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ABSTRACT
In many data streaming applications today, tuples inside the
streams may get revised over time. This type of data stream
brings new issues and challenges to the data mining tasks.
We present a theoretical analysis for mining frequent item-
sets from sliding windows over such data. We define condi-
tions that determine whether an infrequent itemset will be-
come frequent when some existing tuples inside the streams
have been updated. We design simple but effective struc-
tures for managing both the evolving tuples and the candi-
date frequent itemsets. Moreover, we provide a novel verifi-
cation method that efficiently computes the counts of can-
didate itemsets. Experiments on real-world datasets show
the efficiency and effectiveness of our proposed method.

1. INTRODUCTION
The number of applications that need to process data streams
has been growing rapidly in the past few years. In these ap-
plications, transactions (tuples) are continuously arriving to
the systems and users often expect real-time answers to their
queries [2]. For accelerating the processing of data streams
several data stream models have been proposed to approxi-
mately represent the unbounded sequence of streaming tu-
ples and among them sliding windows [7] are commonly em-
ployed. In data stream management (and/or mining) sys-
tems (DSMSs) such as SMM [16], pane (a.k.a. slide) based
sliding windows proved efficient and effective for query pro-
cessing [12] and frequent pattern discovery [14].

Frequent pattern/itemset mining is one of the most im-
portant research issues in data mining with applications in
market-basket analysis, recommender systems and so on.
Mining frequent itemsets from sliding windows over stream-
ing data has also received significant research focus [5, 14].

However, it has not been investigated on how to extract
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frequent itemsets from “tuple-evolving” data streams where
tuples (transactions) are allowed to be revised. Here, “tuple-
evolving” data streams, also called “itemset-evolving” data
streams or data streams with evolving tuples hereafter, re-
fer to streams in which data elements (i.e. tuples or trans-
actions) can evolve/change over time. Esther Ryvkina at
al. pointed out in [15] that, “......Many data stream sources
(e.g., commercial ticker feeds) issue “revision tuples” (revi-
sions) that amend previously issued tuples......”.

We investigate the problem of online frequent itemset min-
ing from sliding windows over tuple-evolving data streams.
Since tuples can evolve inside this kind of data streams, the
mining task is more difficult than in the case of traditional
streaming data. The following example will illustrate these
challenges. Prior to this, we define a pane (slide) based
sliding window [12, 14] as a sliding window W which is par-
titioned into M (M ≥ 1) consequent non-overlapping panes
(slides), with each pane containing one or more tuples. Let
p be a pattern in W, the support ratio of p is defined as the
frequency of p in W divided by |W | which is the total num-
ber of data elements in W. It should be noted that if a tuple
has been revised one or more times in the same window,
when calculating p we should only count these tuples (the
tuple and the corresponding revision tuples) once in |W |.
The minimum support ratio is a support ratio threshold for
p to become frequent in W.

Example 1. Consider the watch/bid lists of users in an
online auction site1, where customers watch or place bids
on items that they are interested in. Users at any time
can add to or remove items from their lists. In addition,
items automatically expire from their watch lists when the
auctions are over. Figure 1 shows an example in which
users = {u1, u2, ..., um} (m is the total number of users),
items = {A, B, C, D, E, F} and each user is associated with
a tuple that contains the items in her/his list. The goal is
to find frequent itemsets with windows of size 12 and slides
of size 4, and a minimum support ratio of 0.4.

Figure 1 shows two different approaches to managing the
“tuple-evolving” data streams. The lower row in this figure
considers the data streams with evolving tuples. If tuple T1

arrived before T2 but they share the same user ui, then T2

is regarded as the new watch list of ui. Meanwhile, since T1

1http://www.ebid.net/
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Figure 1: Motivating Example

no longer represents the current watch list of ui, we delete
it and decrease the counts of the itemsets that are related to
it. The first sliding window in the figure contains all dis-
tinct users. We can extract AC and BE, which are frequent
in this window. The first window then moves to the second
window with the arrival of a new slide, which contains two
tuples whose users u8 and u10 already exist. Thus, we delete
the two old tuples, u8 and u10, then re-compute the frequen-
cies of itemsets in the new window. We find that itemset AC
is no longer frequent, while AE has become frequent. Sim-
ilarly, when a new slide containing existing users u11 and
u13 arrives in the third window, we delete their old tuples.
We discover that BE remains frequent, while AB and CE
become frequent.

