairs that neither performs the function. Thus, the potential function
1;,; defines how likely to observe a correlation value given for genesdz;, under
different cases whetre; andx; each has the function or not. In our technical report, we
plot the distributions of correlation values learned for two functions. The distribution
histograms show that correlation distributions differ among the three groups, and are
specific to functions as well.

4.3 Experiments
Naive Bayes does not perform well on this problem, because it does not model the gene
interactions sufficiently, and thus cannot fully utilize the rich interaction information.
Taking the average predictive accuracy of all classifiers, one per function, the overall
accuracy of Naive Bayes &8%. Belief propagation improves this 89%.

To exemplify how misclassifications get corrected due to message passing, we show
a subgraph of genes in Figure 4. The white circles represent genes(variables), and the
shaded circles represent external evidence. Only training genes have corresponding ex-
ternal evidence. The 1's or O’s in the circles tell whether a gene has the function in
question or not. For interested readers, we also put the gene ID below the circle. The
subgraph contains four training genes and five testing genes. All these testing genes
were misclassified by Naive Bayes. After receiving strong beliefs from their neighbor-
ing genes, four out of five testing genes were correctly classified. The other test gene
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Fig. 4. A subgraph in which testing genes got correct class labels due to message passing.

‘G230291’ was misclassified by both, but Naive Bayes predi6tédor it to have the
function (which is the truth), while belief propagation increased this belig51.

We also evaluated our approach using the score function originally used in the 2001
KDD cup [2]. First we picked out all the functions we predicted for a gene. If more
functions are predicted than the true number (which is actually the number of duplicates
of that gene in the test table provided), we remove the ones with the smallest confidence.
The final score is the ratio of correct predictions, including both positive and negative
predictions. Our final score &1.2%, close to the Cup winner$3.6%. Although the
winner scored reasonably high, they organized data in relational tables and didn’t fully
explore gene interactions. We expect that their method could perform better if integrated
with our approach to exploit local dependencies between genes.

The Cup winner organized data in relational tables, which is not designed at all for
complex relationships. To make up for this, they manually created new features, such as
computing “neighbors” withirk (k > 1) hops following neighbor links. Even so, these
new features can only be treated the same as the other individual features. The rich
relationship information in the original graph structure was lost. Graphical models, on
the other hand, are natural models for complex relationships. Markov networks together
with belief propagation provides a general and powerful modeling and inference tool
on problems satisfying local constraints, such as protein function prediction.

5 Related Work and Discussions

Data dependency is present in a wide spectrum of applications. In this paper, we propose
a unified approach that exploits data dependency to improve mining results, and we
approach this goal from two directions: (1) improving quality of input data, such as
by correcting contaminated data and by inferring missing values, and (2) improving
mining results from a model that ignores data dependency.

Techniques for improving data quality proposed in the literature have addressed
a wide range of problems caused by noise and missing data. For better information
retrieval from text, data is usually filtered to remove noise defined by grammatical
errors [12]. In data warehouses, there has been work on noisy class label and noisy
attribute detection based on classification rules [16] [14]; another application study is
learning from both labeled and unlabeled data by assigning pseudo-classes for the un-
labeled data [1] using boosting ensembles. All this previous work has its own niche
concerning data quality. Our work is more general in that it exploits local data con-
straints using Markov networks.



A pioneering work in sensor networks, the BBQ system [4], has studied the problem
of cost-efficient probing. However, their method relies on a global multivariate Gaussian
distribution. Global constraints are very strict assumptions, and are not appropriate in
many practical scenarios.

The primary contribution of this paper is a unified approach to improving mining
quality by exploiting data dependencies in data mining. The techniques here proposed
can be very useful for data mining practice, as demonstrated by our studies of real-
life applications. These experiments show that by exploiting data dependency, clear
improvements can be achieved in data quality and in the usefulness of mining results.
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