Now let us consider the upper row in Figure 1, where a tra-
ditional sliding window approach is used that considers every
tuple as a new one (tuple revisions are ignored). In the sec-
ond window, where u8 and u10 have two tuples each, one is
obsolete and the other is current. Itemset AC is incorrectly
reported as frequent because all tuples were inappropriately
considered as being independent. Similarly, in the third win-
dow, CE is not reported as frequent because the old tuples
of u11 and u13 were considered when computing the counts
of the itemsets.

As shown in Example 1, the method in the lower row of
Figure 1 always allows correct discovery of frequent item-
sets while the method in the upper row does not. However,
the method in the lower row requires re-computation of the
counts of itemsets over the whole window. This is very costly
hence an efficient method is needed.

There are two models for dealing with revised tuples when
mining frequent itemsets from sliding windows over tuple-
evolving streams. One model is to update the content of
the tuple inside the same slide that previously contained
the tuple. The other model is to first remove the old tuple
from the slide where it was previously, then add the revised
tuple to the new slide of the streaming data. Both models
are reasonable depending on the needs of the applications.

In this paper, we adopt the latter model, hereafter referred
to as revision model, simply because we consider the revised
tuple as a new tuple in the stream.

It is worth noting that a lot of the data (e.g. Web us-
age data) for mining and management are similar to tuple-
evolving data streams. But existing methods often assume
that the raw data has been preprocessed before pattern dis-
covery. For instance, in Web usage mining, identifying users
and user sessions, and defining transactions are both needed
before association rule mining [6]. However, these first data
preparation then pattern discovery methods are offline ap-
proaches thus can not be utilized to online extract frequent
itemsets from tuple-evolving data streams.

1.1 Contributions
We discuss the idea of mining frequent itemsets from tuple-

evolving data streams. The novelty lies with the “evolution”
of tuples that may get amended over time. We prove that
in streams without evolving tuples slide-infrequent itemsets
cannot be window-frequent. Then we show through ex-
amples that in the more general case of itemset-evolving
streams, slide-infrequent itemsets actually can be window-
frequent, even if we consider frequentness separately among
the new and updated partitions of an updated slide. We
next define conditions in which it can be guaranteed that
an itemset is window-infrequent, based on previous slide-
infrequentness and low enough support in the new slide.

We suggest two tree structures to maintain the evolving
tuples and candidate frequent itemsets, respectively, of the
sliding window, and describe the update procedures during
data evolution. We develop a strategy to help prune the
unpromising itemsets, we also present a theorem to prove
the correctness of this strategy. We next design an efficient
verifier which scans the two tree structures and produces the
frequent itemsets. We prove that frequent itemsets found by
this verifier are complete and exact.

Our experiments on two real datasets, one with tuple revi-
sions and one without tuple revisions, show that our method
outperforms a well-known algorithm DTV-DFV [14] and a
naive method without using more memory.

The rest of the paper is organized as follows. We discuss
related work in Section 2. In Section 3, we give the theo-
retical evidence that supports our chosen model for dealing
with the revised tuples. We introduce our data structures in
Section 4. In Section 5, we present our approach to mining
frequent itemsets in tuple-streaming streams. We evaluate
the proposed method in Section 6 and draw the conclusions
in Section 7.

2. RELATED WORK
Streaming Frequent Itemset Mining. Landmark win-
dow model and sliding window model are two basic models
usually adopted in the literature to manage streaming data.
Here we focus on related works using sliding window models.

estWin is an approximate method that maintains signifi-
cant (candidate) itemsets in a common prefix lattice struc-
ture, where each node represents an itemset while an edge
between nodes denotes a subset relationship [4]. Frequent
itemsets are selected from the lattice only when mining re-
sults are requested.

Moment [5] is an algorithm for mining closed frequent
itemsets. It stores all itemsets (frequent or not) in a FP-
tree-like structure (CET ) and updates them when a new
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transaction arrives or an old one expires. The method suffers
when the number of transactions in the slide is large.

Mozafari et. al. [14] proposed a method for exact frequent
itemset mining over large sliding windows, where each win-
dow is divided into similar-sized slides. In their approach,
however, the reporting of frequent itemsets may be delayed
by up to one window.

Tuple updates has been discussed extensively in the con-
text of streams. The main problem is how to keep the pat-
terns or query answers up-to-date when new tuples come
and/or old tuples expire [8].

Tuple revisions are not the same as updates, tuple revi-
sions are corrections as they invalidate previously processed
inputs and all query results that were produced from them,
while tuple updates do not invalidate any previously output
query results [15]. To minimize the staleness of query re-
sults over streams with revision tuples, Alexandru Moga et
al. proposed an efficient storage-centric framework for load
management over the streams [13].

Parisa Haghani et al. studied the problem of continu-
ous top-k query processing over multiple non-synchronized
streams, where the attributes of an object arrive separately
in different streams [9].

In [17], we present ABS -a user-centric data stream model.
This model is suited to itemset-evolving data streams since
it handles tuple revisions effectively. Moreover, it is good at
preserving the long usage patterns and measures the bounce
rate of a usage stream more authentically. Based on ABS,
in [18] we investigated how to cluster itemset-evolving usage
streams.

In summary, the related issue about mining frequent item-
sets from itemset-evolving data streams, to the best of our
knowledge, has not been investigated in the literature.

3. PROBLEM ANALYSIS
Using the revision model, we now investigate the prob-

lem of mining frequent itemsets from sliding windows over
itemset-evolving streaming data, where the windows are cut
into smaller slides (panes). However, when tuples in the
past slides get revised, we should make sure that the fre-
quent itemsets derived are correct and complete. But this
may require re-scanning of the past slides to recompute the
counts of all the itemsets. To solve this problem, we present
here the theoretical support that simultaneously eliminates
the need for re-scanning the slides having updated tuples
and guarantees that we can accurately identify all the fre-
quent itemsets. The notations used in the paper are shown
in Table 1.

Table 1: Notation
Symbol Meaning
W, Wo, Wc window, old window, current window
|W | number of transactions in W
S1, . . . , Sn slides
S′

1, . . . , S
′
n updated slides

S n set of new transactions in Sn+1

S u set of updated transactions in Sn+1

l1, . . . , ln number of transactions in S1, . . . , Sn

l′1, . . . , l
′
n number of transactions in S′

1, . . . , S
′
n

I itemset
Count(I|W ) count of I in W
σ, 0 < σ ≤ 1 support ratio threshold

Given a sliding window W , an itemset I has to be frequent
in at least one slide in order to be frequent in the whole
window, regardless of the size of the slides. That is:

Theorem 1. Given a sliding window W = {S1, S2, ..., Sn},
an itemset I and a support threshold σ. I is infrequent in
W , if I is infrequent in every slide.

Proof. Let li be the number of transactions in the slide
Si (see Table 1). If I is infrequent in every slide then:
Count(I|Si) < σ× li, ∀Si, 1 ≤ i ≤ n. Hence: Count(I|W ) =Pn

1 Count(I|Si) <
Pn

1 σ × li = σ
Pn

1 li. Therefore, I is in-
frequent in W .

From Theorem 1, we can see that an itemset I should
be frequent in at least one slide before it becomes frequent
in the whole window, irrespective of the size of the slides.
However, in the case of itemset-evolving streams, when the
window moves from Wo to Wc, we have a different result.
Recall that in itemset-evolving streams, tuples in past slides
can be revised, that is, some tuples may be removed from
the existing slides. Indeed, if I is infrequent in every slide
of Wo = {S1, S2, ..., Sn} and remains infrequent in the new
slide Sn+1, I may be frequent in Wc. We give two counter
examples in the following.

Let Wo = {S1, S2}, Wc = {S2, S3}, σ = 0.4. In Wo, l1 =
55, l2 = 45; for itemset I, Count(I|S1) = 21, Count(I|S2)
= 17. Then:

(i) If the total number of tuples in the sliding window
remains the same, then |Wo| = |Wc| = 100. After some
tuples of S2 were amended in S3, in Wc: l2 = 40, l3 = 60.
Suppose that in Wc, Count(I|S2) = 17, Count(I|S3) = 23.
We can see that in Wo, I is frequent in neither slide; in the
new slide S3, it is still infrequent. However, Count(I|W ) =
40 thus I becomes frequent in Wc.

(ii) Else, in Wc, let l2 = 40, l3 = 55, Count(I|S2) = 17 and
Count(I|S3) = 21. Then |Wc| = 95, and Count(I|W ) = 38,
although I remains infrequent in S3, it becomes frequent in
Wc.

When some slides have been updated, we need to guar-
antee the completeness of the frequent itemsets. Therefore,
we may need to check the frequency of all the itemsets in
all the previous slides as well as in the new one. To avoid
such disadvantages, we need to correctly figure out which
itemsets have become frequent and which have not. To this
end. we first divide the new slide Sn+1 into two parts, with
one block S n containing only the new transactions and the
other S u consisting of revised transactions, then propose
the following theorem.

Theorem 2. Let pi, be the count of transactions in slide
Si in Wo that have been updated in the new slide Sn+1 of
Wc, where Wo = {S1, S2, ..., Sn}, Wc = {S2, ..., Sn, Sn+1}.

For all I, if it satisfies,
(1) not exists Si in Wo, 1 ≤ i ≤ n, such that I is frequent

in Si.
(2) Count(I|Sn+1) < σ(ln+1 −

Pn
2 pi).

Then I is infrequent in Wc.

Proof. For all I in Wo, because of Theorem 1 and con-
dition (1) we have:

nX
2

Count(I|Si) < σ

nX
2

li, 2 ≤ i ≤ n
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Tuples in slides Si (1 ≤ i ≤ n) in Wo could be updated in
slide Sn+1 in Wc. Thus, the new count of I in S′

i (2 ≤ i ≤ n)
in Wc must not be greater than the old count in Wo. That
is:

nX
2

Count(I|S′
i) ≤

nX
2

Count(I|Si), 2 ≤ i ≤ n

Moreover, for Wc, given condition (2), we can estimate
Count(I|Wc) which is the count of I in Wc:

Count(I|Wc) =

nX
2

Count(I|S′
i) + Count(I|Sn+1) =

≤
nX
2

Count(I|Si) + Count(I|Sn+1)

< σ

nX
2

li + Count(I|Sn+1)

< σ

nX
2

li + σ(ln+1 −
nX
2

pi)

= σ
˘
ln+1 +

nX
2

(li − pi)
¯

= σ
˘
ln+1 +

nX
2

l′i
¯

= σ|Wc|

Thus Count(I|Wc) < σ|Wc| and according to Theorem 1,
I must be infrequent in Wc.

Therefore, we can rely on Theorem 2 to guarantee the
completeness of frequent itemsets discovered from the sliding
window and in the meantime avoid scanning all past slides
to rediscover frequent itemsets. Based on Theorem 2, we
introduce Theorem 3 which allows us to easily separate the
possible frequent itemsets from the unpromising ones.

Theorem 3. Let Sn+1 be divided into S n and S u and
l n and l u their respective sizes. We introduce a new pa-
rameter σ′,

σ′ = σ × l n/(l n + l u) (1)

For all I, if I satisfies,
(1) not exists Si in Wo, 1 ≤ i ≤ n, such that I is frequent

in Si.
(2) its support ratio is less than σ′ in the new slide Sn+1.

Then, I is infrequent in Wc.

Proof. The number of transactions in slide Sn+1 is ln+1,
thus ln+1 = l n + l u. According to condition (2) and equa-
tion 1 we have:

Count(I|Sn+1) < σ′ln+1 = σl n = σ(ln+1 −
Pn

2 pi)
Therefore, the conditions of this theorem are exactly the

same as those in Theorem 3. Thus this theorem holds.

As a consequence of Theorem 3, we do not have to scan
old slides to make sure that the frequent itemsets are com-
pletely discovered; instead, all we have to consider are those
itemsets whose support ratios in the new slide are no less
than σ′.

It should be noted that when we calculate the revised tu-
ples in Theorem 3, we do not include the ones from the
expired slides. In other words, tuples updated from the ex-
pired slides are considered to be new tuples in the new slide.

4. DATA STRUCTURES

We propose two novel tree-based data structures that al-
low us to efficiently extract frequent patterns from itemset-
evolving streams. swTree stores all tuples in the sliding win-
dow, while cfTree keeps candidate-frequent itemsets.

4.1 swTree: Sliding Window Tree
swTree always holds all transactions in the current sliding

window. Items in tuples are ordered by canonical order.
When a tuple is inserted or amended, we keep a reference
pointer to the according node in swTree.

u1
u2
u3
u4
u5
u6
u7
u8
u9

u10
u11
u12

UID
root

Users Slides Sliding Window Tree

S1

S2

S3

A B

CB E

DC F

ED

E

C ED

D E

E

A 7
B 7
C 7
D 4
E 8
F 1

Header

Figure 2: swTree structure

Figure 2 shows the swTree structure for window 1 in Fig-
ure 1. We can see that our structure contains four parts:
Users, Slides, swTree and a Header table. Each user is
uniquely identified and points to the node in swTree, which
is the last item of his/her tuple after it has been inserted
in the structure. For example, user u1 with itemset AC
points to the according node C that follows node A (A/C)
in swTree. Keeping such pointers allows us to update the
tuples efficiently. The slides structure is the same as in a
classic sliding window. For swTree, we keep a header table
that is the same as that in the FP-tree [10]. This header
table stores all distinct items with their frequencies and a
list of pointers to the nodes in swTree having the same item.

A B

CB E

DC F

ED

E

C ED

D E

E

D

E

u5
u6
u7
u8
u9

u10
u11
u12
u13
u14

UID

Users Slides

S2

S3

S4

S1

Sliding Window Tree

root

Figure 3: Updated swTree structure

Consider again the lower row in Figure 1. After slide S1
expires, window 1 moves to window 2. Figure 3 shows the
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new swTree representing all the tuples in window 2 (for the
sake of clarity, the header table has been omitted from the
diagram). To update swTree from window 1 to window 2,
we take the following steps:

• for expired slide(s), we simply remove all the pointers
related to that slide and decrease the counts of all an-
cestor nodes. Therefore, all pointers related to s1 are
deleted.

• for amended tuples, we decrease the counts of old an-
cestor nodes and update the related pointers. For ex-
ample, when u8 is revised, we delete the old pointer
from S2, which is A/C/F, and add a new pointer in S4
to the last node of the new tuple, which is A/C.

• for the new slide that arrives, we insert the new tuple
to the swTree, then draw pointers from the users to
the corresponding tuples in swTree.

When updating tuples in the classic sliding window, old
tuples first have to be retrieved in the window, then new
tuples can be added. Using swTree structure, however, tuple
revisions and slide expirations are quickly handled.

4.2 cfTree: Tree Keeping Candidate Frequent
Itemsets

cfTree keeps only candidate-frequent itemsets and item-
sets discovered from the new slide are added to it. Mean-
while, we update the frequencies of the related itemsets in
cfTree.

The structure of cfTree is similar to FP-tree [10], with the
only difference being that we associate a slide id to each node
in cfTree. The slide id registers the id of the most recent slide
where the itemset was found to be frequent. So, when an
existing itemset is found frequent in the current slide, the
slide id of the corresponding node is updated to this current
slide id. The reason that we add such a slide id is that cfTree
can grow very large. Therefore, we need a strategy to help
prune the unpromising itemsets. We develop such a strategy
according to the following theorem.

Theorem 4. Let csn be the current slide id and n the
number of slides in W . For an itemset I, let nd be the
according node in cfTree and nd.sn the id of the most recent
slide where I was found frequent. We have
∀ itemset I, if csn - nd.sn≥n, then I must be infrequent

in W thus can be pruned from cfTree.

Proof. Let S1 denotes the most recent slide where I was
found frequent. csn − nd.sn ≥ n, thus I must not be fre-
quent in any of the m followed slides Sj , 2 ≤ i ≤ m + 1,
m ≥ n. Given the number of slides in a sliding window is
n, according to Theorem 1, I must be infrequent in the cur-
rent sliding window. Therefore, I can be safely pruned from
cfTree.

According to Theorem 4, we can make a breadth-first
traversal over cfTree and prune all nodes that satisfy its
condition.

But does cfTree contain all itemsets that are actually fre-
quent in the current sliding window? The following theorem
answers to this question.

Theorem 5. ∀I /∈ in cfTree pruned using Theorem 4, I
must be infrequent within the current sliding window.

Proof. ∀I /∈ cfTree, if I is frequent in the current slid-
ing window then, according to Theorem 1, I should have
been frequent in at least one of the n recent slides in the
window. Then I should have been added to cfTree and not
pruned from it as it must not satisfy the condition of Theo-
rem 4. So I must exist in cfTree, which is contradictory to
the conditions that I /∈ cfTree. Thus, the assumption does
not hold. Therefore, ∀I /∈ in cfTree, I must be infrequent in
the current sliding window.

5. MVERIFIER: VERIFICATION METHOD
We introduce a novel verifier with the goal of getting the

exact counts for all itemsets of cfTree from swTree. That
is, ∀itemset I ∈ cfTree, what is the support of I in swTree?
Our general idea is one to one sub-tree mapping and verifica-
tion. We adopt a top down mapping, starting from the roots
of both trees, traversing their descendants and verifying the
itemsets successively. Most importantly, this mapping veri-
fier method can avoid the excessive building of conditional
trees used by a conventional FP-growth algorithm [10].

Algorithm 1: The Mapping Verifier

Input: cfTree, swTree
Output: the count for each itemset of cfTree in swTree
begin1

foreach cfchild ∈ root of cfTree do2

suppcfchild = 0;3

swchildren←4

access header of swTree and find each swchild
such that cfchild = swchild;
foreach swchild ∈ swchildren do5

suppcfchild + = suppswchild;6

if suppcfchild ≥ supp threshold then7

mverify(cfchild, swchildren);8

end9

Algorithm 1 explains how the approach works. The in-
puts are cfTree and swTree. For each child of cfTree, we
access the header of swTree looking for subtrees that match
such child (line 4). After updating the counts (line 6), if its
support is above the support threshold, we will recursively
verify its descendants (line 8).

The calculation of the exact counts of itemsets is given
in the mverify function, shown in Algorithm 2. For each
node of the cfTree, we look for the corresponding children in
swTree (line 4). After updating the count of the considered
node, if its support is above the support threshold, we will
recursively verify the its descendants (line 8).

Theorem 6. The frequent itemsets found by the mapping
verifier are complete and exact.

Proof. ∀ itemset I ∈ cfTree that begins with an item s
and ends with t, s ≺ t, we should guarantee that all paths in
swTree containing I should be found, and each path should
be calculated one and only one time for I.

(1)The completeness of transactions/paths containing I.
If I is a true frequent itemset within the sliding window
swTree, then it must have been frequent in one or more past
slides of the window. I must have been registered in cfTree
as we keep all the frequent itemsets in each slide. Since both
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Algorithm 2: mverify

Input: cfroot, swroots
Output: the count for each itemset of cfroot in swroot
begin1

foreach cfchild ∈ children of cfroot do2

suppcfchild = 0;3

swchildren← find each swchild ∈4

swroots, such that cfchild = swchild;
foreach swchild ∈ swchildren do5

suppcfchild + = suppswchild;6

if suppcfchild ≥ supp threshold then7

mverify(cfchild, swchildren);8

end9

cfTree and swTree are ordered in the same way, the mapping
verifier is able to map I from cfTree to all related transac-
tions/paths in swTree that contain I. Therefore, when the
verifier traverses all the sub-trees, it is able to find all dis-
tinct transactions containing I. Hence the verifier can find
in swTree all the expected transactions containing I.

It should be noted that the mapping of I is stopped at an
item immediately whenever the support of this item of I in
swTree is below the minimum support, or when the verifier
could not find such an item following the path of I in swTree.
Will we miss the true frequent itemsets that are composed
of the same prefix except for the stopping item, and items
of I that are after the stopping item? If these itemsets are
candidate patterns in cfTree, they must follow paths that
are different from I. Since cfTree keeps all possible frequent
patterns, each itemset should have already been registered
in another path of cfTree. Therefore, we will also verify
these itemsets and not miss the true frequent itemsets when
applying this stop condition.

(2)The exactness of the counts for I. Given items in I and
swTree are ordered identically, the verifier matches items in
I sequentially, from s until t, each time searching for the
same item in swTree for paths that have satisfied previous
matchings of items. Therefore, the count for I must be
calculated exactly.

Discussion. FP-growth [10] and SWIM [14] are well-known
algorithms for mining frequent itemsets, but they suffer from
the exhaustive conditionalization and sub-trees merging for
every itemset in the FP-tree. SWIM differs from FP-growth
mainly in that it refers to the candidate frequent itemset tree
when conditionlizing the sub-trees. Our method, however,
matches cfTree directly to swTree without repeated condi-
tionlization and sub-tree mergence. Since all we have to ver-
ify are the itemsets in cfTree, our verifier goes top-down in
swTree referring to cfTree, and verifies the sub-trees based
on the results from their ancestors. As such, our method
greatly reduces the verification cost.

6. EXPERIMENTS
We conducted experiments on a real-world dataset: the mo-
bile browsing data of smart phone subscribers on the por-
tal of a large telecom. The telecom mobile browsing data
is 21.8 GB, and there are more than 8000 Web pages di-
vided into 23 different categories (sports, weather, tech-
nology, etc.). To test the efficiency of our counting algo-

rithm, we also use a public dataset kosarak that has no
tuple revisions. For simplicity, the naive method, which
mines frequent itemsets from scratch whenever the window
shifts, is called naiveMethod. Our framework is named Fideo
(Frequent itemset mining from data streams with evolving
tuples), while Fideo.D represents our method combined with
the delayed verification strategy used in [14].
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6.1 Efficiency of Counting Algorithm
First, we compare the performance of mVerifier and DTV-
DFV [14] which has shown to be an order of magnitude
faster than Apriori [1] and FP-growth [10]. DTV-DFV,
however, needs to recursively build conditional trees to get
the counts for the candidate itemsets, while mVerifier elimi-
nates building such conditional trees, it counts the supports
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of the candidate itemsets top-down and stops the verifica-
tion of a subtree immediately once the count of its prefix
itemset is verified below the minimum support. During the
comparisons, we input the same window of data and candi-
date frequent itemset tree to both methods, and ask them
to return the frequent itemsets in the window and their re-
spective supports. The dataset used is kosarak which is a
public real dataset1.

We test the efficiency of mVerifier with different support
thresholds from 0.5% to 3%. As shown in Figure 4, mVerifier
is indeed faster than DTV-DFV verifier; twice as fast as
DTV-DFV when the support threshold is low, i.e. when
there are many qualifying patterns, for the pattern matching
with a lot of candidate itemsets by recursively building the
conditional trees becomes very expensive.

We also evaluate the scalability with the window sizes.
Here we use kosarak dataset and the support threshold is
fixed to 0.5%. We test three window sizes: 50K, 80K and
100K. Depicted in Figure 5, both mVerifier and DTV-DFV
show linear scalability with the window sizes. However,
mVerifier is much more scalable than DTV-DFV. Overall, as
the window size grows up or the minimum support threshold
reduces, the difference between the two counting methods
becomes larger and larger.

During the experiments with varying window sizes, we
also notice that the maximum memory occupied by these
two counting algorithms is almost the same, although mVer-
ifier takes slightly less memory. This observation illustrates
that mVerifier runs much faster but consumes no more mem-
ory than DTV-DFV.

We conduct experiments to verify the memory require-
ments for naive method, Fideo, and Fideo.D on the same
dataset with varying window and slide sizes, by monitoring
the maximum memory occupied by these methods.

The memory cost for Fideo consists of three parts: (i)
swtree which compacts all the tuples of a sliding window in
a tree, (ii) cftree which keeps the candidate frequent item-
sets in a tree, and (iii) memory overhead when verifying

1http://fimi.ua.ac.be/data/

the candidate itemsets. Fideo.D, in addition to the above
three parts, needs additional memory for the auxiliary ar-
rays attached to the nodes of cftree. The memory consump-
tion of swTree and cfTree should be the same for Fideo and
Fideo.D. Fideo.D, however, needs less memory during ver-
ification of candidates compared to Fideo, for it only ver-
ifies cfTree in the expiring slides and revision tuple trees.
While for Fideo, it also needs to verify new candidates in
swTree to get their counts. The naive method still needs
swTree to hold the transactions in the sliding window (i.e.
(i)), and also memory space to discover frequent itemsets
from the whole window (i.e. (iii)). But when the window is
large, (iii) for the naive method should be larger than that
of Fideo (and Fideo.D), since it needs to build lots of con-
ditional trees recursively. We would like to note that (iii)
memory cost is much larger than (i) and (ii).

Figure 6 shows the results of the experiments in terms of
physical memory requirements with a variation of support
thresholds, with the window size set to 40,000 and slide size
being 2,000. Our first observation from Figure 6 is that
when the support threshold is low, the memory require-
ments for these three methods are very close. As discussed
in the above passage, this is due to the (iii) memory over-
head for the naiveMethod when the window is large. But
naiveMethod does require less memory when the support
threshold is large (e.g. 4%). Our second observation is that
the memory consumptions for Fideo and Fideo.D are sta-
ble, irrespective of the support thresholds. We also vary the
slide and window sizes, but the maximum memory usages
for these methods are similar to those in Figure 6. This is
because the memory cost of all the methods are more influ-
enced by the (iii) cost, while (iii) cost is influenced by both
the window size and the number of distinct items [11, 3].

6.2 Runtime Efficiency
Finally, we investigate the runtime efficiency of all the meth-
ods. Before presenting the results, we would like to note the
total time elapsed in mining each pane/slide in the window
is larger than directly discovering frequent patterns from the
sliding window. Thus although pane-based sliding windows
enables the incremental mining and maintenance of frequent
itemsets, there is indeed no free lunch for Fideo and Fideo.D,
since they need to spend more time extracting frequent item-
sets in each pane, than the naiveMethod that only extracts
frequent patterns from the window. In fact, this is also the
reason that the speedup over the naiveMethod is not very
huge: Fideo and Fideo.D save up to 50% of the time needed
by the naiveMethod.

In Figure 7, we fix the window size as 50K and the slide
size as 2k. We observe that when the support threshold is
large (4%), the naiveMethod uses even less time than the
improved methods, for the number of frequent itemset can-
didates are not large. However, the lower the support thresh-
old, i.e. there are lots of candidate itemsets, the faster Fideo
and Fideo.D. When support threshold is 0.5%, Fideo and
Fideo.D are more than 50% faster than the naiveMethod.

In the next series of experiments, we set the support thresh-
old to 1% and the number of slides to 20, then vary the sizes
of the slides. Shown in Figure 8, when we increase the slide
sizes from 2000 to 3500, we see that the naiveMethod is more
influenced by the slide sizes (window sizes), while Fideo and
Fideo.D scale better with respect to the slide sizes.
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7. CONCLUSION
In this paper we investigate how to extract frequent item-

sets from tuple-evolving streams. We define conditions to
determine whether a slide-infrequent itemset can be window-
infrequent. We design data structures that manage the
evolving tuples effectively. We design methods that adapt
to tuple-evolving streams and discover frequent itemsets ef-
ficiently. Experiments have demonstrated the efficiency and
effectiveness of our proposal. In the future work we will
study how to do pattern matching over tuple-evolving streams.
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